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change information. as a CPU does. but just moves information from one place o

anothera
Now that we have covered the basic types of storage devices and ways to con-
nect them 1o the CPU, we are ready to look at ways to evaluate the performance

of storage systems.

6-4 \ 1/0 Performance Measures

/O performance has measures that have no counterparts in CPU design. One of
these is diversity: Which /O devices can conneet to the computer system? An-
other is capacity: How many [/O devices can connect (o 4 computer system?

In addition to these unigue measures, the traditional measures of performance,
response time and rhroughput, also apply to I/O. (/O throughput 15 sometimes
called /O bandwidth, and response time is sometimes called fatency.) The next
two figures offer insight into how response time and throughput irade off against
each other. Figure 6.16 shows the simple producer-server model. The producer
creates tasks to be performed and places them in a buffer; the server takes tasks
from the first-in-first-out buffer and performs them.

Response time is defined as the time a task takes from the momeznt it is placed
in the buffer until the server finishes the task. Throughput 18 simply the average
aumber of tasks completed by the server over @ time period. To et the highest
possible throughput, the server should never be idle. and thus the buffer should
never be cmpty. Response time, on the other hand. counts time spent in the bufter
and is therefore minimized by the buffer being empty.

-

" Produner

FIGURE 6.16 The traditional producer-server model of response time and through-:
put. Response time segins when & task is placed in the buffer and ends when it is completed:
by the server. Throughput is the number of tasks comuieted by the server in unit time.

Another measure of /0 performance is the interference of 1/ with CPU ex
cution. Transferring data may interfere with the execution of another proces:
There is also overhead due to handling 170 interrupts. Our concern here is ho
many more clock cycles a process will take because of I/O for another process:
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Throughput versus Response Time

Figure 6.17 $hows throughput versus response time (or latency) for a typical /O
svstem. The knee of the curve is the area where a little more throughput results in
much longer response time or, conversely, a little shorter response time results in
much lower throughput.

DU} [roo et e e e e

Fesponse time
{latency)
in ms

(% 20% 40% 60% 80% 100%
Percent of maximum throughput (bandwidth)

L#

FIGURE 6.17 Throughput versus response time. Latency is normally reporied as re-
sponse time. Note that the minimum response time achieves onty 11% of the troughput,
while the response time for 100% throughput takes seven times the minimum resg onse time.
Note that the independent variabie in this curve is implicit: To trace the curve, you tygically
vary load {concurrency). Chen et al. [1980] collected these data for an array of magnetic
disks.

Life would be simpler if improving performance always meant improvements
in both response time and throughput. Adding more servers, as in Figure 6.18,
increases throughput: By spreading data across two disks instead of one, tasks
may be serviced in parallel. Alas, this does not help response time, unless the
workload is held constant and the time in the buffers is reduced because of more
resources,

How does the architect balance these conflicting demands? If the computer is
interacting with human beings. Figure 6.19 suggests an answer. This figure
presents the results of two studies of interactive environments: one keyboard
oriented and one graphical. An interaction, or transaction, with a computer is
divided into three parts:
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FIGURE 6.18 The single-producer, single-server model of Figure 6.16 is extended

with another server and buffer. This increases /0 system threughput and takes less time
to service producer tasks. increasing the number of servers is a commeon technique in 10
systems. There is a potential imbalance problem with two buffers: Uniess data is placed per-
fectly in the buffers, sometimes one server will be idle with an empty buffer while the other

server is busy with many tasks in its buffer.

1. Entry time—The time for the user (o enter the command. The graphics system
in Figure 6.19 took 0.25 seconds on average to enter a command versus 4.0
seconds for the keyboard system.

2. System response time—The time between when the user enters the command
and the complete response is displayed.

1 Think rime—The time from the reception of the response until the user begins

to enter the next command.

The sum of these three parts is called the transaction time. Several studies report
that user productivity is inversely proportional to transaction iime; transactons
per hour is a measure of the work completed per hour by the user.

The results in Figure 6,19 show that reduction in response time actually de-
creases transaction time by more than just the response time reduction: Cutting
systemn response time by 0.7 seconds saves 4.9 seconds (34%) from the conven-
tional transaction and 2.0 seconds (70%) from the graphics transaction. This im-
plausible result is explained by human nature: People need less time to think

when given a faster response.
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FIGURE 6.19 A user transaction with an interactive computer divided into entry time,
system response time, and user think time for a conventional system and graphics
system. The eniry times are the same, independent of system response time. The entry time
was 4 seconds for the conventional system and 0.25 seconds for the graphics system. (From
Brady [1986].)

Whether these results are explained as a better match to the human attention
span or getting people “‘on a roll,” several studies report this behavior. In fuct, as
computer responses drop below one second, preductivity seems to make a more
than linear jump. Figure 6.20 compares transactions per hour (the inverse of
rransaction time) of a novice, an average engineer, and an expert performing
physical design tasks on graphics displays. System response time magnified tal-
ent: a novice with subsecond response time was as productive as an experienced
professional with slower response, and the experienced engineer in turn could
outperform the expert with a similar advantage in response time. In all cases the
number of transactions per hour jumps more than linearly with subsecond re-
sponse time.

Since humans may be able to get much more work done per day with better re-
sponse time, it is possible to attach an economic benefit to the customer of lower-
ing response time into the subsecond range {IBM 19821 thereby helping the
architect decide how to tip the balance between response time and throughput.

A Little Queuing Theory

With an appreciation of the importance of response time, we can give a set of
simple theorems that will help calculate response time and throughput of an en-
tire I/O system, Let’s start with a black box approach to /O systems. as in Figure
6,21, In our example the CPU is making /O requests that arrive at the /O device,
and the requests “depart’” when the [/O device fulfills them.
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FIGURE 6.20 Transactions per hour versus computer response time fora novice, ex-
perienced engineer, and expert doing physicai design on a graphics system, Trans- -
actions per hour is a measure of productivity. (From IBM [1982].)

Arrivalg Departures

FIGURE 6.21 Treating the I/O system as a btack box. This leads to a simpfe but impog:
tant observation: if the system is in steady state, then the number of tasks entering the sy:
tems must equal the number of tasks leaving the system.

We are usually interested in the fong term, or steady state, of a systern rath
than in the initial start-up conditions. Hence we make the simplifying assump
that we are evaluating systems in equilibrium: the input rate must he equal to
output rate. This leads us to Litrle’s Law, which relates the average numbe
tasks in the system, the average arrival rate of new tasks, and the average ti
perform a task:

Mean number of tasks in system = Arrival rate x Mean response time
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Little’s Law applies to any system in equilibrium. as fong as nothing inside the
black box is creating new tasks or destroying them. This simple equation is sur-
prisingly powertul, as we shall see.

If we open the black box, we see Figure 6.22. The areas where the tasks accu-
mulate, waiting 1o be serviced. is called the guene, or walting fine, and the device
perterming the requested service is called the server.

Uueue

Arrivals ‘ 12 controller
. I

& device

FIGURE 6.22 The single server model for this section. In this situation an /0 requast
“departs” by being complated by the server.

Little’s Law and a series of definitions lead to several uscful equations:
q

se “:_‘e for at“°"i. Time,,....—Average time 10 service a task; service rate is [/Time, tradi-

jraphics system.’

NETVELS
tionally represented by the symbol g in many texts.
Time, ., —Average time per task in the queuec.

Time,, ., —Average time/task in the system, or the response time, the sum of

lqlrrlef.’illl?ll(’ and Tlme\Lﬁ[\'E‘,l"

Arrival rate—Average number of arriving tasks/second, traditionaily repre-
sented by the symbol & in many texts.

Length, ...—Average number of tasks in service.

Length,,...—Average length of queue.

1S 1o a simpl

Length, ., —Average number of tasks in system, the sum of Length
of tasks ents

Length

queue and

servers

One common misunderstanding can be made clearer by these definitions:
whether the guestion is how long a task must wait in the queue before service
starts (Timeg,.,..) or how long a task takes until it is completed (Ti Me o). The
latter term is what we mean by response time. and the relationship between the
terms is Time = Time .+ Time

system qucu server’

Using the terms above we can restate Little's Law as
Length

= Arrival rate x Time
3}'.\161}] systcm
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We can also talk about how busy a system is from these definitions. Server utili-
. . . 4
zation is simply

L Arrival rate

Server utilization = o~

Service rate

The value must be between 0 and 1, for otherwise there would be more Lasks ar-
riving than could be serviced, violating ouv assumption that the system is in equi-
librium. Utilization is also called traffic intensity and is represented by the
symbol p in many 1exts.

EXAMPLE Suppose an /O system with a single disk gets about 10 1/Q requests per
second and the average time for a disk to service an /O request is 50 ms.
What is the utilization of the 1/O system?

The service rate is then

1 1

Frsvliadiy = 20 VO per sec OPS
s D05 see O per second (10PS)

Using the equation above.

Arrival tate _ 1010PS

Allyar & o = 0.50
Service rate 20 JOPS

Server utilization =

So the VO system utilization is 0.5.

Little’s Law can be applicd to the components of the black box as well, since
thay must also be in cquilibrium:

Length Arrival rate x Time
s queue queus

Length

Arrival rate x Time
server

seTver

Suppose the average time to satisty a disk request is 50 ms and the 1/O
system with many disks gets about 200 1/O requests per second. Whatlis
the mean number of VO requests at the disk server?

ANSWER Using the equaticn above,

. .. 200
Length . = Arrival ratle x Time — 2 005sec=10
o server server seC

So there are 10 requests on average at the disk server.
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How the queue delivers tasks to the server is called the gueue discipline. The
simplest,and most common discipline is first-in-first-out (FIFO). It we assume
FIFO weccan relate time waiting in the queue to the mcan number of tasks in the
quene:

= Length x Time + Mean time to complete service of tasks when new task arrives

queue Server

That is, the system response time is the number of tasks in the queue times the
mean service time plus the time it takes the server to complete whatever tasks are
being serviced when a new task arrives.

The last component of the equation is not as simple as it first appears. A new
task can arrive al any instant, so we have no basis to know how long the existing
task has been in the server. Although such requests are random events. if we
know something aboui the distribution of events we can predict performance.

To estimate this answer we need to know a little about distributions of randcin
variables. A variable is random 1t it takes one of a specified set of values with a
specified probability; that 18, vou cannot know exactly what its next value will he,
but you do know the probability of all possible values.

One way to characterize the distribution of values of a random variable is a
histogram, which divides the range between the minimum and maximum values
into subranges called buckets. Histograms then plot the number in each bucket as
columns, Histograms work well tor distributions that are discrete values-—for ex-
ample, the number of /O requests. For distributions that are not discrete values,
such as time waiting for an I/O request, we need a curve to plot the values over
the fuli range so that we can accurately estimate the value. Stated alternatively,
we need a histogram with an infinite number of buckets.

Hencee, to be able to solve the last part of the equation above we need to char-
aclerize the distribution of this random variable. The mean time and some mea-
sure of the variance is sufficient {or that characterization. For the first term we use
the weighted arithmetic mean time (sce page 26 in Chapter 1 for a slightly differ-
cnt version of the formula):

f] le +f2x’1'2+ +anTu

Weighted mean time =

where T, is the time for task  and f; 1% the frequency of occurrence of task 7.

To characterize variability about the mean, many people use the standard devi-
ation. Let's use the variance instead. which is simply the square of the standard
deviation. Given the weighted mean, the variance can be calculated as
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. i 2 . L2
- _flxll+f2><T2+...+j”><I”_
Varance =

2
— Weighted mean time

[

The problem with using variance is that it can be large simply because of the
units vsed to measure. Let's assume the distribution is of time. If the times are on
the order of 100 milliseconds, then squaring them will lead to large variances on
the order of 10,000 milliseconds; if instead the times were reported as 0. [ sec-
onds. then squaring them would lead to small variances on the order of 0.0] sec-
onds (10 milliseconds).

To avoid this unit problem, we use the squared coefficient of variance, tradi-
tionally called C:

Variance

5
Weighted mean time™

For reasons stated earlier, we are trying to characterize random events. but to
be able to predict performance we nced random events with certain nice proper-
ties. Figure 6.23 gives a few cxamples. An exponential distribution, with most of
the times short relative to average but with a few long ones, has a C value of 1. In
a hypoexponential distribution, most values are close to average and C is less
than 1. In a Ayperexponential distribution, most values are further from the aver-
age and C 1s greater than |. The disk service is best measured with a C of about
1.5. As we shall see, the value of C affects the simplicity of the quening formulas.

Distribution type C % less than average  90% of distribution is less than

Hypoexponential 0.5 5T 2.0 times average

Exponential 1.0 63‘7( 2.3 times S average

Hypure xponentlal 2.0 : 2.8 times average

of distributions given an unlimited number of tasks (infinite population).

Note that we are using a constant to characterize variability about the mean
Since C does not vary over time, the past history of events has no impact on th
probability of an event occurring now. This forgetful property is called memot’,\M
less and is a key assumption used to predict behavior.

Finally, we can answer the question about the length of time a new task mus
wait tor the server to complete a task, called the average residual service time:

Average residual service time = 1/2 x Weighted mean time x {1 +C)
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Although we won't derive this formula, we can appeal to intuition. When the dis-
tributiof is not random and all possible values are equal to the average, the vari-
ance is 8 and so C is (. The average residual service time is then just haif the
average service time, as we would expect,

.2
ted mean time

simply because of th
me. If the times are o
1to large variances og
¢ reported as 0.1 se
 the order of 0.01 see.

EXAMPLE Using the definitions and formulas above, derive the average time waiting
in the queue (Time,,,.) in terms of the average service time {Time

SBNGF)'
server utilization, and the squared coefficient of variance {C).

ANSWER All tasks in the queue (Lengthg,, ) ahead of the new task must be com-
pleted before the task can be serviced; each takes on average Time_,, ..
if a task is at the server, it takes average residual service time to com-
plete. The chance the server is busy is server utilization, hence the ex-
pected time for service is Server utilization x Average residual service
time. This leads to our initial formula;

ent of variance, tra

T lmcqucue = Lcrlg,thquCue * Tlmcser\'cr + Server utilization % Average residual service time
random events, b
th certain nice pro Replacing average residual service time by its definition and Length

gueue
tribution, with mo by Arrival rate x Timeg,,, vields
. has a C value o o . . . .
! A = Server utilization x (1/2 x Time o X {1+ CYY + (Arrival rate x Time ) xTime
average and C is. queue server quene server

further from the
ured with a C of
 the queuing fo

Rearranging the last term, let us replace Arrival rate x Timeg,,., by Server
utilization since

e Arrivul rate . .

Server utilization = T = Amivalrate x Time_

1/Time server
server

istribution is les

2.0 times average

It works as follows;
2.3 times average

2.8 times average

mequeue = Server utilization x (1/2 x Tlmc:‘_erver X (P+C)) + {Arrival rate x Tlmcscwer,) X '!"1mcqul:ue
= Server utilization x {1/2 x Time pver X CL+C)) + Server utilization x Time
server guene

ariance C and v
opulation).

bility about Rearranging terms and simplifying gives us the desired equation:
bility a :

5 has no im|

Time = Server utilization x (1/72xTime_  x (1 +C)) + Server utitization x Time
ny is call Jueue SCerver qucue
e : .
“m‘queuc Server utilization x 1 lmf:queue Server utilization % {1/2 x TlmcsC X T+C))
ftime « B B Server utilization x (Timeguwr X {1+C))
sidual se T nnequcue > (1= Server utilization} = -

2
L time X ( Time - ? mme oo % (1 + € x Server utilization
. queue

2% (1 - Server urilization}
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Nota that when we have an exponential distribution, then C=1.0, s this

formula sirrttplifies to
3

Server utilization

Time. .= Time_ . X Trilzation)
queune server (] — Server utitization)

These equations and this subscction are based on an area of applied mathemat-
ics called quening theory, which offers equations to predict behavior of such ran-
dom variables. Real systems are 100 complex for queuing theory 1o provide exact
analysis, and hence queuing theory works hest when only approximate answers
' are necded. This subsection is 2 simple introduction, and interested readers can

lind many books on the Lopic.

Requests for service from

able, because the operating syste

cesses that generate independent

by a random varjable given the probabilistic nature 0

rotational delays.

Quening theory makes a sharp distinction between past events, which can be

‘\ characterized by measurements using simple arithmetic, and future events. which
5 are predictions requiring mathematics. In computer systems we commonly pre-
dict the future from the past; one example is least recently used block placement

(see Chapter 5). Hence the distinction between measurements and predicted dis-

blurred here, and we use measurements 1o verify the type of

an /) system can be modeled by a random vari-
m is normally switching between several pro-
/O requests. We also model VO service times
f disks in terms of seek and

tributions is often
distribution and then rely on the distribution thereafter.

Iet's review the assumptions about the queuing model:

« The system is in equiliorium.
o The times between two successive requests arriving, called the interarrival
times, are exponentially distributed.

The number of requests is unlimited (this is called an infinite population model

in queuning theory).

o The server can start on the next cuUstomes immediately after finishing with the

prior ene.

. There is no limit to the length of the queue. and it follows the first-in-first-out

order discipline.
o All tasks in line must be completed.

Such a queue is called M/G/T

M = exponentially random request arrival (C = 1), with M standing for the

memoryless property mentioned above
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G = general service distribution (i.c.. not exponential)
¢
/= sing‘le server

When interarrival times are exponentially distributed, this model becomes an
M/M/1 queuc and we cun use the simple equation for waiting time at the end of
the last example. The M/M/1 model is a simple and widely used model,

The assumption of exponential distribution is commonly used in queuing
examples for two reasons, one good and one bad. The good reason is that a collec-
tion of many arbitrary distributions acts as an exponential distribution. Many
times in computer systems a particular behavior is the result of many components
mteracting, so an exponential distribution of interarrival times is the right model,
The bad reason is (hat the math is simpler if you assume exponential distributions.

Let’s put queuing theory to work in a few examples.

EXAMPLE Suppose a processar sends 10 disk I/Os per second, these requests are

exponentially distributed, and the average disk service time is 20 ms.
Answer the following questions:

1. On average, how utilized is the digk?
What is the average time spent in the queue?

What is the 90th percentile of the queuing time?

e

What is the average response time for a disk request, including the
queuing time and disk service time?

ANSWER Let's restate these facts:

Time
yueue

Average number of arriving tasks/second is 10.
Average disk time to service a task is 20 ms (11.02 sec).

The server utilization is then

Arrival rate 10

Server utilization = - =
Service rate 1/0.02

= 0.2

Sirce the service distribution is exponential, we can use the simplified for-
mula for the average time spent waiting in line:

- Server utilization . 0.2 0.2 -
=TT 3] —_— =2 s X =20x < =7 25 = S ms
Mserver (1~ Server utilization) bms 1-02 0 0.8 00 e

From Figure 6.23 (page 512}, the 90th percentile is 2.3 times the mean
waiting time, so it is 11.5 ms. The average response time is

Time  + Time
queue 5

=5+20ms =25 ms
Erver
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EXAMPLE Suppose we get a new, faster disk. Recaiculate the answers to the ques-
tions above, assuming the disk service time is 10 ms.

o

ANSWER The disk utilization is then

Server utilization = Arrival rate = 10 =01
* Service rate }/0.01 ’

Since the service distribution is exponential, we can use the simplified for-
mula for the average time spent waiting in line:

. . Server wtilizatior.
Time = Time X = 5msx

Gueue server - (1 — Server utilization) 1-0.1 =

The 90th percentile of the mean waiting time is 1.27 ms.

The average response time is 10 + 0.55 ms or 10.55 ms, 2.4 times
faster than the old response time even though the new service time is only
2.0 times faster. a

Section 6.7 has more examples using queuing theory to predict performance,

Examples of Benchmarks of Disk Performance

The prior subsection tries to predict the performance of storage subsystems. We
also need to measure the performance of real systems to collect the values of
paramelters needed for prediction, to determine if the queuing theory assumptions
hold, and to suggest what to do if the assumptions don’t hold.

This subsection describes three benchmarks, each illustrating novel concerns
regarding storage systems versus processors.

Transaction Processing Benchmarks

Transaction processing (TP, or OLTP for on-line transaction processing) is chiefly
concerned with /O rate: the number of disk accesses per second, as opposed to
data rate, measured as bytes of data per second. TP generally involves changes to
a large body of shared information from many terminals, with the TP system guar-
anteeing proper behavior on a failure. If, for example, a bank’s computer fails
when a customer withdraws money, the TP system would guarantee that the ac-
count is debited if the customer received the money and that the account is un-
changed if the money was not received. Airline reservations systems as well as
banks are traditional customers for TP.

Two dozen members of the TP community conspired to form a benchmark for
the industry and, to avoid the wrath of their legal departments, published the
report anonymously [1985]. This benchmark, called DebitCredit, simulates bank
tellers and has as ils boitom line the number of debit/credit transactions per
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second (TPS). The DebitCredit performs the operation of a customer depositing
or withdrawing money. TPC-A and TPC-B are more tightly specified versions of
this original benchmark. The organization responsible for standardizing TPC-A
and TPC-B have also developed benchmarks on complex query processing (TPC-C
and decision support (TPC-D).

Disk /O for DebitCredit is random reads and writes of 100-byte records along
with occasional sequential writes. Depending on how cleverly the transaction-
processing system is designed, each transaction results in between 2 and 10 digk
[/0s and takes between 5000 and 20,000 CPU instructions per disk /O. The vari-
ation depends largely on the efficiency of the transaction-processing software, al-
though in part it depends on the extent to which disk accesses can be avoided by
keeping information in main memory. Hence. TPC measures the database sof.
ware as well as the underlying machine.

The main performance measurement is the peak TPS, under the restriction that
90% of the transactions have less than a two-second response time. The bench-
mark requires that for TPS to increase, the number of tellers and the size of the
account file must also increase. Figure 6.24 shows this unusua relationship in
which more TPS requires more users. This scaling s to ensure that the bench-
mark really measures disk /Oy otherwise a large main memory dedicated to o
database cache with & small number of accounts would unfairly yield a very high
TPS. (Another perspective is that the number of accounts must grow, since a per-

son is not likely to use the bank more frequently just because the bank has a faster
computer!)

| TPS Number of ATMs Account file size

P10 1000 0.1 GB

[0 1< _
| 1000 100,000 10.0 GB

10,000 1,000,000 100.0 GB

FIGURE 6.24 Relationship among TPS, tellers, and aceount file size, The DebitCredit
benchmark requires that the computer system handle more tellers and larger account files
before it can claim a higher transacticn-per-second milestene, The benchmark is supposed
to include “terminai handling” overhead, but this metric is sometimes ignored.

Another novel feature of TPC-A and TPC-B is that they address how 1o COm-
pare the performance of systems with different contigurations. In addition 1o re-
porting TPS, benchmarkers must also report the cost per TPS, based on the five-
year cost of the computer system hardware and software.
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SPEC System-Level File Server (SFS) Benchmark

; The SPEC benchmarking effort is best known for its characterization of proces-
| s07 perfurmancef but it branches out into other fields as well. In 1990 seven com-
benchmark, called SFS. to evaluate systems running
the Sun Microsystems network file service NFS. This synthetic mix was based on
measurements on NFS systemns to propose 4 reasonable mix of reads, writes, and
file operations such as examining a file. SFS supplies default parameters for com-
parative performance: For example, half of all writes are done in 8-KB blocks
and hulf are done in partial blocks of 1, 2. or 4 KB. For reads the mix is 85% full
blocks and 15% partial blocks.
Like TPC-B, SFS scales the size of the file system according to the reported
throughput: For every 100 NFS operations per second, the capacity must increase
by 1 GB. [t also limits the average response time, in this case to 50 ms. Figure
6.75 shows Average respunse time versus throughput for three systems. Unfortu-
natety. unlike TPC-B. SFS does not normalize for different configurations. The
fastest system in Figure 6.25 has 12 times the namber of CPUs und disks us the
slowest system, but SPEC leaves it to you to calculate price versus performance.

panies agreed on 4 synthetic

Self-Scaling JO Benchmark

i A different approach to 1O performance analysis was proposed by Chen and
: Patterson [1994b]. The first step is a self-scaling benchmark, which automatically
and dynamically adjusts se veral aspects of its workload according to the perfor-
mance characteristics of the systemn being measured. By doing so, the benchmark
autpmatically scales across current and future systems. This scaling 18 mMore gen-
cral than the scaling tound in TPC-B and SFS, for scaling herc varies five param-
asured, rather than

eters. according to the characteristics of the system being me

just one.
This first step aids in understapding system performance by reporting how
performance varies according o each of five workload parameters. These five

parameters determine the drst-order performance effects in 1/O systems:

s touched—This is the number of unique data bytes

|. MNumber of unique byre
y. it is the total size of the data set.

read or written in a workload; essentiall

2. Percentage of reads.

3. Average /O request size—1t chooses sizes from a distribution with a coetfi-

cient of variance of {C) of one.

quests—This is the percentage of requests that

4. Percentage of sequential re
et at 50%. on average half of the

sequentially follow the prior request. When s
accesses are to the next sequential address.

This is the concurrency in the workload, that is, the

5. Number of processes
number of processes simultaneously issuing 1/O.
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FIGURE 6.25 SPEC SFS performance for three SGI Challenge servers. The dasned fine represents the 50-ms average
response time limit imposed by SPEC. Reported in March 1995, these systems all ran IRIX version 5.3 with the EFS file
system and all used the R4400 microprocessor. The XL modei processors ran at 200 MHz and the other two used 150 MHz.
Each system had one 1-GB disk with the rest being 2-GB disks, most spinning at 7200 RPM. SPEC SFS also divides the

peak rate by 10 and calis this quotient SPECnst_A93 users/second. The numbers of such users per second for these three
machines are 84, 283, and 702, respectively.

The benchmark first chooses a nominal value for each of the five parameters
based on the system’s performance. It then varies each parameter in turn while
the other four parameters remain at their fixed, nominal values. The one excep-
tion is the first parameter, since it determines whether all accesses go to the file
cache or to disk. Because of the very different performance for file cache and disk
accesses, the benchmark automatically picks two values for the number of bytes
accessed,

The resulting /O performance is then plotted for each of the parameters.
Figure 6.26 shows the performance for workstations and mainframes, using the
nominal parameter values collected by the self-scaling benchmark as a function
of unigue bytes touched. These plots give insight into appropriate workloads and
resulting performance. The width of the high-performance parts of the curves is
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determined by the size of the file cache. For example, the HP 730 ofters the high-
est performance. provided the workload fits in its small file cache, and workloads
that would need to go 10 disk on other systems can be satisfied by the very large
file cache of the Convex.

Megabytes per second

FIGURE 6.26 Performance versus me
Note the log-log scale. These results use

accesses are reads and 50
for the Convex; adjusting f
fines in this plot.

Convex

AXP 3000
RS/6000
3090

: 1 1

1000 10000

100
Number of MB touchad

gabytes touched for several workstations and mainframes (see section 6.8).
the nominal values selected by the self-scaling benchmark. For example, 50% of

% are writes. The primary ¢ifference between the systems is the average access size of 120 KB
Or a commen access size would halve Convex perfarmance but make little change to the other

The self-scaling benchmark increases our understanding of a system and

scales the workload to remain relcvant as technology advances. It complicates the
task of comparing results from two systems, however. The problem is that the
benchmark may choose different workloads on which to measure each system,

other workloads. It estimates performance for unmeasured workloads by assuming

Hence, the second part of this new approach is to estimate the performance of
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Perf (X, Y.7Z, ...

that the shape of a performance curve for one parameter is independent of the
values of the other parameters. This assumption leads 1o an overall performance
cquatiop of

) = Perf (X .)x\f'Xy(X)fo(Y)fo(Z)x.u

LY L C
nominal® " nominal® “nominal

where X, Y, Z, ... are the parameters. Suppose the nominal values were 50% reads
and 50% of accesses as sequential, but the desired workload had 60% reads and
00% sequential, and all other parameters matched the nominal values. The pre-
dicted performance is the nominal performance multiplied by the measured ratio
of 60% reads to 50% reads and by the measured ratio at 60% sequential to 50%
sequenttal. Chen and Patterson [1994b] have shown that this technique yields ac-
curate performance estimates, within 10% for most workloads.
We use this benchmark to evaluate systems in section 6.8,

6.5 | Reliability, Availability, and RAID

Although throughput and response time have their analogues in processor design.
reliability is given considerably more attention in storage than in processors. This
brings us to two terms that are often confused—reliability and avaifability. The
term reliability is commonly used interchangeably with availability: if something
breuks, but the user can still use the system, it seems as if the system still works
and hence it scems more reliable. Here is a clearer distinction:

Reliability—Is anything broken?
Availability—Is the system still available to the user”

Adding hardware can therefore improve availability (for cxample, ECC on mem-
ory), but it cannot improve reliability (the DRAM is still broken). Reliability can
only be improved by bettering environmental conditions. by building from more
reliable components. or by building with fewer components. Another term, data
integrity, refers to consistent reporting when information is lost because of fail-
ure; this is very important to some applications.

One Innovation that improves both availability and performance of storage
systems is disk arrays. The argument for arrays is that since price per megabyte is
independent of disk size, potential throughput can be increased by having many
disk drives and, hence, many disk arms. For example, Figure 6.25 {page 519)
shows how NFS throughput increases as the systems expand from 9 disks to 109
disks. Simply spreading data over multiple disks, called striping, automatically
forces accesses to several disks. (Although arrays improve throughput, latency is
not necessarily improved.) The drawback to arrays is that with more devices, reli-
ability drops: N devices generally have 1/A the reliability of a single device.




