CS161 Summer 2025

Introduction to Computer Security

Exam Prep 9

Q1	Networking: Ne	w Phone Who	This	(6	points)
but E	•	v CodaBot's pho		any users. CodaBot is on the local sot wants to learn CodaBot's phone	
1)	EvanBot broadcast	s a request askin	g what CodaBot's	phone number is.	
2)	CodaBot sends a re	sponse to EvanB	ot with their pho	ne number.	
3)	EvanBot caches the	e phone number.			
Q1.1	(1 point) Which nety	vorking protocol	is this most simil	ar to?	
	○ ARP	O WPA2	○ BGP	O TCP	
Q1.2	(2 points) Eve is an o	n-path attacker	in the local netwo	rk. Select all attacks that Eve can ca	rry out.
		ine brute-force a number to Evar		aBot's phone number, by sending bac	ck every
	Learn CodaBot	s phone number	r by reading mess	age(s) Eve was not supposed to read	l.
	Learn CodaBot	s's phone number	r without reading	message(s) Eve was not supposed to	o read.
	Convince Evar	Bot that CodaBo	ot's phone number	is some malicious value chosen by	Eve.
	☐ None of the ab	ove			
	-			protocol: Instead of sending just the their phone number.	e phone
Whei numb		this data, EvanB	ot uses the public	key to verify the signature on th	e phone
	vants to trick EvanB values does Eve inc			number is a malicious value chosen anBot?	ı by Eve.
Q1.3	(1 point) For the pub	lic key, Eve send	s:		
	O Eve's public ke	ey		EvanBot's public key	
	O CodaBot's pub	lic key		The router's public key	

(Question 1 continued)	
Q1.4 (1 point) For the signature over the phone num	nber, Eve signs using:
O Eve's private key	O EvanBot's private key
O CodaBot's private key	O The router's private key
Q1.5 (1 point) How often will this attack succeed?	
O 100% of the time	Only when CodaBot's packet arrives first
Only when Eve's packet arrives first	O Never

Client Access Point

- 1. Client and AP derive the PSK from SSID and password.
- 3. AP randomly chooses ANonce.
- 5. Client randomly chooses SNonce and derives PTK.
- 7. AP derives PTK and verifies the MIC.
- 9. Client verifies the MIC.

For each method of client-AP authentication, select all things that the given adversary would be able to do. Assume that:

- The attacker does not know the WPA-PSK password but that they know that client's and AP's MAC addresses.
- For rogue AP attacks, there exists a client that knows the password that attempts to connect to the rogue AP attacker.
- The AMAC is the Access Point's MAC address and the SMAC is the Client's MAC address.

Q2.1 (5 points) The client and AP perform the WPA 4-way handshake with the following modifications:

- PTK = F(ANonce, SNonce, AMAC, SMAC, PSK), here F is a secure key derivation function
- MIC = PTK

	An	on-path	attacker	that	observes	a	successful	handshake	can	decrypt	subsequent	WPA
Ш	mes	ssages wi	thout lea	rning	the value	e c	of the PSK.					

	An on-path attacker that observes a successful handshake can trick	the AP	into	completi	ng a
ш	new handshake without learning the value of the PSK.				

	-	attacker that	observes a	a successful	handshake	can lear	n the PSK	without	brute
ш	force								

1	A rogue AF	attacker	can learn	the PSK	without	brute	force.
	11 10gue 111	attacker	can icarii	tile i bit	williout	Diuce	TOT CC

	A rogue AP	attacker	can only	learn	the P	SK if	they use	brute	force.
--	------------	----------	----------	-------	-------	-------	----------	-------	--------

(Question 2 continued)
Q2.2 (5 points) The client and AP perform the WPA 4-way handshake with the following modifications:
• PTK = $F(ANonce, SNonce, AMAC, SMAC)$, here F is a secure key derivation function
• $MIC = HMAC(PTK, Dialogue)$
An on-path attacker that observes a successful handshake can decrypt subsequent WPA messages without learning the value of the PSK.
An on-path attacker that observes a successful handshake can trick the AP into completing a new handshake without learning the value of the PSK.
\square An on-path attacker that observes a successful handshake can learn the PSK without brute force.
☐ A rogue AP attacker can learn the PSK without brute force.
☐ A rogue AP attacker can only learn the PSK if they use brute force.
☐ None of the above
Q2.3 (5 points) The client and AP perform the WPA 4-way handshake with the following modifications:
- Authentication: Client sends $H(\mathrm{PSK})$ to AP, where H is a secure cryptographic hash.
- Verification: AP compares $H(\mathrm{PSK})$ and to the value it received.
- AP sends: $\operatorname{Enc}(\operatorname{PSK},\operatorname{PTK})$ to client, where Enc is an IND-CPA secure encryption algorithm.
An on-path attacker that observes a successful handshake can decrypt subsequent WPA messages without learning the value of the PSK.
An on-path attacker that observes a successful handshake can trick the AP into completing a new handshake without learning the value of the PSK.
\square An on-path attacker that observes a successful handshake can learn the PSK without brute force.
☐ A rogue AP attacker can learn the PSK without brute force.
☐ A rogue AP attacker can only learn the PSK if they use brute force.
☐ None of the above

Q2.4 (5 points) The client and AP perform the WPA 4-way handshake with the following modifications:

- Authentication: Client conducts a Diffie-Hellman exchange with the AP to derive a shared key K.
- Client sends: Enc(K, PSK) to the AP.
- Verification: Check if $\operatorname{Dec}(K,\operatorname{Ciphertext})$ equals the PSK
- Upon verification, AP sends: $\mathrm{Enc}(K,\mathrm{PTK})$, where PTK is a random value, and sends it to the client.
- Assume that Enc is an IND-CPA secure encryption algorithm.

	An on-path attacker that observes a successful handshake can decrypt subsequent WPA messages without learning the value of the PSK.
	An on-path attacker that observes a successful handshake can trick the AP into completing a new handshake without learning the value of the PSK.
	An on-path attacker that observes a successful handshake can learn the PSK without brute force.
	A rogue AP attacker can learn the PSK without brute force.
	A rogue AP attacker can only learn the PSK if they use offline brute force.
П	None of the above