Cs162
Operating Systems and
Systems Programming
Lecture 25

Protection and Security
in Distributed Systems

November 28, 2007
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Use of caching to reduce network load
el il BB e 070 |
read(f1)-V1 Return (Data)
read(f1)-V1

i

Client

ite(f1)>OK cache
write =
read(f1)->V2
* Idea: Use caching to reduce network load
- In practice: use buffer cache at source and destination
* Advantage: if open/read/write/close can be done
locally, don't need to do any network traffic..fastl
* Problems:
- Failure:

» Client caches have data not committed at server
- Cache consistency!

1172807 ™ Client caches not. consistent, with, sgiyer/each other s,

Client

Goals for Today

+ Finish discussing distributed file systems/Caching
- Security Mechanisms

- Authentication

- Authorization

- Enforcement
* Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

11/28/07 Kubiatowicz €S5162 ©UCB Fall 2007 Lec 25.3

Network File System (NFS)

+ Three Layers for NFS system

- UNIX file-system interface: open, read, write, close
calls + file descriptors

- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: RPC for file operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
* Write-through caching: Modified data committed to
server's disk before results are returned to the client
- lose some of the advantages of caching
- time to perform write() can be long

- Need some mechanism for readers to eventually notice
changes! (more on this later)

11/28/07 Kubiatowicz €S5162 ©UCB Fall 2007 Lec 25.4

NFS Continued

+ NF5 servers are sfateless; each request provides all
ar'gélmem‘s require for execution
- E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)
- No need to perform network open() or close() on file -
each operation stands on its own
+ Idempotent: Performing requests multiple times has
same effect as performing it exactly once
- Example: Server crashes between disk I/O and message
send, client resend read, server does operation again
- Example: Read and write file blocks: just re-read or re-
write file block - no side effects
- Example: What about “"remove”? NFS does operation
twice and second time returns an advisory error
* Failure Model: Transparent to client system
- Is this a good idea? What if you are in the middle of
reading a file and server crashes?
- Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don't know

1128007 They are talkjng over network) _ .. Lec 25.5

NFS Cache consistency

* NFS protocol: weak consistency
- Client polls server periodically to check for changes

» Polls server if data hasn't been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

cache

Clent

- What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)

» Completely arbitrary!
11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.6

Sequential Ordering Constraints

* What sort of cache coherence might we expect?
- i.e. what if one CPU changes file, and before it's done,
another CPU reads file?

- Example: Start with file contents = "A”
[Read: parts of B or (]

Client 1: [Read:igets A |[WriteB |
Client 2: |Read: gets A or B|]| Write C |
Client 3: [Read: parts of B or]

Time

* What would we actually want?
- Assume we want distributed system to behave exactly the
same as if all processes are running on single system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

- For NFS:
» If read starts more than 30 seconds after write, get new

copy: otherwise, could get partial update
11/28/07 Kubiatowicz €S5162 ©UCB Fall 2007 Lec 25.7

NFS Pros and Cons

* NFS Pros:
- Simple, Highly portable
* NFS Cons:
- Sometimes inconsistent!
- Doesn't scale to large # clients
» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.8

Andrew File System

* Andrew File System (AFS, late 80's) - DCE DFS
(commercial product)

* Callbacks: Server records who has copy of file
- On changes, server immediately tells all with old copy
- No polling bandwidth (continuous checking) needed

+ Write through on close
- Changes not propagated to server until close()

- Session semantics: updates visible to other clients only
after the file is closed

» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible
immediately to other programs who have file open

* In AFS, everyone who has file open sees old version
- Don't get newer versions until reopen file

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.9

Andrew File System (con't)

* Data cached on local disk of client as well as memory
- On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server
- On write followed by close:

» Send copy to server; tells all clients with copies to fetch
new version from server on next open (using callbacks)

« What if server crashes? Lose all callback statel

- Reconstruct callback information from client: go ask
everyone “"who has which files cached?”

+ AFS Pro: Relative to NFS, less server load:
- Disk as cache = more files can be cached locally
- Callbacks = server not involved if file is read-only

* For both AFS and NFS: central server is bottleneck!
- Performance: all writes—>server, cache misses—server
- Availability: Server is single point of failure
- Cost: server machine’s high cost relative to workstation

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.10

World Wide Web

- Use client-side caching to reduce number of
interactions between clients and servers and/or
reduce the size of the interactions:

- Time-to-Live (TTL) fields - HTTP “Expires” header
from server

- Client polling - HTTP "If-Modified-Since” request
headers from clients

- Server refresh - HTML "META Refresh tag”
causes periodic client poll

* What is the polling frequency for clients and
servers?

- Could be adaptive based upon a page's age and its
rate of change

- Server load is still significant!

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.11

WWW Proxy Caches

* Place caches in the network to reduce server load
- But, increases latency in lightly loaded case
- Caches near servers called “reverse proxy caches”
» Offloads busy server machines

- Caches at the “edges” of the network called “content
distribution networks”

» Offloads servers and reduce client latency
* Challenges:
- Caching static traffic easy, but only ~40% of traffic
- Dynamic and multimedia is harder
» Multimedia is a big win: Megabytes versus Kilobytes
- Same cache consistency problems as before
* Caching is changing the Internet architecture
- Places functionality at higher levels of comm. protocols

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.12

Administrivia

* MIDTERM II: Monday December 3
- Next Monday
- 6:00-9:00pm, 2050 Valley LSB

- All material from last midterm and up to today
(lectures 12-25)

- Includes virtual memory

- One page of handwritten notes, both sides
* Review Session: Sunday, Dec 2nd

- 7:00-9:00, 306 Soda (Hopefully this timel)
* Final Exam

- December 17, 5:00-8:00pm, 10 Evans

- Covers whole course (except last lecture)

- Two pages of handwritten notes, both sides
* Final Topics: Any suggestions?

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.13

Protection vs Security

- Protection: one or more mechanisms for controlling the
access of programs, processes, or users to resources
- Page Table Mechanism
- File Access Mechanism
+ Security: use of protection mechanisms to prevent
misuse of resources
- Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data
- Requires consideration of the external environment
within which the system operates

» Most well-constructed system cannot protect information
if user accidentally reveals password

* What we hope to gain today and next time
- Conceptual understanding of how to make systems secure
- Some examples, to illustrate why providing security is
really hard in practice

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.14

Preventing Misuse

+ Types of Misuse:
- Accidental:
» If I delete shell, can't log in to fix it!
» Could make it more difficult by asking: “do you really want
to delete the shell?”

- Intentional:
» Some high school brat who can't get a date, so instead he
transfers $3 billion from B to A.
» Doesn't help to ask if they want to do it (of coursel)
* Three Pieces to Security
- Authentication: who the user actually is
- Authorization: who is allowed to do what
- Enforcement: make sure people do only what they are
supposed to do
* Loopholes in any carefully constructed system:
- Log in as superuser and you've circumvented
authentication
- Log in as self and can do anything with your resources;
for instance: run program that erases all of your files
- Can you trust software to correctly enforce

11/28/@uthentication and Authorization??2222 Lec 25.15

Authentication: Identifying Users

* How to identify users to the system?
- Passwords
» Shared secret between two parties

» Since only user knows password, someone types correct
password = must be user typing it

» Very common technique
- Smart Cards

» Electronics embedded in card capable of
providing long passwords or satisfying
challenge — response queries

» May have display to allow reading of password

» Or can be Jxlugged in directly; several
credit cards now in this category

- Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common
11/28/07 Kubiatowicz €S5162 ©UCB Fall 2007 Lec 25.i6

Passwords: Secrecy
- Sysfem must keep copy of secref o
check against passwords

- What if malicious user gains access to list
of passwords?
» Need to obscure information somehow

- Mechanism: utilize a transformation that is difficult to
reverse without the right key (e.g. encryption)

- Example: UNIX /etc/passwd file
- passwd—one way transform(hash)—>encrypted passwd

- System stores only encrypted version, so OK even if
someone reads the filel

- When you type in your password, system compares
encrypted version

* Problem: Can you trust encryption algorithm?
- Example: one algorithm thought safe had back door
» Governments want back door so they can snoop
- Also, security through obscurity doesn't work
» GSM encryption aifor'i'l'hm was secret; accidentally released;

11728007 Berkeley grad students cracked, in a, few hours Lec 25.17

Passwords: How easy to guess?

* Ways of Compromising Passwords
- Password Guessing:

» Often people use obvious information like birthday,
favorite color, girlfriend’'s name, etc..

- Dictionary Attack:

» Work way through dictionary and compare encrypted
version of dictionary words with entries in /etc/passwd

- Dumpster Diving:
» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)
* Paradox:
- Short passwords are easy to crack
- Long ones, people write down!
+ Technology means we have to use longer passwords
- UNIX initially required lowercase, 5-letter passwords:
total of 26°=10million passwords
» In 1975, 10ms to check a password—1 day to crack
» In 2005, .O1ps to check a password—0.1 seconds to crack
- Takes less time to check for all words in the dictionary!

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.18

Passwords: Making harder to crack

* How can we make passwords harder to crack?
- Can't make it impossible, but can help
* Technique 1: Extend everyone's password with a unique
number (stored in password file)

- Called "salt”. UNIX uses 12-bit “salt”, making dictionary
attacks 4096 times harder

- Without salt, would be possible to pre-compute all the
words in the dictionary hashed with the UNIX algorithm:
would make comparing with /etc/passwd easy!

- Also, way that salt is combined with password designed to
frustrate use of off-the-shelf DES hardware

* Technique 2: Require more complex passwords
- Make people use at least 8-character passwords with
upper-case, lower-case, and numbers
» 708=6x10!4=6million seconds=69 days@0.01ps/check
- Unfortunately, people still pick common patterns
» e.g. Capitalize first letter of common word, add one digit

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.19

Passwords: Making harder to crack (con't)

* Technique 37 Delay checking of passwords
- If attacker doesn't have access to /etc/passwd, delay
every remote login attempt by 1 second
- Makes it infeasible for rapid-fire dictionary attack
* Technique 4: Assign very long passwords
- Long passwords or pass-phrases can have more entropy
(randomness—harder to crack)
- Give everyone a smart card (or ATM card) to carry around
to remember password
» Requires physical theft to steal password
» Can require PIN from user before authenticates self
- Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances to next random number
* Technique 5: “Zero-Knowledge Proof”
- Require a series of challenge-response questions
» Distribute secret algorithm to user
» Server presents a number, say "5”; user computes something
from the number and returns answer to server
» Server never asks same “question” twice

- Often performed by smartcard plugged into system
11/28/07 Kubiatowicz €S5162 ©UCB Fall 2007 Lec 25.20

Authentication in Distributed Systems

* What if identity must be established across network?

- Need way to prevent exposure of information while still
proving identity tfo remote system

- Many of the original UNIX tools sent passwords over the
wire “in clear text”
» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread
* What do we need? Cannot rely on physical security!
- Encryption: Privacy, restrict receivers
- Authentication: Remote Authenticity, restrict senders

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.21

Private Key Cryptography

* Private Key (Symmetric) Encryption:

- Single key used for both encryption and decryption
* Plaintext: Unencrypted Version of message
+ Ciphertext: Encrypted Version of message

—» Encrypt Decrypt @
l Insecure

a) 2
2- Transmission g'

SPY © T (ciphertext) 1 S CIA
% Key Key %

* Important properties
- Can't derive plain text from ciphertext (decode) without
access to key
- Can't derive key from plain text and ciphertext
- As long as password stays secret, get both secrecy and
authentication
- Symmetric Key Algorithms: DES, Triple-DES, AES

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.22

Key Distribution

* How do you get shared secret to both places?
- For instance: how do you send authenticated, secret mail
to someone who you have never met?
- Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others
* Third Party: Authentication Server (like Kerberos)
- Notation:
» K, is key for talking between x and y
» (.3" means encrypt message (...) with the key K
» Clients: A and B, Authentication server S
- A asks server for key:
» A—S: [Hil I'd like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking
- Server returns session key encrypted using B's key
» S—>A: Message [Use K, (This is Al Use K,)b] Ksa
» This allows A to know, "S said use this key”
- Whenever A wants to talk with B
» A—>B: Ticket [This is Al Use K,]t

» Now, B knows that K is sanctioned by S
11/28/07 Kubiafowiczua5162 ©UCB Fall 2007 Lec 25.23

Authentication Server Continued

+ Details
- Both A and B use passwords (shared with key server) to
decrypt return from key servers
- Add in timestamps to limit how long tickets will be used
to prevent attacker from replaying messages later
- Also have to include encrypted checksums (hashed
version of message) to prevent malicious user from
inserting things into messages/changing messages
- Want to minimize # times A types in password
» A—S (Give me temporary secret)
» 5>A (Use Ki,pp-5q for next 8 hours)+se

» Can now use K, ... in place of K_, in 7prm‘o'rcol

11/28/07 KuBiowicz ¢5162 ©UCB Fdif* 200 Lec 25.24

Public Key Encryption

+ Can we per‘for‘m Key distribufion without an
authentication server?
- Yes. Use a Public-Key Cryptosystem.
* Public Key Details
- Don't have one key, have two: K, i, Kirivate
» Two keys are mathematically related to one another
» Really hard to derive K. from K.+, and vice versa
- Forward encryption:
» Encrypt: (cleartext)krblic= ciphertext,
» Decrypt: (ciphertext,)private = cleartext
- Reverse encryption:
» Encrypt: (cleartext)<erivate = ciphertext,
» Decrypt: (ciphertext,)rblic = cleartext
- Note that ciphertext; # ciphertext,
» Can't derive one from the other!
* Public Key Examples:
- RSA: Rivest, Shamir, and Adleman
» K ublic of form (kpublic' N)' Kpr'ivafe of form (kpr'ivafe' N)
» Nz pq. Can break code if know p and q

- ECC: Elliptic C C
11/28/07E E”lpflC tilgbvis'rowiszy ?;%QQ%QXGII 2007 Lec 25.25

Public Key Encryption Details

* Idéar K can be made public, Keep Kt private

Insecure Channel

public === Bprivaf
private publig

Alice Insecure Channel Bob
+ Gives message privacy (restricted receiver):

- Public keys (secure destination points) can be acquired
by anyone/used by anyone

- Only person with private key can decrypt message
* What about authentication?
- Use combination of private and public key
- Alice—»Bob: [(I'm Alice)#rrivate Rest of message]Brublic
- Provides restricted sender and receiver

« But: how does Alice know that it was Bob who sent

her B,.? And vice versa..
11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.26

Secure Hash Function

Hash DFCD3454BBEA788A

Fox =1 - netion Zi;g\ggelsgzmgmog

The red Fox Ttooh 52ED879E 7OF 71D92

runs across —> . —> 6EB6957008E03CE4
the ice Function CA6945D3

* Hash Function: Short summary of data (message)
- For instance, h;=H(M,) is the hash of message M,
» h; fixed length, despite size of message M;.
» Often, h, is called the “digest” of M.
* Hash function H is considered secure if
- It is infeasible to find M, with h;=H(M,): ie. can't
easily find other message with same digest as given
message.
- It is infeasible to locate two messages, m; and m,,
which “collide”, i.e. for which H(m,) = H(m,)
- A small change in a message changes many bits of
digest/can't tell anything about message given its hash

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.27

Use of Hash Functions

+ Several Standard Hash Functions:
- MD5: 128-bit output
- SHA-1: 160-bit output
+ Can we use hashing to securely reduce load on server?
- Yes. Use a series of insecure mirror servers (caches)
- First, ask server for digest of desired file
» Use secure channel with server
- Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

File X
nsecure
Read X Data
@ Mirror
R

ead File X
< =\ Here is h, = H(X)

o

—_—

Server Lec 25.28

11/28/07 Client kubidowicz cS162 ©UCB Fall 2007

Signatures/Certificate Authorities

+ Can use X_ ;. for person X fo define their idenfi
- Presumab y they are the only ones who know X
- Often, we think of X ;. as a “principle” (user
*+ Suppose we want X to sigh message M? _
- Use private key to encrypt the digest, i.e. H(M)*private
- Send both M and its signature:
» Signed message = [M, H(M)*private]
- Now, "anyone can verify that M was signed by X
» Simply decrypt the digest with X
» Verify that result matches H(M)
* Now: How do we know that the version of X, that
we have is really from X??2?
- Answer: Certificate Authority
» Examples: Verisign, Entrust, Etc.
- X goes to organization, Er‘esenfs identifying papers
» Organization signs X's key: [X,ic. HX upic)4Pvete]
» Called a “Certificate”
- Before we use X ... ask X for certificate verifying key
» Check that sigﬂa’rure over X, produced by trusted
unfhor'i'ry . .
* How do we get keys of certificate authority?
- Compiled into your browser, for instancel!
11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.29

rivate *

Security through SSL

= =]
- SSL Web Protocol +»
- lPJOM 41):?_: slfcure hﬁpT_) nh.cert |
- Use public-key encryption — ks
for l?ey-disfr'%uﬁonyp \%4&»
- Server has a certificate signed by certificate authority

- Contains server info (organization, IP address, etc)
- Also contains server's public key and expiration date
- Establishment of Shared, 48-byte "master secret”

- Client sends 28-byte random value n, to server

- Server returns its own 28-byte random value n_, plus its
certificate cert,

- Client verifies certificate by checking with public key of
certificate authority compiled into browser

» Also check expiration date

- Client picks 46-byte “premaster” secret (pms), encrypts
it with public key of server, and sends to server

- Now, both server and client have n_, n,, and pms

» Each can compute 48-byte master secret using one-way
and collision-resistant function on three values

» Random “nonces” n_ and n, make sure master secret fresh
11/28/07 Kubiatowicz C5162 ®UCB Fall 2007 Lec 25.30

SSL Pitfalls

* Netscape claimed to provide secure comm. (SSL)
- So you could send a credit card # over the Internet
*+ Three problems (reported in NYT):
- Algorithm for picking session keys was predictable
(used time of day) - brute force key in a few hours

- Made new version of Netscape to fix #1, available to
users over Internet (unencrypted!)
» Four byte patch to Netscape executable makes it
always use a specific session key
» Could insert backdoor by mangling packets containing
executable as they fly by on the Internet.

» Many mirror sites (including Berkeley) to redistribute
new version - anyone with root access to any machine
on LAN at mirror site could insert the backdoor

- Buggy helper applications - can exploit any bug in
either Netscape, or its helper applications

11/28/07 Kubiatowicz €S162 ©UCB Fall 2007 Lec 25.31

Conclusion

User Identification
- Passwords/Smart Cards/Biometrics
Passwords
- Encrypt them to help hid them
- Force them to be longer/not amenable to dictionary attack
- Use zero-knowledge request-response techniques
Distributed identity
- Use cryptography
Symmetrical (or Private Key) Encryption
- Single Key used to encode and decode
- Introduces key-distribution problem
Public-Key Encryption
- Two keys: a public key and a private key
» Not derivable from one another
Secure Hash Function
- Used to summarize data

- Hard to find an?'rher' block of data wi7'rh same hashL

11/28/07 ubiatowicz CS162 ®UCB Fall 200 ec 25.32

