
 Page 1/12

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Spring 2003 Anthony D. Joseph

Midterm Exam Solutions
March 13, 2003

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA:

Discussion Section:

General Information:
This is a closed book and notes examination. You have two hours to answer as many questions
as possible. The number in parentheses at the beginning of each question indicates the number of
points given to the question; there are 100 points in all. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If
there is something in a question that you believe is open to interpretation, then please ask us about
it!
 Good Luck!!

Problem Possible Score
1

28

2

21

3

12

4

27

5

12

Total

100

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 2/12

1. (28 points total) Short answer questions:

a. (9 points) List any THREE major components of most modern operating systems
(e.g., Unix , Solaris, WindowsNT, Windows2000, or WindowsXP) and briefly
describe their role of each.

i)
3 points for each, 1 points for name and 2 points for role. Memory management,
process management, file management, I/O system management, networking,
scheduling, etc. No credit was given for OS functions (e.g., government).

ii)

iii)

b. (9 points) Give a definition of a counting semaphore, and list and describe the valid
operations.

3 points for definition, 2 points for each operation. A counting semaphore
is a synchronization data structure that can be used to control or limit the
number of processes that can access to a critical region. There are three
operations that are allowed on a semaphore:
1. Setting the initial value of the semaphore (number of concurrent

accesses allowed).
2. P() decrements the semaphore’s counter and either causes the process

to wait until the resource is available or allocates the process the
resource.

3. V() increments the semaphore’s counter, releasing a waiting process (if
any is waiting).

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 3/12

c. (4 points) List the conditions for deadlock.

1 point for each. Limited access, circular chain of requests, no preemption, and
multiple independent requests (or “hold and wait”).

d. (6 points) Provide definitions for internal and external fragmentation. Draw a
picture show internal fragmentation in a pure paging system (not paged
segmentation or segmented paging, but only paging). Draw a picture showing
external fragmentation in a pure segmentation system.

2 points for each definition, 1 point for each picture. Internal fragmentation:
space inside allocated memory that is wasted, typically occurs in paging systems.
External fragmentation: space outside of allocated memory that is too small to be
used for another process, typically occurs in segmented systems.

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 4/12

2. (21 points total) Processor Scheduling. Here is a table of processes and their
associated running times. All of the processes arrive in numerical order at time 0.

Process ID CPU Running
Time

Process 1 6
Process 2 1
Process 3 2
Process 4 4
Process 5 3

a. (9 points) Show the scheduling order for these processes under First-In-First-Out

(FIFO), Shortest-Job First (SJF), and Round-Robin (RR) scheduling with a
timeslice quantum = 1 time unit.
Time FIFO SJF RR
0

1 2 1

1

1 3 2

2

1 3 3

3

1 5 4

4

1 5 5

5

1 5 1

6

2 4 3

7

3 4 4

8

3 4 5

9

4 4 1

10

4 1 4

11

4 1 5

12

4 1 1

13

5 1 4

14

5 1 1

15

5 1 1

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 5/12

b. (12 points) For each process in each schedule above, indicate the queue wait time
and turnaround time (TRT).
Scheduler Process 1 Process 2 Process 3 Process 4 Process 5
FIFO queue wait

0 6 7 9 13

FIFO TRT

6 7 9 13 16

SJF queue wait

10 0 1 6 3

SJF TRT

16 1 3 10 6

RR queue wait

10 1 5 10 9

RR TRT

16 2 7 14 12

The queue wait time is the total time a thread spends in the wait queue.
Part a) 3 points per column, part b) 2 points per row.

3. (12 points total) Two-level Virtual Memory. For each of the following two-level virtual

memory addressing schemes, explain, in one or two sentences, how the scheme works.
a. Virtual address format:

3 points for each. 1 point for basic concept, -1 for minor errors, -1 for answers
that are too long. For top-level paging schemes, -1 point for no mention of
Page Table Base Register.

b. Virtual address format:

Paging Level 1 Paging Level 2 Offset

Paging Level 1 Segment Level 2 Offset

PTBR

Mem Page Table Page Table

Error!

PTBR

+

Mem

Seg table
Page Table

+

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 6/12

c. Virtual address format:

d. Virtual address format:

Segment Level 1 Paging Level 2 Offset

Segment Level 1 Segment Level 2 Offset

STBR

+

Mem

Page Table
Seg Table

+ Error!

STBR

+

Mem

Seg Table
Seg Table

+ Error!

Error!

+

+

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 7/12

4. (27 points total) Two-Level Page-based Virtual Addressing. Consider a 32-bit machine

with a multi- level virtual memory system with 32­bit pointers and 4096­byte pages
that supports two­levels of page tables. All Page Table Entries (PTEs) are 4 bytes.

a. (6 points) Show the complete format of a virtual address.

Each address is broken up into three parts:

Page Level 1 – 10 bits Page Level 2 – 10 bits Offset – 12 bits

1 point for each field, 1 point for correct bit length of each field.

This is a multi-level scheme using two sets of page tables for each process: an
“outer” one and an “inner” one. PL 1 is an index into the outer page table,
containing PTE’s that contain pointers to the inner page table (which can be
paged). In other words, the inner page table is broken up into pages that do not
have to be stored contiguously.

The PTE at outer [PL 1] contains a pointer to the PL 1th page in the inner page
table. PL 2 is an index into the PL 1th page in the inner page table. PTE's are 4
bytes, so there are 1,024 PTE's per page. Thus, PL 2 must be exactly 10 bits. The
index at PL 2 points to the page that holds virtual addresses starting with PL 1
PL 2. The particular byte is the dth byte in that page. Since pages are 4K bytes, d
must be exactly 12 bits. Since d is 12 bits and PL 2 is 10 bits, PL 1 must be 10
bits.

b. (6 points) Explain the steps the hardware takes in translating a virtual address to a

physical address for this scheme (do not worry about supporting paging to disk).

See Problem 3a for the picture of the steps that are taken. The PTBR is used to
locate the outer page table in physical memory. PL 1 is used to index into the
outer page table. As above, the PTE at this index points to a page in the inner
page table. PL 2 is used to index in this inner page table, and the PTE in the inner
page table points to the physical page. Offset is a location on the physical page. If
you didn’t mention the PTBR, we subtracted one point.

Note that each PTE should have a valid bit and several protection bits – e.g.,
read, write, execute, valid. The memory operation (load, store, load for execution)
must agree with these bits in both sets of PTE's (inner and outer). Otherwise the
hardware will generate an interrupt. If you didn’t mention the role of the valid bit
or the protection bits, we subtracted one point for each missing role.

If you missed a level, we subtracted one point for each level missed. If you
included an incorrect step, we subtracted one point.

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 8/12

c. (3 points) How many memory operations are required to read or write a single 32-

bit word?

Without extra hardware, performing a memory operation takes 3 actual memory
operations: two page table lookups in addition to the desired memory operation.
We did not award partial credit for this problem.

d. (4 points) List the fields of a Page Table Entry (PTE).

Each PTE will have a pointer to the proper page (two points) plus several bits –
read, write, execute, (1 point for protection bits), and valid (one point). This
information can all fit into 4 bytes, since if physical memory is 232 bytes, then 20
bits will be needed to point to the proper page, leaving ample space (12 bits) for
the information bits.

If you didn't mention the valid and protection bits, then you lost 2 points. If you
added incorrect fields, we subtracted one point for each incorrect field.

e. (6 points) How much physical memory is needed for a process with one page of

virtual memory?

Three pages are needed: one for the outer page table, one for one page of the
inner page table, and one for the process’ single page.

Note that the inner page table does not need 4M (210 * 4K), because the outer
page table enables you to only have inner page table pages for those pages that
are part of the process's virtual address space.

For partially correct answers, we subtracted three points for the wrong total and
one point for each incorrect page level. Answers that stated that only enough
memory was needed for a PTE at the outer and inner levels (instead of an entire
page), were penalized at least three points.

f. (2 points) What happens in the virtual memory subsystem on a context switch?

On a context switch, the PTBR of the new process must be loaded.
Note that it is not necessary to save the PTBR of the outgoing process as that does
not change on a context switch, as it is already stored in the process’ control
block. We did not give partial credit for answers that only saved the PTBR.

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 9/12

No Credit – Problem X: (000000000000 points)

The Overwhelming Might of the US Military

The following is the transcript of an actual radio conversation that took place in October
1995, off the coast of England. The British Ministry of Defence recently released the
transcript:

British: Calling unknown radar contact at position *****, please divert your course 15°

to the south to avoid a collision.

Americans: Recommend you divert your course 15° to the north to avoid a collision.

British: Negative. You will have to divert your course 15° to the south to avoid a

collision.

Americans: This is the Captain of a US Navy ship. I say again, divert your course north.

British: Negative, I say again. You will have to divert your course.

Americans: This is the captain of the aircraft carrier USS Lincoln, the second largest

ship in the United States' Atlantic Fleet. We are accompanied by numerous
support vessels. I demand that you change your course 15° north. That's 15°
north, or countermeasures will be undertaken to ensure the safety of this
ship.

British: This is a lighthouse. Your move …

We can only assume that the US ships adjusted their course south.

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 10/12

5. (12 points total) Concurrency problem: In parallel programs (one multi- threaded

process), a common design methodology is to perform processing in sequential
stages. All of the threads work independently during each stage, but they must
synchronize at the end of each stage at a synchronization point called a barrier. If a
thread reaches the barrier before all other threads have arrived, it waits. When all
threads reach the barrier, they are notified and can begin execution on the next phase
of the computation.

There are three complications to barriers. First, there is no master thread that controls
the threads, waits for each of them to reach the barrier, and then tells them to re-start.
Instead, the threads must monitor themselves and determine when they should wait or
proceed. Second, for many dynamic programs, the number of threads that will be
created during the lifetime of the parallel program is unknown in advance, since a
thread can spawn another thread, which will start in the same program stage as the
thread that created it. Third, a thread may end before the barrier. In all cases, all
threads must synchronize at the barrier before the processing is allowed to proceed to
the next phase.

a. (10 points) Provide the pseudo-code for a monitor class called Barrier that

enables this style of barrier synchronization. Your solution must support creation
of a new thread (an additional thread that needs to synchronize), termination of a
thread (one less thread that needs to synchronize), waiting when a thread reaches
the barrier early, and releasing waiting threads when the last thread reaches the
barrier. Implement your solution using monitors (e.g., wait(), signal(), and
signalAll()).

Your class must implement the following three methods: threadCreated(),
threadEnd(), barrierReached().
Hint: this concept is very similar to Java synchronized objects.

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 11/12

Class Barrier () {
ConditionVar barrier; Lock lock = FREE;
Int numThreads = 0; Int numThreadsAtBarrier = 0;

threadCreated() {

lock.acquire();
numThreads ++
lock.release();

}

threadEnd() {

lock.acquire();
numThreads--;
if (numThreadsAtBarrier == numThreads) {

numThreadsAtBarrier = 0;
barrier.signalAll();

}
lock.release();

}

barrierReached() {

lock.acquire();
numThreadsAtBarrier++;
if (numThreadsAtBarrier < numThreads) {

barrier.wait();
} else {

numThreadsAtBarrier = 0;
barrier.signalAll();

}
lock.release();

}
}

We subtracted points as follow:
• Answers with semaphores received no credit
• Answers without locks lost 5 points, incorrect lock use lost 1 point for

each error (max –5 points)
• If your threadEnd procedure didn’t check the ending thread was the last

one not at the barrier, you lost 2 points
• If you created a thread in threadCreatED, you lost 1 to 3 points
• If threads could slip through your barrierReached, you lost 3 to 5 points
• If not all threads were released after the barrier, you lost 4 points
• Excessive thread wakeups (e.g., in threadEnd) cost you one point
• Answers with indefinite waiting (never finishing the barrier) lost 5 points
• Answers with busy waiting lost 5 points

CS 162 Spring 2003 Midterm Exam March 13, 2003
Solutions

 Page 12/12

b. (2 points) In your barrierReached method, which conditional statement (i.e.,
if, or while) did you use and why?
The correct choice for most solutions was an if statement. Using a while was an
extra, unnecessary check for most solutions, thus we gave no credit or partial
credit for answers based on using Mesa-style monitors. If you said you needed a
while because new threads could be created while all threads were waiting at the
barrier, we subtracted one point, as no new threads can be created by the threads
(since they’re all waiting at the barrier).

However some solutions that checked for all threads at the barrier in threadEnd
required a while statement. We gave full credit in such cases.

We gave no credit for stating that you used a while with Hoare-style monitors, as
such monitors are extremely difficult to implement in practice.

