Cs162
Operating Systems and
Systems Programming
Lecture 19

File Systems continued
Distributed Systems

November 5, 2007
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: A Little Queuing Theory: Some Results

* Assumptions:
- System in equilibrium: No limit to the queue
- Time between successive arrivals is random and memoryless

Service Rate .
H= 1 /Tser

* Parameters that describe our system:

—
Arrival Rate
A

- A mean number of arriving customers/second

- T..: mean time to service a customer ("m1")

- C: squared coefficient of variance = 62/m12

- W service rate = 1/T_,,

-u server utilization (O<u<1): u = A/py = A x T,
* Parameters we wish to compute:

- Ty Time spent in queue

-L Length of queue = A x T, (by Little's law)
- Results:

- Memoryless service distribution (C = 1):
» Called M/M/1 queue: T, = T, x u/(1 - u)

- General service distribution (no restrictions), 1 server:
» Called M/6/1 queue: T, = T, x $(1+C) x u/(1 - u))

11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.2

Review: Disk Scheduling

Disk can do ongl one request af a fime;
you choose to do queued requests?

User N Head[<¢
Requests |:> ™ |:> =§
FIFO Order
- Fair among requesters, but order of arrival may be to
random spots on the disk = Very long seeks
SSTF: Shortest seek time first
- Pick the request that's closest on the disk
- Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek
- Con: SSTF good at reducing seeks, but
may lead to starvation
SCAN: Implements an Elevator Algorithm: take the
closest request in the direction of travel
- No starvation, but retains flavor of SSTF
C-SCAN: Circular-Scan: only goes in one direction
- Skips any r‘eguesfs on the w:g back

11,05/ 0irer than SCAN, not biased towards pages in middle_

at order do

N[l
N o=

N
W)

o
n

poaH %siq

Goals for Today

* Finish Discussion of File Systems
- Structure, Naming, Directories
* File Caching
* Data Durability
- Beginning of Distributed Systems Discussion

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/05/07 Kubiatowicz €S5162 ©UCB Fall 2007 Lec 19.4

Designing the File System: Access Patterns

*+ How do users access files?
- Need to know type of access patterns user is likely to
throw at system
+ Sequential Access: bytes read in order ("give me the
next X bytes, then give me next, etc”)
- Almost all file access are of this flavor

- Random Access: read/write element out of middle of
array (“give me bytes i—j")
- Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file
- Want this to be fast - don't want to have to read all
bytes to get to the middle of the file

+ Content-based Access: ("find me 100 bytes starting
with KUBIATOWICZ")

- Example: employee records - once Zou find the bytes,
increase my salary by a factor of

- Many systems don't provide this; instead, databases are
built on top of disk access to index content (requires

efficient random access)
11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.5

Designing the File System: Usage Patterns

* Most files are small (for example, .login, .c files)
- A few files are big - nachos, core files, etc.; the nachos
executable is as big as all of your .class files combined
- However, most files are small - .class's, .o's, .c's, etc.

* Large files use up most of the disk space and
bandwidth to/from disk

- May seem contradictory, but a few enormous files are

equivalent to an immense # of small files
+ Although we will use these observations, beware usage
patterns:

- 6ood idea to look at usage patterns: beat competitors by
optimizing for frequent patterns

- Except: changes in performance or cost can alter usage
patterns. Maybe UNIX has lots of small files because big
files are really inefficient?

11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.6

How to organize files on disk

* Goals:
- Maximize sequential performance
- Easy random access to file
- Easy management of file (growth, truncation, etc)
* First Technique: Continuous Allocation
- Use continuous range of blocks in logical block space
» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)
- Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?
- File Header Contains:
» First sector/LBA in file
» File size (# of sectors)
- Pros: Fast Sequential Access, Easy Random access
- Cons: External Fragmentation/Hard to grow files
» Free holes get smaller and smaller
» Could compact space, but that would be really expensive
+ Continuous Allocation used by IBM 360
- Result of allocation and management cost: People would

create a big file, put their file in the middle
11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.7

Linked List Allocation

+ Second Technique: Linked List Approach
- Each block, pointer to next on disk

File Header

S

> Null

- Pros: Can grow files dynamically, Free list same as file
- Cons: Bad Sequential Access (seek between each block),
Unreliable (lose block, lose rest of file)
- Serious Con: Bad random accessl!!!!
- Technique originally from Alto (First PC, built at Xerox)
» No attempt to allocate contiguous blocks

11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.8

Linked Allocation: File-Allocation Table (FAT)

directary entry
test s 217
name start block Gl

217 618

asal &
—‘]

618 339

no. of disk blocks -1]

FA

.
+ MSDOS links pages together to create a file
- Links not in pages, but in the File Allocation Table (FAT)
» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together
- Access properies:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if

AT ed in me
FAT not Cac}lzubia‘rgavic"z‘ N Youcs Fall 2007 Lec 19.9

11/05/07

Indexed Allocation

P . directory
|e— file index block
o] 1[\2[3] i 1

401 51 61701
8] eCJ1o[X110]
12[J13C 0141

a1

JiCial) 1
20D21?Eél,f‘ 5
24 J2sfe6 127 =
28120 Jao[31 o
- =
+ Indexed Files (Nachos, VMS)

- System Allocates file header block to hold array of

pointers big enough to point to all blocks
» User pre-declares max file size;
- Pros: Can easily grow up to space allocated for index
Random access is fast
- Cons: Clumsy to grow file bigger than table size

wosor Still lots of seeks: blagks may,be spread over disk

Multilevel Indexed Files (UNIX BSD 4.1)

* MulTilevel Indexed Files: Like mulTilevel address
translation (from UNIX 4.1 BSD)
- Key idea: efficient for small files, but still allow big files
- File header contains 13 pointers
» Fixed size table, pointers not all equivalent
» This header is called an “inode” in UNIX
- File Header format:
» First 10 pointers are to data blocks
» Block 11 points to “indirect block” containing 256 blocks

» Block 12 points to "doubly indirect block” containing 256
indirect blocks for total of 64K blocks

» Block 13 points to a triply indirect block (16M blocks)
- Discussion
- Basic technique glaces an upper limit on file size that is
approximately 16Gbytes
» Designers thought this was bigger than anything anyone
would need. Much bigger than a disk at Tr\e time...
» Fallacy: today, EOS producing 2TB of data per day
- Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks.

11/05/07 > On small files, no indirection needed,, Lec 19.11

Example of Multilevel Indexed Files

- Sample file in multilevel mode
indexed format: owners (2)
- How many accesses for ki ugh) ()
blOCk #2 ? (assume file size block count o
header accessed on open)? ’_.E

» Two: One for indirect block,

one for data direcruvcks:: da:
- How about block #5? S—— -
» One: One for data single indirect — J_.j--—— :-—'{?W_

- S e
- Block #3402 e R B—
» Three: double indirect block,| | —
indirect block, and data =t

- UNIX 4.1 Pros and cons

- Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy
- Cons: Lots of seeks
Very large files must read many indirect block (four
I/Os per block!)

11/05/07 Kubiatowicz €S5162 ©UCB Fall 2007 Lec 19.12

Administrivia
* Project zero-sum game:
- In the end, we decide how to distribute points to
partners
» Normally, we are pretty even about this

» But, under extreme circumstances, may take points from
non-working members and give to working members

- This is a zero-sum game!
* Make sure to do your project evaluations
- This is supposed to be an individual evaluation, not done
together as a group
- This is part of the information that we use to decide
how to distributed points

- We will give O (ZERO) to people who don't fill out evals
* Midterm IT

- December 5'h
* In the News: Google in the OS business?

- Google talking about offering an operating system for
mobile phones

- Rumor has it that Wind-River Systems may contribute
11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.13

File Allocation for Cray-1 DEMOS

basesize /.d'SH_ roup
N __%_g Basic Segmentation Structure:
5] Each segment contiguous on disk
3./
. 3.9
file header 39

- DEMOS: File system structure similar to segmentation
- Idea: reduce disk seeks by
» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation
- Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)
* Header: table of base & size (10 "block group” pointers)
- Each block chunk is a contiguous group of disk blocks
- Sequential reads within a block chunk can proceed at high
speed - similar to continuous allocation
* How do you find an available block group?

- Use freelist bitmap to find block of O's.
11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.14

Large File Version of DEMOS

b i base size disk_group
ase s[ze/. sesize ~ §
\\ N
file heade indirect
ader block group

* What if need much bigger files?
- If need more than 107groups, set flag in header: BIGFILE
» Each table entry now points to an indirect block group
- Suppose 1000 blocks in a block group = 806B max file
» Assuming 8KB blocks, 8byte enfries=
) (10 ptrsx1024 goups/ﬁ*rrxlooo blocks/group)*8K =8068
+ Discussion of DEMOS scheme
- Pros: Fast sequential access, Free areas merge simpl
Easy to find free block groups (when disk not f)Lllllg
- Cons: Disk full = No long runs of blocks (fragmentation),
so high overhead allocation/access
- Full disk = worst of 4.1BSD (lots of seeks) with worst of

continuous allocation (lots of recompaction needed)
11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.15

How to keep DEMOS performing well?

+ In many systems, disks are always full
- CS department growth: 300 GB to 1TB in a year
» That's 26B/day! (Now at 6 TB?)
- How to fix? Announce that disk space is getting low, so
please delete files?
» Don't really work: people try to store their data faster
- Sidebar: Perhaps we are getting out of this mode with
new disks.. However, let's assume disks full for now
» (Rumor has it that the EECS department has 60TB of
spinning storage just waiting for use...)
+ Solution:
- Don't let disks get completely full: reserve portion
» Free count = # blocks free in bitmap
» Scheme: Don't allocate data if count < reserve
- How much reserve do you need?
» In practice, 10% seems like enough
- Tradeoff: pay for more disk, get contiguous allocation
» Since seeks so expensive for performance, this is a very
11705707 900d tradeoff .., .. csi62 eucs Fail 2007 Lec 19.16

UNIX BSD 4.2
- Same as BSD 4.1 (same file header and friply indirect
blocks), except incorporated ideas from DEB\ES:
- Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
- 10% reserved disk space
- Skip-sector positioning (mentioned next slide)
* Problem: When create a file, don't know how big it
will become (in UNIX, most writes are by appending)
- How much contiguous space do you allocate for a file?
- In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc
- In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range
» To expand a file, you first try successive blocks in
bitmap, then choose new range of blocks
- Also in BSD 4.2: store files from same directory near
each other
* Fast File System (FFS)

- Allocation and placement policies for BSD 4.2
11/05/07 ubiatowicz €5162 ©UCB Fall 2007 Lec 19.17

Attack of the Rotational Delay

* Problem 2: Missingbblocks due to rotational delay
- Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

Skip Secto
[) I—
@ Track Buffer
(Holds complete track)

- Solutionl: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a
track: give time for processing to overlap rotation
- Solution2: Read ahead: read next block right after first,
even if application hasn't asked for it yet.
» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have
internal RAM that allows them to read a complete track
* Important Aside: Modern disks+controllers do many
cor?plex things “under the covers”
- Track buffers, elevator algorithms, bad block filtering
11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.18

How do we actually access files?

- All information about a file contained in its file header
- UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber")
- Once you load the header structure, all the other blocks
of the file are locatable
* Question: how does the user ask for a particular file?
- One option: user specifies an inode by a number (index).
» Imagine: open('14553344")
- Better option: specify by textual name
» Have to map name—inumber
- Another option: Icon
» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.
* Naming: The process by which a system translates from
user-visible names to system resources
- In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes
- For global file systems, data may be spread over
globe=>need to translate from strings or icons to some

combination of hysical server location and inumber
11/05/07 ubfatowicz €S162 ©UCB Fall 2007 Lec 19.19

Directories

* Directory: a relation used for naming
- Just a table of (file name, inumber) pairs

* How are directories constructed?
- Directories often stored in files
» Reuse of existing mechanism
» Directory named by inode/inumber like other files
- Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

* How are directories modified?
- Originally, direct read/write of special file
- System calls for manipulation: mkdir, rmdir
- Ties to file creation/destruction

» On creating a file by name, new inode grabbed and
associated with new file in particular directory

11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.20

Directory Organization

+ Directories organized into a hierarchical structure
- Seems standard, but in early 70's it wasn't
- Permits much easier organization of data structures

+ Entries in directory can be either files or
directories

- Files named by ordered set (e.g., /programs/p/list)

11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.21

Directory Structure

raot

avi

rc__]mrlm

mail unhexi hvp

o

| avi |coum| ||.rr.'hex| hex |

book

text | mail |curmr| book

* Not really a hierarchy!
- Many systems allow directory structure to be organized
as an aclclic graph or even a (potentially) c?lclic graph
- Hard Links: different names for the same file
» Multiple directory entries point at the same file
- Soft Links: "shortcut” pointers to other files
» Implemented by storing the logical name of actual file
+ Name Resolution: The process of converting a logical
name into a physical resource (like a file)
- Traverse succession of directories until reach target file

- Global file system: May be spread across the network
11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.22

Directory Structure (Con't)

* How many disk accesses to resolve “/my/book/count”?
- Read in file header for root (fixed spot on disk)
- Read in first data block for root

» Table of file name/index pairs. Search linearly - ok since
directories typically very small

- Read in file header for “my”

- Read in first data block for "my”:; search for “book”

- Read in file header for “book”

- Read in first data block for "book”; search for “count”
- Read in file header for “count”

* Current working directory: Per-address-space pointer
to a directory %inode) used for resolving file names

- Allows user to specify relative filename instead of
absolute path (say CWD="/my/book"” can resolve “count”)

11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.23

Where are inodes stored?

* In early UNIX and DOS/Windows' FAT file
system, headers stored in special array in
outermost cylinders

- Header not stored near the data blocks. To read a
small file, seek to get header, seek back to data.

- Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.24

Where are inodes stored?

- Later versions of UNIX moved the header
information to be closer to the data blocks
- Often, inode for file stored in same “cylinder
group” as parent directory of the file (makes an Is
of that directory run fast).

- Pros:

» UNIX BSD 4.2 puts a portion of the file header
array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinder=no
seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from
disk at same time

» Reliability: whatever happens to the disk, you can
find many of the files (even if directories
disconnected)

- Part of the Fast File System (FFS)
» General optimization to avoid seeks

Kubiatowicz €S162 ©UCB Fall 2007

11/05/07 Lec 19.25

In-Memory File System Structures

directory structure
open (file namea) 1

vy VAR fil-contrel block

" kermel memary scondary slorage

+ Open system call:
- Resolves file name, finds file control block (inode)
- Makes entries in ner‘-grocess and system-wide tables

- Returns index (called “file handle”) in open-file table

index

N
read (index) j —L‘ /"L'I'-rj blocks

—_ |

per-process system-wide
open-file table open-file lable

user space kel memory

* Read/write system calls:
- Use file handle to locate inode
- Perform appropriate reads or writes

Kubiatowicz €S162 ©UCB Fall 2007

11/05/07 Lec 19.26

File System Caching
+ Key Idea: Exploif localify by caching data in memory
- Name translations: Mapping from paths—inodes
- Disk blocks: Mapping from block address—disk content
+ Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
- Can contain “dirty” blocks (blocks yet on disk)

* Replacement policy? LRU
- Can afford overhead of timestamps for each disk block

- Advantages:
» Works very well for name translation
» Works well in general as long as memor?l is big enough to
accommodate a host's working set of files.
- Disadvantages:

» Fails when some aﬁplicaﬁon scans through file system,
thereby flushing the cache with data used only once

» Example: find . —exec grep foo {} \;
* Other Replacement Policies?
- Some systems allow applications to request other policies

- Example, 'Use Once':

» File system can discard blocks as soon as they are used
Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.27

11/05/07

File System Caching (con't)

* Cache Size: How much memory should the OS allocate
to the buffer cache vs virtual memory?
- Too much memory to the file system cache = won't be
able to run many applications at once

- Too little memory to file system cache = man¥
applications may run slowly (disk caching not effective)

- Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced
* Read Ahead Prefetching: fetch sequential blocks early
- Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)
- Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications
- How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among
concurrent file requests

Kubiatowicz €S162 ©UCB Fall 2007

11/05/07 Lec 19.28

File System Caching (con't)

* Delayed Writes: Writes to files not immediately sent
out fo disk
- Instead, write() copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other a&plicaﬁon tries to read data before
written to disk, file system will read from cache
- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value
for a file
» Some files need never get written to disk! (e..g temporary
scratch files written /fmp often don't exist for 30 sec)
- Disadvantages
» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file
has been written out? (lose pointer to inode!)

11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.29

Important “ilities"

* Availability: the pr‘obabili‘l’¥ that the system can
accept and process requests
- Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”
- Key idea here is independence of failures
* Durability: the ability of a system to recover data
despite faults
- This idea is fault tolerance applied to data
- Doesn't necessarily imply availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone
- Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)
- Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly
- Includes availability, security, fault tolerance/durability
- Must make sure data survives system crashes, disk

crashes, other problems
11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.30

How to make file system durable?

- Disk blocks contain Reed-Solomon error correcting
codes (ECC) to deal with small defects in disk drive
- Can allow recovery of data from small media defects
* Make sure writes survive in short term
- Either abandon delayed writes or
- use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.
* Make sure that data survives in long term
- Need to replicatel More than one copy of datal
- Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is
struck by lightning....
» Could put copies on servers in different continents...
* RAID: Redundant Arrays of Inexpensive Disks
- Data stored on multiple disks (redundancy)
- Either in software or hardware

» In hardware case, done by disk controller; file system may

not even know that there is more than one disk in use
11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.31

Log Structured and Journaled File Systems

+ Betfer reliabilify Through use of log

- All changes are treated as fransactions

- A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

- Although File system may not be updated immediately,
data preserved in the log

- Difference between “Log Structured” and "Journaled
- In a Log Structured filesystem, data stays in log form
- In a Journaled filesystem, Log used for recovery

* For Journaled system:

- Log used to asynchronously update filesystem
» Log entries removed after used
- After crash:
» Remaining transactions in the log performed ("Redo”)
» Modifications done in way that can survive crashes
+ Examples of Journaled File Systems:
- Ext3 (Linux), XFS

_gUnix) etc.
11/05/07 Kubiatowicz €5162 ©UCB Fall 2007 Lec 19.32

”

Conclusion

+ Cray DEMOS: optimization for sequential access
- Inode holds set of disk ranges, similar to segmentation
4.2 BSD Multilevel index files
- Inode contains pointers to actual blocks, indirect blocks,
double indirect blocks, etc
- Optimizations for sequential access: start new files in
open ranges of free blocks
- Rotational Optimization
* Naming: act of translating from user-visible names to
actual system resources
- Directories used for naming for local file systems
* Important system properties
- Availability: how often is the resource available?
- Durability: how well is data preserved against faults?
- Reliability: how often is resource performing correctly?

11/05/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 19.33

