
CS162
Operating Systems and
Systems Programming

Lecture 2

History of the World Parts 1—5
Operating Systems Structures

August 29, 2007
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 2.28/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Review: Virtual Machine Abstraction

• Software Engineering Problem:
– Turn hardware/software quirks ⇒

what programmers want/need
– Optimize for convenience, utilization, security,
reliability, etc…

• For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):

– What’s the hardware interface? (physical reality)
– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

Lec 2.38/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Example: Protecting Processes from Each Other

• Problem: Run multiple applications in such a way
that they are protected from one another

• Goal:
– Keep User Programs from Crashing OS
– Keep User Programs from Crashing each other
– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:
– Address Translation
– Dual Mode Operation

• Simple Policy:
– Programs are not allowed to read/write memory of
other Programs or of Operating System

Lec 2.48/29/07 Kubiatowicz CS162 ©UCB Spring 2007

CPU MMU

Virtual
Addresses

Physical
Addresses

Example: Address Translation
• Address Space

– A group of memory addresses usable by something
– Each program (process) and kernel has potentially
different address spaces.

• Address Translation:
– Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

– Mapping often performed in Hardware by Memory
Management Unit (MMU)

Lec 2.58/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Example: Example of Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 2.68/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Example: Dual Mode Operation

• Hardware provides at least two modes:
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• Some instructions/ops prohibited in user mode:
– Example: cannot modify page tables in user mode

» Attempt to modify ⇒ Exception generated
• Transitions from user mode to kernel mode:

– System Calls, Interrupts, Other exceptions

Lec 2.78/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Goals for Today

• History of Operating Systems
– Really a history of resource-driven choices

• Operating Systems Structures
• Operating Systems Organizations

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 2.88/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Moore’s Law Change Drives OS Change

Typical academic computer 1981 vs 2006

0.2$4,000$25,000

≤ 0.1≤ 110s

23216

110,0001 Gb/s9600 b/s

100,0001TB10MB

32,7684GB128KB

1,280
6—40

3200x4
0.25—0.5

10
3—10

Factor20061981

Price

#users/machine

addr bits

Net bandwidth

Disk capacity

DRAM capacity

CPU MHz,
Cycles/inst

Lec 2.98/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Moore’s law effects

• Nothing like this in any other area of business
• Transportation in over 200 years:

– 2 orders of magnitude from horseback @10mph to
Concorde @1000mph

– Computers do this every decade (at least until 2002)!
• What does this mean for us?

– Techniques have to vary over time to adapt to
changing tradeoffs

• I place a lot more emphasis on principles
– The key concepts underlying computer systems
– Less emphasis on facts that are likely to change over
the next few years…

• Let’s examine the way changes in $/MIP has
radically changed how OS’s work

Lec 2.108/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Dawn of time
ENIAC: (1945—1955)

• “The machine designed by Drs. Eckert and Mauchly
was a monstrosity. When it was finished, the
ENIAC filled an entire room, weighed thirty tons,
and consumed two hundred kilowatts of power.”

• http://ei.cs.vt.edu/~history/ENIAC.Richey.HTML

Lec 2.118/29/07 Kubiatowicz CS162 ©UCB Spring 2007

History Phase 1 (1948—1970)
Hardware Expensive, Humans Cheap

• When computers cost millions of $’s, optimize for
more efficient use of the hardware!

– Lack of interaction between user and computer

• User at console: one user at a time
• Batch monitor: load program, run, print

• Optimize to better use hardware
– When user thinking at console, computer idle⇒BAD!
– Feed computer batches and make users wait
– Autograder for this course is similar

• No protection: what if batch program has bug?

Lec 2.128/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Core Memories (1950s & 60s)

• Core Memory stored data as magnetization in iron rings
– Iron “cores” woven into a 2-dimensional mesh of wires
– Origin of the term “Dump Core”
– Rumor that IBM consulted Life Saver company

• See: http://www.columbia.edu/acis/history/core.html

The first magnetic core
memory, from the IBM 405
Alphabetical Accounting
Machine.

Lec 2.138/29/07 Kubiatowicz CS162 ©UCB Spring 2007

History Phase 1½ (late 60s/early 70s)
• Data channels, Interrupts: overlap I/O and compute

– DMA – Direct Memory Access for I/O devices
– I/O can be completed asynchronously

• Multiprogramming: several programs run simultaneously
– Small jobs not delayed by large jobs
– More overlap between I/O and CPU
– Need memory protection between programs and/or OS

• Complexity gets out of hand:
– Multics: announced in 1963, ran in 1969

» 1777 people “contributed to Multics” (30-40 core dev)
» Turing award lecture from Fernando Corbató (key

researcher): “On building systems that will fail”
– OS 360: released with 1000 known bugs (APARs)

» “Anomalous Program Activity Report”
• OS finally becomes an important science:

– How to deal with complexity???
– UNIX based on Multics, but vastly simplified

Lec 2.148/29/07 Kubiatowicz CS162 ©UCB Spring 2007

A Multics System (Circa 1976)

• The 6180 at MIT IPC, skin doors open, circa 1976:
– “We usually ran the machine with doors open so the
operators could see the AQ register display, which
gave you an idea of the machine load, and for
convenient access to the EXECUTE button, which the
operator would push to enter BOS if the machine
crashed.”

• http://www.multicians.org/multics-stories.html

Lec 2.158/29/07 Kubiatowicz CS162 ©UCB Spring 2007

1973:
1. 7 Mbit/sq. in
140 MBytes

1979:
7. 7 Mbit/sq. in
2,300 MBytes

Early Disk History

Contrast: Seagate 1TB,
164 GB/SQ in, 3½ in disk,
4 platters

Lec 2.168/29/07 Kubiatowicz CS162 ©UCB Spring 2007

History Phase 2 (1970 – 1985)
Hardware Cheaper, Humans Expensive

• Computers available for tens of thousands of dollars
instead of millions

• OS Technology maturing/stabilizing
• Interactive timesharing:

– Use cheap terminals (~$1000) to let multiple users
interact with the system at the same time

– Sacrifice CPU time to get better response time
– Users do debugging, editing, and email online

• Problem: Thrashing
– Performance very non-linear

response with load
– Thrashing caused by many

factors including
» Swapping, queueing

Users

Response
tim

e

Lec 2.178/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Administrivia: What is this CS16x???
• Why change CS162? Only minor changes since 1990’s…

– Slides!
– Java version of Nachos
– Content: More crypto/security, less databases and
distributed filesystems

– Time to update again!!
• Most CS students take CS 162 and 186

– But, not all take EE 122, CS 169/161
– We’d like all students to have a basic understanding of
key concepts from these classes

• Each class introduces the same topics with class-
specific biases

– Concurrency in an Operating System versus in a Database
management system

– Introduce concepts with a common framework
Lec 2.188/29/07 Kubiatowicz CS162 ©UCB Spring 2007

• Mondays and Wednesdays 9-10:30 in 306 Soda
– Taught by Anthony Josephy: high teaching ratings!

• Primary content is similar to CS 162
– With CS 186, 161, and 169, and EE 122 topics

• 4 units with CS Upper Division credit
• 3-4 Projects (tentative)

– Nachos Phase 1
– Multi-core programming
– Secure iTunes-like e-commerce site with a Peer-to-
Peer content distribution network

• We need some bold students to try the course
– Might need to be cancelled otherwise
– Great way to get 186 & 122 material as well
– Targeted at Sophomores/First term Juniors

Administrivia: CS 194-3/16x

Lec 2.198/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Administrivia: Back to CS162

• Cs162-xx accounts:
– Make sure you got an account form

» We have more forms for those of you who didn’t get one
– If you haven’t logged in yet, you need to do so

• Nachos readers:
– TBA: Will be down at Copy Central on Hearst
– Will include lectures and printouts of all of the code

• Video archives available off lectures page
– Just click on the title of a lecture for webcast
– Only works for lectures that I have already given!
– Still working on Webcast

• No slip days on first design document for each phase
– Need to get design reviews in on time

• Don’t know Java well?
– Talk CS 9G self-paced Java course

Lec 2.208/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Administriva: Almost Time for Project Signup
• Project Signup: Watch “Group/Section Assignment Link”

– 4-5 members to a group
» Everyone in group must be able to actually attend same section
» The sections assigned to you by Telebears are temporary!

– Only submit once per group!
» Everyone in group must have logged into their cs162-xx

accounts once before you register the group
» Make sure that you select at least 2 potential sections
» Due date: Thursday 9/6 by 11:59pm

• Sections:
– No sections tomorrow
– Go to Telebears-assigned Section next week

Thomas Kho4 EvansF 10:00-11:00A105
B51 Hildebrand

75 Evans
155 Barrows

81 Evans
Location

Todd KosloffTh 4:00-5:00P104
Todd KosloffTh 2:00-3:00P103
Kelvin LwinTh 12:00-1:00P102
Kelvin LwinTh 10:00-11:00A101

TATimeSection

Lec 2.218/29/07 Kubiatowicz CS162 ©UCB Spring 2007

History Phase 3 (1981—)
Hardware Very Cheap, Humans Very Expensive

• Computer costs $1K, Programmer costs $100K/year
– If you can make someone 1% more efficient by giving
them a computer, it’s worth it!

– Use computers to make people more efficient
• Personal computing:

– Computers cheap, so give everyone a PC
• Limited Hardware Resources Initially:

– OS becomes a subroutine library
– One application at a time (MSDOS, CP/M, …)

• Eventually PCs become powerful:
– OS regains all the complexity of a “big” OS
– multiprogramming, memory protection, etc (NT,OS/2)

• Question: As hardware gets cheaper does need for
OS go away?

Lec 2.228/29/07 Kubiatowicz CS162 ©UCB Spring 2007

History Phase 3 (con’t)
Graphical User Interfaces

• CS160 ⇒ All about GUIs
• Xerox Star: 1981

– Originally a research
project (Alto)

– First “mice”, “windows”
• Apple Lisa/Machintosh: 1984

– “Look and Feel” suit 1988
• Microsoft Windows:

– Win 1.0 (1985)
– Win 3.1 (1990)
– Win 95 (1995)
– Win NT (1993)
– Win 2000 (2000)
– Win XP (2001)

X
erox Star

W
indows 3.1

Single
Level

HAL/Protection
No HAL/
Full Prot

Lec 2.238/29/07 Kubiatowicz CS162 ©UCB Spring 2007

History Phase 4 (1989—): Distributed Systems

• Networking (Local Area Networking)
– Different machines share resources
– Printers, File Servers, Web Servers
– Client – Server Model

• Services
– Computing
– File Storage

Lec 2.248/29/07 Kubiatowicz CS162 ©UCB Spring 2007

History Phase 5 (1995—): Mobile Systems

• Ubiquitous Mobile Devices
– Laptops, PDAs, phones
– Small, portable, and inexpensive

» Recently twice as many smart phones as PDAs
» Many computers/person!

– Limited capabilities (memory, CPU, power, etc…)
• Wireless/Wide Area Networking

– Leveraging the infrastructure
– Huge distributed pool of resources extend devices
– Traditional computers split into pieces. Wireless
keyboards/mice, CPU distributed, storage remote

• Peer-to-peer systems
– Many devices with equal responsibilities work together
– Components of “Operating System” spread across globe

Lec 2.258/29/07 Kubiatowicz CS162 ©UCB Spring 2007

CITRIS’s Model:
A Societal Scale Information System

• Center for Information
Technology Research in the
Interest of Society

• The Network is the OS
– Functionality spread
throughout network

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Clusters

Massive Cluster

Gigabit Ethernet

Mobile, Ubiquitous Systems

Lec 2.268/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Moore’s Law Reprise: Modern Laptop

$2500$4,000$25,000

≤ ¼≤ 110s

323216

1 Gb/s (wired)
54 Mb/s (wireless)
2 Mb/s (wide-area)

1 Gb/s9600 b/s

100GB1TB10MB

2GB4GB128KB

1830
0.25—0.5

3200x4
0.25—0.5

10
3—10

2006 Ultralight
Laptop20051981

Price

#users/machine

addr bits

Net bandwidth

Disk capacity

DRAM capacity

CPU MHz,
Cycles/inst

Lec 2.278/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Migration of Operating-System Concepts and Features

Lec 2.288/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Compare: Performance Trends (from CS152)

Microprocessors

Minicomputers
Mainframes

Supercomputers

1995
Year

19901970 1975 1980 1985

Lo
g

of
 P

er
fo

rm
an

ce

Lec 2.298/29/07 Kubiatowicz CS162 ©UCB Spring 2007

History of OS: Summary
• Change is continuous and OSs should adapt

– Not: look how stupid batch processing was
– But: Made sense at the time

• Situation today is much like the late 60s [poll]
– Small OS: 100K lines
– Large OS: 10M lines (5M for the browser!)

» 100-1000 people-years
• Complexity still reigns

– NT under development from early 90’s to late 90’s
» Never worked very well

– Jury still out on Windows 2000/XP
– Windows Vista (aka “Longhorn”) delayed many times

» Latest release date of 2005, 2006, 2007+
» Promised by removing some of the intended technology

• CS162: understand OSs to simplify them
Lec 2.308/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Now for a quick tour of OS Structures

Lec 2.318/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Operating Systems Components
(What are the pieces of the OS)

• Process Management
• Main-Memory Management
• I/O System management
• File Management
• Networking
• User Interfaces

Lec 2.328/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Operating System Services
(What things does the OS do?)

• Services that (more-or-less) map onto components
– Program execution

» How do you execute concurrent sequences of instructions?
– I/O operations

» Standardized interfaces to extremely diverse devices
– File system manipulation

» How do you read/write/preserve files?
» Looming concern: How do you even find files???

– Communications
» Networking protocols/Interface with CyberSpace?

• Cross-cutting capabilities
– Error detection & recovery
– Resource allocation
– Accounting
– Protection

Lec 2.338/29/07 Kubiatowicz CS162 ©UCB Spring 2007

System Calls (What is the API)

• See Chapter 2 of 7th edition or Chapter 3 of 6th

Lec 2.348/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Operating Systems Structure
(What is the organizational Principle?)

• Simple
– Only one or two levels of code

• Layered
– Lower levels independent of upper levels

• Microkernel
– OS built from many user-level processes

• Modular
– Core kernel with Dynamically loadable modules

Lec 2.358/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Simple Structure

• MS-DOS – written to provide the most functionality
in the least space

– Not divided into modules
– Interfaces and levels of functionality not well
separated

Lec 2.368/29/07 Kubiatowicz CS162 ©UCB Spring 2007

UNIX: Also “Simple” Structure

• UNIX – limited by hardware functionality
• Original UNIX operating system consists of two

separable parts:
– Systems programs
– The kernel

» Consists of everything below the system-call
interface and above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system
functions;

» Many interacting functions for one level

Lec 2.378/29/07 Kubiatowicz CS162 ©UCB Spring 2007

UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 2.388/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Layered Structure

• Operating system is divided many layers (levels)
– Each built on top of lower layers
– Bottom layer (layer 0) is hardware
– Highest layer (layer N) is the user interface

• Each layer uses functions (operations) and services of
only lower-level layers

– Advantage: modularity ⇒ Easier debugging/Maintenance
– Not always possible: Does process scheduler lie above or
below virtual memory layer?

» Need to reschedule processor while waiting for paging
» May need to page in information about tasks

• Important: Machine-dependent vs independent layers
– Easier migration between platforms
– Easier evolution of hardware platform
– Good idea for you as well!

Lec 2.398/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Layered Operating System

Lec 2.408/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Microkernel Structure

• Moves as much from the kernel into “user” space
– Small core OS running at kernel level
– OS Services built from many independent user-level
processes

• Communication between modules with message passing
• Benefits:

– Easier to extend a microkernel
– Easier to port OS to new architectures
– More reliable (less code is running in kernel mode)
– Fault Isolation (parts of kernel protected from other
parts)

– More secure
• Detriments:

– Performance overhead severe for naïve implementation

Lec 2.418/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Modules-based Structure

• Most modern operating systems implement modules
– Uses object-oriented approach
– Each core component is separate
– Each talks to the others over known interfaces
– Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible

Lec 2.428/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Implementation Issues
(How is the OS implemented?)

• Policy vs. Mechanism
– Policy: What do you want to do?
– Mechanism: How are you going to do it?
– Should be separated, since both change

• Algorithms used
– Linear, Tree-based, Log Structured, etc…

• Event models used
– threads vs event loops

• Backward compatability issues
– Very important for Windows 2000/XP

• System generation/configuration
– How to make generic OS fit on specific hardware

Lec 2.438/29/07 Kubiatowicz CS162 ©UCB Spring 2007

Conclusion
• Rapid Change in Hardware Leads to changing OS

– Batch ⇒ Multiprogramming ⇒ Timeshare ⇒
Graphical UI ⇒ Ubiquitous Devices ⇒
Cyberspace/Metaverse/??

• OS features migrated from mainframes ⇒ PCs
• Standard Components and Services

– Process Control
– Main Memory
– I/O
– File System
– UI

• Policy vs Mechanism
– Crucial division: not always properly separated!

• Complexity is always out of control
– However, “Resistance is NOT Useless!”

