
CS162
Operating Systems and
Systems Programming

Lecture 27

ManyCore OS and
Peer-to-peer Systems

December 10, 2007
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 27.212/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Requests for Final topics
• Some topics people requested:

– Dragons: too big of a topic for today
– ManyCore Systems
– Parallel OSs
– Embedded OSs
– Peer-to-Peer Systems (OceanStore)
– Virtual reality/enhancement
– Quantum Computing

• Today:
– A couple of topics to finish from last time
– ManyCore/Parallel OS
– Embedded OS (realtime systems)
– Peer-to-Peer Systems (OceanStore)

• Other Topics:
– Come look for me at office hours (Or any other time)

Lec 27.312/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Security Terms
• Virus:

– A piece of code that attaches itself to a program or file
so it can spread from one computer to another, leaving
infections as it travels

– Most attached to executable files, so don’t get
activated until the file is actually executed

– Once caught, can hide in boot tracks, other files, OS
• Worm:

– Similar to a virus, but capable of traveling on its own
– Takes advantage of file or information transport
features

– Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself

• Trojan Horse:
– Named after huge wooden horse in Greek mythology
given as gift to enemy; contained army inside

– At first glance appears to be useful software but does
damage once installed or run on your computer

Lec 27.412/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Security Problems: Buffer-overflow Condition
#define BUFFER SIZE 256
int process(int argc, char *argv[])
{
char buffer[BUFFER SIZE];
if (argc < 2)

return -1;
else {

strcpy(buffer,argv[1]);
return 0;

}
} Before attack After attack

• Technique exploited by many network attacks
– Anytime input comes from network request and is not
checked for size

– Allows execution of code with same privileges as running
program – but happens without any action from user!

• How to prevent?
– Don’t code this way! (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don’t execute code in this page”

Lec 27.512/10/07 Kubiatowicz CS162 ©UCB Fall 2007

The Morris Internet Worm: The beginning of chaos
• Internet worm (Self-reproducing)

– Author Robert Morris, a first-year Cornell grad student
– Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program

Lec 27.612/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Timing Attacks: Tenex Password Checking

• Tenex – early 70’s, BBN
– Most popular system at universities before UNIX
– Thought to be very secure, gave “red team” all the
source code and documentation (want code to be
publicly available, as in UNIX)

– In 48 hours, they figured out how to get every
password in the system

• Here’s the code for the password check:
for (i = 0; i < 8; i++)
if (userPasswd[i] != realPasswd[i])
go to error

• How many combinations of passwords?
– 2568?
– Wrong!

Lec 27.712/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Defeating Password Checking

• Tenex used VM, and it interacts badly with the above code
– Key idea: force page faults at inopportune times to break

passwords quickly
• Arrange 1st char in string to be last char in pg, rest on next pg

– Then arrange for pg with 1st char to be in memory, and rest
to be on disk (e.g., ref lots of other pgs, then ref 1st page)

a|aaaaaa
|

page in memory| page on disk
• Time password check to determine if first character is correct!

– If fast, 1st char is wrong
– If slow, 1st char is right, pg fault, one of the others wrong
– So try all first characters, until one is slow
– Repeat with first two characters in memory, rest on disk

• Only 256 * 8 attempts to crack passwords
– Fix is easy, don’t stop until you look at all the characters

Lec 27.812/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Types of Parallel Machines
• Symmetric Multiprocessor

– Multiple processors in box with
shared memory communication

– Current MultiCore chips like this
– Every processor runs copy of OS

• Non-uniform shared-memory with
separate I/O through host

– Multiple processors
» Each with local memory
» general scalable network

– Extremely light “OS” on node
provides simple services

» Scheduling/synchronization
– Network-accessible host for I/O

• Cluster
– Many independent machine
connected with general network

– Communication through messages

P P P P

Bus

Memory

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

Host

Network

Lec 27.912/10/07 Kubiatowicz CS162 ©UCB Fall 2007

ManyCore Chips: The future is on the way

• “ManyCore” refers to many processors/chip
– 64? 128? Hard to say exact boundary

• How to program these?
– Use 2 CPUs for video/audio
– Use 1 for word processor, 1 for browser
– 76 for virus checking???

• Something new is clearly needed here…

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores
– Two floating point engines /core
– Mesh-like "network-on-a-chip“
– 100 million transistors
– 65nm feature size

Frequency Voltage Power Bandwidth Performance
3.16 GHz 0.95 V 62W 1.62 Terabits/s 1.01 Teraflops
5.1 GHz 1.2 V 175W 2.61 Terabits/s 1.63 Teraflops
5.7 GHz 1.35 V 265W 2.92 Terabits/s 1.81 Teraflops

Lec 27.1012/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Berkeley PARLab
• Parallel processors have been around for a long time

– So, what is different now?
» Industry is on a growth path – massively parallel processors will

soon be widespread
» Communication between cores very low overhead

– Challenge is still how to program them
• Caught attention of Berkeley (and many others)

– New research laboratory: PARLab
– New approach: vertically integrated programming environment
– Combine lessons of last 20 years with application-driven

approach
• Berkeley researchers from many backgrounds meeting since Feb.

2005 to discuss parallelism
– Krste Asanovic, Ras Bodik, Jim Demmel, Kurt Keutzer, John

Kubiatowicz, Edward Lee, George Necula, Dave Patterson,
Koushik Sen, John Shalf, John Wawrzynek, Kathy Yelick, …

– Circuit design, computer architecture, massively parallel
computing, computer-aided design, embedded hardware
and software, programming languages, compilers,
scientific programming, and numerical analysis

Lec 27.1112/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Dwarfs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Intel Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

HypervisorOS

Arch.

Productivity

Layer

Efficiency

Layer C
or

re
ct

ne
ss

Applications

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

Lec 27.1212/10/07 Kubiatowicz CS162 ©UCB Fall 2007

PARLab approach to parallel programming

• 2 types of programmers ⇒ 2 layers
• Efficiency Layer (10% of today’s programmers)

– Expert programmers build Frameworks & libraries,
Hypervisors, …

– “Bare metal” efficiency possible at Efficiency Layer
• Productivity Layer (90% of today’s programmers)

– Domain experts / Naïve programmers productively build
parallel apps using frameworks & libraries

– Frameworks & libraries composed to form applications
• Effective composition techniques allows the efficiency

programmers to be highly leveraged ⇒
– Create language for Composition and Coordination (C&C)

Lec 27.1312/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Traditional Parallel OS
• Job of OS is support and protect

– Need to stay out of way of application
• Traditional single-threaded OS

– Only one thread active inside kernel at a time
» One exception – interrupt handlers
» Does not mean that that there aren’t many threads – just

that all but one of them are asleep or in user-space
» Easiest to think about – no problems introduced by sharing

– Easy to enforce if only one processor (with single core)
» Never context switch when thread is in middle of system call
» Always disable interrupts when dangerous

– Didn’t get in way of performance, since only one task could
actually happen simultaneously anyway

• Problem with Parallel OSs: code base already very large
by time that parallel processing hit mainstream

– Lots of code that couldn’t deal with multiple simultaneous
threads ⇒One or two locks for whole system

Lec 27.1412/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Some Tricky Things about Parallel OSs
• How to get truly multithreaded kernel?

– More things happening simultaneously⇒need for:
» Synchronization: thread-safe queues, critical sections, …
» Reentrant Code – code that can have multiple threads

executing in it at the same time
» Removal of global variables – since multiple threads may

need a variable at the same time
– Potential for greater performance⇒need for:

» Splitting kernel tasks into pieces
• Very labor intensive process of parallelizing kernel

– Needed to rewrite major portions of kernel with finer-
grained locks

» Shared among multiple threads on multiple processors⇒
Must satisfy multiple parallel requests

» Bottlenecks (coarse-grained locks) in resource allocation
can kill all performance

• Truly multithreaded mainstream kernels are recent:
– Linux 2.6, Windows XP, …

Lec 27.1512/10/07 Kubiatowicz CS162 ©UCB Fall 2007

How Should Oss
Change for ManyCore?

Lec 27.1612/10/07 Kubiatowicz CS162 ©UCB Fall 2007

ManyCore opportunities: Rethink the Sink
• Computing Resources are not Limited

– High Utilization of every core unnecessary
– Partition Spatially rather than Temporally

• Protection domains not necessarily heavyweight
– Spatial Partitioning⇒ protection crossing as simple as
sending a message from partition to partition

– Opportunity: hardware support for label-based access
control (ala Asbestos) for messages

• I/O devices not limited and do not need to be heavily
multiplexed

– High bandwidth devices available through network
– FLASH or other persistent storage yields fast, flat
hierarchy

– Monolithic file system view outdated: give applications
access to persistent chunks of storage

– Allocate cores for I/O – yields performance and security

Lec 27.1712/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Spatial Partitioning
• Groups of processors acting within hardware boundary

– Shared memory and/or active messages within partition
– Protected message passing between partitions
– Time multiplexing of computing resources not required
– Quality of Service guarantees provided on resources such
as memory and network bandwidth

• Deconstructed OS
– Only hypervisor present on every partition
– Functionality of traditional OS split amongst partitions:

» Legacy Device drivers wrapped and
isolated on individual partitions

» File systems handled by server partitions
» Interrupts and other events delivered

to free partitions
– Parallel applications given “bare metal”

» free to deploy whatever scheduling is
most advantageous

Lec 27.1812/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Spatial Partitioning and Applications
• Many possibilities for mapping applications to partitions:

– Within partition: shared memory and user-level active
messages freely exchanged for parallel apps

– Between partitions: user-level active messages
• Since spatial partitions represent security contexts:

– One application per partition
» Obvious division

– Many partitions per applications:
» Great for pipe/filter type of computations
» Insecure plug-ins isolated from primary application
» Communication between partitions via messages

• Should spatial partitions be virtualized?
– Probably

» Danger of reintroducing scheduling artifacts, but….
» Gives more flexibility for dividing up applications

Lec 27.1912/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Minimalism
• Hypervisor is only universally resident code

– Handles basic resource allocation
» Very thin layer

– Manages spatial partitions/initiating application execution
• Major system facilities replaced by libraries/servers

– Thread generation and scheduling ⇒ user-level libraries
– I/O system calls ⇒ messages to servers on other cores
– Servers for filesystems/etc run at user level as well

• “Bare-Metal” partitions for applications
– Parallel apps given complete control of processor partition

» User-level runtime scheduling system
» Exclusive use of partition-wide synchronization network
» Exclusive use of shared memory, virtual memory hardware
» Direct access to performance monitoring hardware

– Any temporal multiplexing is infrequent and partition-wide

Lec 27.2012/10/07 Kubiatowicz CS162 ©UCB Fall 2007

User-Level Protected Messaging
• Crossing protection domain ⇒ sending a message
• User given direct ability to send and receive messages

– Direct, protected access to network interface
– Message send/receive simply writing/reading registers
– Access to DMA also at user level

• User-level Messages for crossing protection domains
– Rather than a two-level hierarchy (user+root), have a
partially ordered set of Security contexts

– Taint tracking
» Partitions and/or processes labeled with security contexts
» Data from one source is “tainted” with label from source
» Message dropped if dest not authorized to receive it
» Example: data from partition with label X cannot leak to any other

partition unless has appropriate label
• Messages can invoke handlers on receiver in hardware

– Full support for fast exception handling
» Exceptions handled entirely at user level

Lec 27.2112/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Fault Isolation and Optimistic Concurrency
• Mechanisms for Optimistic Concurrency

– Partition-level checkpoint/restore
– Permits ability to back up to consistent point across
ManyCore partitions

• Dependency tracking
– Track which speculative executions depend on each other
– Dependencies can be transferred through messages
– Speculative rollback of groups of dependent executions

» Example: Transaction-based cached file system; simply roll-
back application if cache discovered out of date

• Fault-Tolerance
– Checkpoint/restore triggered via information from
compiler/frameworks

– Idea: framework knows when to
» Trigger checkpoints
» When and how to check consistency of computation

Lec 27.2212/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Realtime OS/Embedded Applications

• Embedded applications:
– Limited Hardware
– Dedicated to some particular task
– Examples: 50-100 CPUs in modern car!

• What does it mean to be “Realtime”?
– Meeting time-related goals in the real world

» For instance: to show video, need to display X frames/sec
– Hard real-time task:

» one which we must meet its deadline
» otherwise, fatal damage or error will occur.

– Soft real-time task:
» one which we should meet its deadline, but not mandatory.
» We should schedule it even if the deadline

– Determinism:
» Sometimes, deterministic behavior is more important than high

performance

Lec 27.2312/10/07 Kubiatowicz CS162 ©UCB Fall 2007

MultiCore and Realtime
• Realtime OS Details

– Realtime scheduler looks at deadlines to decide who to
schedule next

» Example: schedule the thread whose deadline is next
– What makes it hard to perform realtime scheduling:

» Too many background tasks
» Optimizing for overall responsiveness or throughput is

different from meeting explicit deadlines
• Why are Realtime apps often handled by embedded

processors?
– Because they are dedicated and more predictable
– Idea: Only need to meet throughput requirements

» Might as well slow down processor (via lower voltage) as long
as performance criteria met

» Power reduces as V2!
• ManyCore

– Opportunity to devote cores to realtime activities
– “Bare metal” partitions: best of realtime and general Oss

in one chip…!
Lec 27.2412/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Administrivia

• Midterm II
– Still Grading! Should be done very soon.
– I put up solutions already

• Project 4
– Due Tomorrow, 12/11

• Final Exam
– December 17th, 5:00-8:00pm
– 10 Evans
– Bring 2 sheets of notes, double-sided
– All lectures – except today (this is a freebie!)

Lec 27.2512/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Peer-to-Peer: Fully equivalent components

• Peer-to-Peer has many interacting components
– View system as a set of equivalent nodes

» “All nodes are created equal”
– Any structure on system must be self-organizing

» Not based on physical characteristics, location, or
ownership

Lec 27.2612/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Research Community View of Peer-to-Peer

• Old View:
– A bunch of flakey high-school students stealing music

• New View:
– A philosophy of systems design at extreme scale
– Probabilistic design when it is appropriate
– New techniques aimed at unreliable components
– A rethinking (and recasting) of distributed algorithms
– Use of Physical, Biological, and Game-Theoretic techniques
to achieve guarantees

Lec 27.2712/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Why the hype???
• File Sharing: Napster (+Gnutella, KaZaa, etc)

– Is this peer-to-peer? Hard to say.
– Suddenly people could contribute to active global network

» High coolness factor
– Served a high-demand niche: online jukebox

• Anonymity/Privacy/Anarchy: FreeNet, Publis, etc
– Libertarian dream of freedom from the man

» (ISPs? Other 3-letter agencies)
– Extremely valid concern of Censorship/Privacy
– In search of copyright violators, RIAA challenging rights to
privacy

• Computing: The Grid
– Scavenge numerous free cycles of the world to do work
– Seti@Home most visible version of this

• Management: Businesses
– Businesses have discovered extreme distributed computing
– Does P2P mean “self-configuring” from equivalent resources?
– Bound up in “Autonomic Computing Initiative”?

Lec 27.2812/10/07 Kubiatowicz CS162 ©UCB Fall 2007

OceanStore

Lec 27.2912/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Pac
Bell

Sprint

IBM
AT&T

Canadian
OceanStore

IBM

Utility-based Infrastructure

• Data service provided by storage federation
• Cross-administrative domain
• Contractual Quality of Service (“someone to sue”)

Lec 27.3012/10/07 Kubiatowicz CS162 ©UCB Fall 2007

OceanStore:
Everyone’s Data, One Big Utility

“The data is just out there”

• How many files in the OceanStore?
– Assume 1010 people in world
– Say 10,000 files/person (very conservative?)
– So 1014 files in OceanStore!

– If 1 gig files (ok, a stretch), get 1 mole of bytes!
(or a Yotta-Byte if you are a computer person)

Truly impressive number of elements…
… but small relative to physical constants

Aside: SIMS school: 1.5 Exabytes/year (1.5×1018)
back in 2001….!

Lec 27.3112/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Key Observation: Want Automatic Maintenance

• Can’t possibly manage billions of servers by hand!
• System should automatically:

– Adapt to failure
– Exclude malicious elements
– Repair itself
– Incorporate new elements

• System should be secure and private
– Encryption, authentication

• System should preserve data over the long term
(accessible for 1000 years):

– Geographic distribution of information
– New servers added from time to time
– Old servers removed from time to time
– Everything just works

Lec 27.3212/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Example: Secure Object Storage

Client
(w/ TCPA)

Client
(w/ TCPA)

Client
(w/ TCPA)

OceanStoreOceanStore

Client
Data

Manager

• Security: Access and Content controlled by client
– Privacy through data encryption
– Optional use of cryptographic hardware for revocation
– Authenticity through hashing and active integrity
checking

• Flexible self-management and optimization:
– Performance and durability
– Efficient sharing

Lec 27.3312/10/07 Kubiatowicz CS162 ©UCB Fall 2007

• Untrusted Infrastructure:
– The OceanStore is comprised of untrusted components
– Individual hardware has finite lifetimes
– All data encrypted within the infrastructure

• Mostly Well-Connected:
– Data producers and consumers are connected to a high-
bandwidth network most of the time

– Exploit multicast for quicker consistency when possible
• Promiscuous Caching:

– Data may be cached anywhere, anytime

• Responsible Party:
– Some organization (i.e. service provider) guarantees that
your data is consistent and durable

– Not trusted with content of data, merely its integrity

OceanStore Assumptions

Peer-to-peer

Quality-of-Service

Lec 27.3412/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Peer-to-Peer
for Data Location

Lec 27.3512/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Peer-to-Peer in OceanStore: DOLR
(Decentralized Object Location and Routing)

GUID1

DOLR

GUID1GUID2

Lec 27.3612/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Stability under extreme circumstances

(May 2003: 1.5 TB over 4 hours)
DOLR Model generalizes to many simultaneous apps

Lec 27.3712/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Peek at OceanStore
Mechanisms

Lec 27.3812/10/07 Kubiatowicz CS162 ©UCB Fall 2007

OceanStore Data Model

• Versioned Objects
– Every update generates a new version
– Can always go back in time (Time Travel)

• Each Version is Read-Only
– Can have permanent name
– Much easier to repair

• An Object is a signed mapping between permanent
name and latest version

– Write access control/integrity involves managing these
mappings

Comet Analogy updates

versions

Lec 27.3912/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Self-Verifying Objects

Data
Blocks

VGUIDi VGUIDi + 1

d2 d4d3 d8d7d6d5 d9d1

Data
B -
Tree

Indirect
Blocks

M

d'8 d'9

M
backpointe
r

copy on
write

copy on
write

AGUID = hash{name+keys}

Updates
Heartbeats +

Read-Only Data

Heartbeat: {AGUID,VGUID, Timestamp}signed

Lec 27.4012/10/07 Kubiatowicz CS162 ©UCB Fall 2007

OceanStore API: Universal Conflict Resolution

• Consistency is form of optimistic concurrency
– Updates contain predicate-action pairs
– Each predicate tried in turn:

» If none match, the update is aborted
» Otherwise, action of first true predicate is applied

• Role of Responsible Party (RP):
– Updates submitted to RP which chooses total order

• This is powerful enough to synthesize:
– ACID database semantics
– release consistency (build and use MCS-style locks)
– Extremely loose (weak) consistency

IMAP/SMTPNFS/AFS NTFS (soon?)HTTPNative Clients

1. Conflict Resolution
2. Versioning/Branching
3. Access control
4. Archival Storage

OceanStore
API

Lec 27.4112/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Two Types of OceanStore Data

• Active Data: “Floating Replicas”
– Per object virtual server
– Interaction with other replicas for consistency
– May appear and disappear like bubbles

• Archival Data: OceanStore’s Stable Store
– m-of-n coding: Like hologram

» Data coded into n fragments, any m of which are
sufficient to reconstruct (e.g m=16, n=64)

» Coding overhead is proportional to n÷m (e.g 4)
» Other parameter, rate, is 1/overhead

– Fragments are cryptographically self-verifying
• Most data in the OceanStore is archival!

Lec 27.4212/10/07 Kubiatowicz CS162 ©UCB Fall 2007

The Path of an
OceanStore UpdateSecond-Tier

Caches
Inner-Ring

Servers

Clients

Lec 27.4312/10/07 Kubiatowicz CS162 ©UCB Fall 2007

• Simple algorithms for placing replicas on nodes in the
interior

– Intuition: locality properties
of Tapestry help select positions
for replicas

– Tapestry helps associate
parents and children
to build multicast tree

• Preliminary results
encouraging

• Current Investigations:
– Game Theory
– Thermodynamics

Self-Organizing Soft-State Replication

Lec 27.4412/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Archival Dissemination
of Fragments

Archival
Servers

Archival
Servers

Lec 27.4512/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Aside: Why erasure coding?
High Durability/overhead ratio!

• Exploit law of large numbers for durability!
• 6 month repair, FBLPY:

– Replication: 0.03
– Fragmentation: 10-35

Fraction Blocks Lost
Per Year (FBLPY)

Lec 27.4612/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Extreme Durability?

• Exploiting Infrastructure for Repair
– DOLR permits efficient heartbeat mechanism to notice:

» Servers going away for a while
» Or, going away forever!

– Continuous sweep through data also possible
– Erasure Code provides Flexibility in Timing

• Data transferred from physical medium to physical
medium

– No “tapes decaying in basement”
– Information becomes fully Virtualized

• Thermodynamic Analogy: Use of Energy (supplied by
servers) to Suppress Entropy

Lec 27.4712/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Differing Degrees of Responsibility

• Inner-ring provides quality of service
– Handles of live data and write access control
– Focus utility resources on this vital service
– Compromised servers must be detected quickly

• Caching service can be provided by anyone
– Data encrypted and self-verifying
– Pay for service “Caching Kiosks”?

• Archival Storage and Repair
– Read-only data: easier to authenticate and repair
– Tradeoff redundancy for responsiveness

• Could be provided by different companies!

Lec 27.4812/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Closing View on
Peer-to-Peer

Lec 27.4912/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Peer-to-peer Goal: Stable, large-scale systems

• State of the art:
– Chips: 108 transistors, 8 layers of metal
– Internet: 109 hosts, terabytes of bisection bandwidth
– Societies: 108 to 109 people, 6-degrees of separation

• Complexity is a liability!
– More components ⇒ Higher failure rate
– Chip verification > 50% of design team
– Large societies unstable (especially when centralized)
– Small, simple, perfect components combine to generate

complex emergent behavior!
• Can complexity be a useful thing?

– Redundancy and interaction can yield stable behavior
– Better figure out new ways to design things…

Lec 27.5012/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Exploiting Numbers: Thermodynamic Analogy

• Large Systems have a variety of latent order
– Connections between elements
– Mathematical structure (erasure coding, etc)
– Distributions peaked about some desired behavior

• Permits “Stability through Statistics”
– Exploit the behavior of aggregates (redundancy)

• Subject to Entropy
– Servers fail, attacks happen, system changes

• Requires continuous repair
– Apply energy (i.e. through servers) to reduce entropy

Lec 27.5112/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Exploiting Numbers: The Biological Inspiration

• Biological Systems are built from (extremely) faulty
components, yet:

– They operate with a variety of component failures
⇒ Redundancy of function and representation

– They have stable behavior ⇒ Negative feedback
– They are self-tuning ⇒ Optimization of common case

• Introspective (Autonomic)
Computing:

– Components for performing
– Components for monitoring and
model building

– Components for continuous
adaptation

Adapt

Dance

Monitor

Lec 27.5212/10/07 Kubiatowicz CS162 ©UCB Fall 2007

What does this really mean?
• Redundancy, Redundancy, Redundancy:

– Many components that are roughly equivalent
– System stabilized by consulting multiple elements
– Voting/signature checking to exclude bad elements
– Averaged behavior/Median behavior/First Arriving

• Passive Stabilization
– Elements interact to self-correct each other
– Constant resource shuffling

• Active Stabilization
– Reevaluate and Restore good properties on wider scale
– System-wide property validation
– Negative feedback/chaotic attractor

• Observation and Monitoring
– Aggregate external information to find hidden order
– Use to tune functional behavior and recognize

dysfunctional behavior.

Lec 27.5312/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Problems?
• Most people don’t know how to think about this

– Requires new way of thinking
– Some domains closer to thermodynamic realm than

others:
peer-to-peer networks fit well

• Stability?
– Positive feedback/oscillation easy to get accidentally

• Cost?
– Power, bandwidth, storage, ….

• Correctness?
– System behavior achieved as aggregate behavior
– Need to design around fixed point or chaotic attractor

behavior (How does one think about this)?
– Strong properties harder to guarantee

• Bad case could be quite bad!
– Poorly designed ⇒Fragile to directed attacks
– Redundancy below threshold ⇒ failure rate increases

drastically
Lec 27.5412/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Conclusions

• Berkely PARLAb
– Check out: view.eecs.berkeley.edu

parlab.eecs.berkeley.edu
• ManyCore OS

– Spatial partitioning
– Thin Hypervisor
– Explicit security tracking of information
– Need for fine-grained synchronization

• Peer to Peer
– A philosophy of systems design at extreme scale
– Probabilistic design when it is appropriate
– New techniques aimed at unreliable components
– A rethinking (and recasting) of distributed algorithms

• Let’s give a hand to the TAs!
• Good Bye!

