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I 
t is an honor  and a pleasure to 
accept the Alan Tur ing 
Award. My own work has 

been on computer  systems, 
and that will be my theme. 
The  essence of  systems is that 
they are integrat ing efforts, requir-  
ing broad knowledge of  the prob- 
lem area to be addressed,  and the 
detailed knowledge required is 
rarely held by one person. Thus  the 
work of  systems is usually done by 
teams. Hence I am accepting this 
award on behalf  of  the many with 
whom I have worked as much as for 
myself. It is not practical to name all 
the individuals who contributed.  
Nevertheless, I would like to give 
special mention to Marjorie Dag- 
gett and Bob Daley for their parts 
in the birth of  CTSS and to Bob 
Fano and the late Ted Glaser for 
their  critical contributions to the 
development  of  the Multics System. 

Let me turn now to the title of  
this talk: "On Building Systems 
Tha t  Will Fail." Of  course the title I 
chose was a teaser. I considered and 
discarded some alternate titles: "On 
Building Messy Systems," but  it 
seemed too frivolous and suggests 
there is no systematic approach.  
"On Mastering System Complexity" 
sounded like I have all the answers. 
The  title that came closest, "On 
Building Systems that are likely to 
have Failures" did not have the 
nuance of  inevitability that I 
wanted to suggest. 

What  I am really trying to ad- 
dress is the class of  systems that for 
want of  a better  phrase,  I will call 
"ambitious systems." It almost goes 
without saying that ambitious sys- 
tems never quite work as expected. 
Things usually go w r o n g - -  
sometimes in dramatic ways. And  
this leads me to my main thesis, 
namely, that the question to ask 
when designing such systems is not: 
"/f something will go wrong, but  
when it will go wrong?" 

Some Examples 
Now, ambitious systems that fail are 
really much more common than we 
may realize. In  fact in some circum- 
stances we strive for them, revelling 

in the excitement of  the unex- 
pected. For  example,  let me remind 
you of  our  national sport  of  foot- 
ball. The  whole object of  the game 
is for each team to play at the limit 
of  its abilities. Besides the sheer 
physical skill required,  one has the 
strategic intricacies, the ability to 
audibilize, and the quickness to 
react to the unexpec ted - -a l l  a deep  
part  of  the game. Of  course, occa- 
sionally one team approaches  per- 
fection, all the plays work, and the 
game becomes dull. 

Another  example of  a system 
that is too ambitious for perfection 
is military warfare. The  same ele- 
ments are there with opposing sides 
having to constantly improvise and 
deal with the unexpected.  In fact 
we get from the military that won- 
derful  acronym, SNAFU, which is 
politely translated as "situation nor- 
mal, all fouled up." And  if any of  
you are still doubtful ,  consider how 
rapidly the phrases "precision 
bombing" and "surgical strikes" are 
replaced by "the fog of  war" and 
"casualties from friendly fire" as 
soon as hostilities begin. 

On a somewhat more whimsical 
note, let me offer driving in Boston 
as an example of  systems that will 
fail. Automobile  traffic is an excel- 
lent case of  distr ibuted control  with 
a common set of  protocols called 
traffic regulations. The  Boston area 
is notorious for the free interpreta-  
tions drivers make of  these pesky 
regulations, and perhaps the epit- 
ome of  it occurs in the arena of  the 
traffic rotary. A case can be made 
for rotaries. They are efficient. 
The re  is no need to wait for slug- 
gish traffic signals. They are direct. 
And they offer great  opportuni t ies  
for creative improvisation, thereby 
adding  zest to the sport  of  driving. 

One of  the most effective strate- 
gies is for a driver  approaching  a 
rotary to rigidly fix his or  her  head, 
staring forward,  of  course, secretly 
using per iphera l  vision to the limit. 
It  is even more effective if the 
driver  on enter ing the rotary, 
speeds up, and some drivers embel- 
lish this last step by adopt ing a look 
of  maniacal glee. The  effect is, o f  

course, one of  intimidation, and a 
pecking o rde r  quickly develops. 

The  only reason there are not 
more accidents is that most drivers 
have a second component  to the 
strategy, namely, they assume 
everyone else may be c razy- - they  
are often c o r r e c t - - a n d  every driver  
is really p repa red  to stop with 
inches to spare. Again we see an 
example of  a system where ambi- 
tious tactics and p ruden t  caution 
lead to an effective solution. 

So far, the examples I have given 
may suggest that failures of  ambi- 
tious systems come from the human 
element  and that at least the techni- 
cal parts of  the system can be built 
correctly. In  particular,  turning to 
computer  systems, it is only a mat- 
ter of  getting the code debugged.  
Some assume rigorous testing will 
do the job. Some put  their  hopes in 
proving p rogram correctness. But 
unfortunately,  there are many cases 
for which none of  these techniques 
will always work [1]. Let me offer a 
modest  example illustrated in Fig- 
ure 1. 

Consider  the case of  an elaborate 
numerical  calculation with a vari- 
able, f ,  represent ing some physical 
value, being calculated for a set of  
points over a range of  a parameter ,  
t. Now the proper ty  of  physical 
variables is that they normally do 
not exhibit abrupt  changes or  dis- 
continuities. 

So what has happened  here? If  
we look at the expression for f,  we 
see it is the result of  a constant, k, 
added  to the product  of  two other  
functions, g and h. Looking further ,  
we see that the function g has a be- 
havior that is exponential ly increas- 
ing with t. The  function h, on the 
other  hand,  is exponential ly de- 
creasing with t. The  resultant  prod-  
uct of  g and h is almost constant 
with increasing t until an abrupt  
j u m p  occurs and the curve for f 
goes flat. 

What  has gone wrong? The  an- 
swer is that there  has been floating- 
point  underf low at the critical point  
in the curve, i.e., the representat ion 
of  the negative exponent  has ex- 
ceeded the field size in the floating- 
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A Subtle Bug 
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point representation for this partic- 
ular computer,  and the hardware 
has automatically set the value for 
the function h to zero. Often this is 
reasonable since small numbers  are 
correctly approximated by ze ro- -  
but not in this case, where our  re- 
sults are grossly wrong. Worse yet, 
since the computation o f f  might be 
internal,  it is easy to imagine that 
the failure shown here would not 
be noticed. 

Because correctly handling the 
pathology that this example repre- 
sents is an extra engineering 
bother, it should not be surprising 
that the problem of underflow is 
frequently ignored. But the larger 
lesson to be learned from this ex- 
ample is that subtle mistakes are 
very difficult to avoid and to some 
extent are inevitable. 

I encountered my next example 
when I was a graduate student pro- 
gramming on the pioneering 
Whirlwind computer. One night 
while awaiting my turn  to use it, the 
graduate student before me began 
complaining of how "tough" some 
of his calculations were. He said he 
was computing the vibrational fre- 
quencies of a particular wing struc- 
ture for a series of cases. In fact, his 
equations were cubics, and he was 
using the iterative Newton-Raph- 
son method. For reasons he did not 
understand,  his method was find- 
ing one of the roots, but  not "con- 
verging" for the others. He was try- 
ing to fix this situation by changing 
his program so that when he en- 
countered one of these tough roots, 
the program would abandon the 
iteration after a fixed number  of 
tries. 

Now there were several things 
wrong: First, the coefficients to his 
cubic equations were based on ex- 
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perimental  data and some of  his 
points were simply bad. Therefore ,  
as Figure 2 illustrates, he only had 
one real root  and a pair  of  im- 
aginaries. Thus  his iterative 
method could never converge for 
the second and third roots and the 
value of  his first root  was pure  gar- 
bage. Second, cubic equations have 
an exact analytic closed form solu- 
tion so that it was entirely unneces- 
sary to use an iterative method.  
And  third, based on his incomplete 
model  and unders tanding  of  what 
was happening,  he exercised very 
poor  j u d g m e n t  in patching his pro- 
gram to ignore values that were 
seemingly difficult to compute.  

Ambitious System Properties 
Let me turn next to some of  the 
general  propert ies  of  ambitious sys- 
tems. First, they are often vast and 
have significant organizational 
structures going beyond that of  
simple replication. Second, they are 
frequently complicated or elaborate 
and are too much for even a small 
group to develop. Third ,  if they 
really are ambitious, they are push- 
ing the envelope of  what people 
know how to do, and as a result 
there  is always a level of  uncertainty 
about when complet ion is possible. 
Because one has to be an optimist  to 
begin an ambitious project, it is not 
surprising that underest imat ion of  
completion time is the norm. 
Fourth,  ambitious systems when 
they work, often break new 
ground,  offer  new services and 
soon become indispensable. Finally, 
it is often the case that ambitious 
systems by virtue of  having opened 
up a new domain of  usage, invite a 
flood of  improvements  and 
changes. 

Now one could argue that ambi- 
tious systems are really only diffi- 
cult the first time or  two. It is really 
only a mat ter  of  learning how to do 
it. Once one has, then one simply 
draws up the appropr ia te  PERT 
charts, hires good managers,  en- 
sures an adequate  budget  and gets 
on with it. Perhaps there are some 
in3tances where this works, but  at 
least in the area of  computer  sys- 

tems, there is a fundamental  reason 
it does not. 

A key reason we cannot seem to 
get ambitious systems right is 
change. The  computer  field is in- 
toxicated with change. We have 
seen galloping growth over a pe- 
riod of  four  decades and it still does 
not seem to be slowing down. The  
field is not mature  yet and already 
it accounts for a significant percent- 
age of  the Gross National Product  
both directly and indirectly. More 
important ly the computer  revolu- 
t i o n - t h i s  second industrial  revolu- 
t i o n - h a s  changed our  life-styles 
and allowed the growth of  countless 
new application areas. And  all this 
change and growth not only has 
changed the world we live in, but 
has raised our  expectations, spur- 
r ing on increasingly ambitious sys- 
tems in such diverse areas as airline 
reservations, banking, credit  cards, 
and air traffic control to name only 
a f e w .  

Behind the incredible growth o f  
the computer  industry is, o f  course, 
the equally mind-boggling change 
that has occurred in the raw perfor-  
mance of  digital logic. Figure 3, 
which is not precise and which 
many of  you have seen before in 
some form, gives the per formance  
of  a top-of-the-line computer  by 
decade. The  ordinate  in MIPS is 
logarithmic as you can see. In  par- 
ticular in the last decade, the graph 
becomes problem dependen t  so 
that the uppe r  r ight-hand end of  
the line should break up  into some 
sort of  whiskers as more and more 
computers  are tailored for special 
applications and for parallelism. 

Complicating matters too is that 
parallelism is not a solution for 
every problem. Certain calculations 
that are intrinsically serial, such as 
rocket trajectories, derive very lim- 
ited benefit  from parallel comput-  
ers. And  one of  course is reminded  
of  the old joke  about the Army way 
of  speeding up pregnancy by hav- 
ing nine women spend one month 
at the task. 

As Figure 4 makes clear, it is not  
jus t  per formance  that has fueled 
growth but  ra ther  cost/perfor- 

mance, or  simply put, favorable 
economics. The  graph is an over- 
simplification, but  represents  the 
cost for a given per formance  com- 
puter  model  over the last four  dec- 
ades. Again the ordinate  is logarith- 
mic, going from 10 million dollars 
in 1950 down to one thousand dol- 
lars in 1990. As we approach the 
present,  cor responding to a per- 
sonal computer ,  the graph really 
should become more  complicated 
since one consequence of  comput-  
ers becoming super-cheap is that 
increasingly, they are being embed-  
ded  in other  equipment.  The  mod- 
ern automobile is but  one example.  

And  it r e m a i n s  
to be seen 
how g e n e r a l -  
purpose the 
current wave 
of p a l m - s i z e d  
computers 
will be with 
their s t y l u s  
i n p u t s .  

Further ,  when we look at a pho- 
tograph taken a round  1960 of  a 
"machine room" staffed with one 
lone operator ,  we are reminded  of  
the fantastic changes that have oc- 
curred in computer  technology. 
The  boxes are huge, shower-stall- 
sized, and the overall impression is 
of  some small factory. You were 
supposed to be impressed and the 
opera tor  was expected to maintain 
decorum by wearing a necktie. And  
if he did  not, at least you could be 
sure an IBM maintenance engineer  
would. 

Another  r eminder  of  the im- 
mense technological change which 
has occurred is in the physical di- 
mensions of  the main memories of  
computers .  For  example,  if one 
looks at old photographs  taken in 
the mid-1950s of  core memory sys- 
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tems, one typically sees a core mem- 
ory plane roughly the size of  a ten- 
nis racquet head which could hold 
about 1,000 bits of  information.  
Contrast  that with today's 4megabit  
memory  chips that are smaller than 
one's thumb. 

The  basis of  the Award today is 
largely for my work on two pio- 
neer ing t ime-sharing systems, 

CTSS [5, 6] and Multics [7, 9]. In- 
deed,  it is f rom my involvement 
with those two systems that I gained 
the system-building perspective I 
am offering. I t  therefore  seems 
appropr ia te  to take a br ief  retro- 
spective look at these two systems as 
examples of  ambitious systems and 
to explore the reasons why the 
complexity of  the tasks involved 
made it almost impossible to build 
the systems correctly the first t ime 
[2]. 

CTSS, The Compatible Time- 
Sharing System 
Looking first at CTSS, let us re- 
member  the dark  ages that existed 
then. This was the early 1960s. The  
computers  of  the day were big and 
expensive, and the adminis trators  
of  comput ing  centers felt obliged to 
husband the precious resource. 
Users, i.e., p rogrammers ,  were 
expected to submit a comput ing  job  
as a deck of  punched  cards. These  
were then combined into a batch 
with other  jobs onto a magnetic 
tape and the tape was processed by 
the computer  opera t ing  system. It  
had all the g lamour  and exci tement  
of  d ropp ing  one's clothes off  at a 
laundromat .  

The  problem was that even for a 
trivial input  typing mistake, the j ob  
would be aborted.  Time-sharing,  as 
most of  you know, was the solution 
to the problem of  not being able to 
interact with computers .  The  gen- 
eral vision of  modern  t ime-sharing 
was pr imari ly  spelled out  by John  
McCarthy, who I am pleased to 
note is a fea tured speaker  at this 
conference. In  England,  Christo- 
pher  Strachey independent ly  came 
up with a limited kind of  interactive 
computing,  but  it was a imed mostly 
at debugging.  Soon there were 
many groups a round  the country 
developing various forms of  inter- 
active computing,  but  in almost all 
cases, the resulting systems had sig- 
nificant limitations. 

It was in this context that my own 
group developed our  version of  the 
t ime-sharing vision. We called it 
The  Compatible Time-Shar ing  Sys- 
tem, or CTSS for short. Our  initial 
aspirations were modest.  First, the 
system was meant  to be a demon-  
stration prototype before more 
ambitious designs being a t tempted  
by others could be implemented.  
Second, it was in tended to handle  
genera l -purpose  programming.  
And  third,  it was meant  to make it 
possible to run most of  the large 
body of  software that had been de- 
veloped over the years in the batch- 
processing environment .  Hence the 
name. 

The  basic scheme used to run 
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CTSS was simple. The  supervisor 
program, which was always in main 
memory, would commutate among 
the user programs, runn ing  each in 
turn for a brief interval with the 
help of an interval timer. As Figure 
5 indicates, user programs could do 
input/output  with the typewriter- 
like terminals and with the disk 
storage unit  as well. 

But the diagram is oversimpli- 
fied. The  key difficulty was that 
main memory was in short supply 
and not all the programs of the ac- 
tive users could remain in memory 
at once. Thus  the supervisor pro- 
gram not only had to move pro- 
grams to and from the disk storage 
unit, but it also had to act as an in- 
termediary for all I/O initiated by 
user programs. Thus  all the I/O 
lines should only point to the su- 
pervisor program. 

As a further complication, the 
supervisor program had to prevent 
user programs from trampling over 
one another. To do this required 
special hardware modifications to 
the processor such that there were 
memory bound registers that could 
only be set by the supervisor. Nev- 
ertheless, despite all the complica- 
tions, the simplicity of the initial 
supervisor program allowed it to 
occupy about 22 Kbytes of 
storageless storage than required 
for the text of this talk! 

Most of the battles of creating 
CTSS involved solving problems 
which at the time did not have stan- 
dard solutions. For example: There  
were no standard terminals. There  
were no simple modems. I/O to the 
computer  was by word and not by 
character, and worse yet, did not 
accommodate lower case letters. 
The computers of the day had nei- 
ther interrupt  timers nor calendar 
clocks. There  was no way to prevent 
user programs from issuing raw 
I/O instructions at random. There  
was no memory protection scheme. 
And, there was no easy way to store 
large amounts of data with rela- 
tively rapid random access. 

The overall result of building 
CTSS was to change the style of 
computing, but there were several 

effects that seem worth noting. One 
of the most important  was that we 
discovered that writing interactive 
software was quite different from 
software for batch operation and 
even today, in this era of personal 
computers, the evolution of inter- 
active interfaces continues. 

In retrospect, several design de- 
cisions contributed to the success of 
CTSS, but two were key. First, we 
could do general-purpose pro- 
gramming and, in particular, de- 
velop new supervisor software 
using the system itself. Second, by 
making the system able to accom- 
modate older batch code, we inher- 
ited a wealth of older software 
ready-to-go. 

One important  consequence of 
developing CTSS was that for the 
first time, users had persistent on- 
line storage of programs and data. 
Suddenly the issues of privacy, pro- 
tection and backup of information 
had to be faced. Another  byproduct 
of the development was that be- 
cause we operated terminals via 
modems, remote operation became 
the norm. Also, the new-found 
freedom of keeping information 
on-line in the central file system 
suddenly made it especially conve- 
nient  for users to share and ex- 
change information among them- 
selves. 

And there were surprises too. To 
our dismay, users who had been 
endur ing  several-hour waits be- 
tween jobs run  under  batch pro- 
cessing were suddenly restless 
when response times were more 
than a second. Moreover, many of 
the simplifying assumptions that 
had allowed CTSS to be built so 
simply, such as a one-level file sys- 
tem, suddenly began to chafe. It 
seemed like the more we did, the 
more users wanted. 

There  are two other observations 
that can be made about the CTSS 
system. First, it lasted far longer 
than we expected. Although CTSS 
had been demonstrated in primi- 
tive form in November 1961, it was 
not until  1963 that it came into wide 

were two copies of the system hard- 
ware, but by 1973 the last copy was 
turned off and scrapped primarily 
because the maintenance costs of 
the IBM 7094 hardware had be- 
come prohibitively expensive, and 
up to the bitter end, there were 
users desperately trying to get in a 
few last hours of use. 

Second, the then-new transistors 
and large random-access disk files 
were absolutely critical to the suc- 
cess of time-sharing. The previous 
generation of vacuum tubes was 
simply too unreliable for sustained 
real-time operation and, of course, 
large disk files were crucial for the 
central storage of user programs 
and data. 

A Mishap 
My central theme is to try to con- 

vince you that w h e n  

you have a 
multitude of 
novel issues 
to contend 
with while 
building a 
system, 
mistakes are 
inevitable. 
And indeed, we had a beauty while 
using CTSS. Let me describe it: 

What happened was that one af- 
ternoon at Project MAC, where 
CTSS was being used as the main 
time-sharing workhorse, any user 
who logged in, found that instead 
of the usual message-of-the-day 
typing out on his or her terminal, 
he had the entire file of user pass- 
words. This went on for 15 or 20 
minutes, until  one particularly con- 
scientious user called the system 
administrator and began the con- 
versation with "Did you know that 

use as the vehicle of a Project MAC . . . ?" Needless to say, there was 
Summer Study. For a time there general consternation with this co- 
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lossal breach of security, the system 
was hastily shut down and the next 
twelve hours were spent heroically 
changing everyone's password. The 
question was how could this have 
happened? Let me explain. 

To simplify the organization of 
the initial CTSS system, a design 
decision had been made to have 
each user at a terminal associated 
with his or her own directory of 
files. Moreover, the system itself 
was organized as a kind of quasi- 

proceeded to cajole me into letting 
the system directory be an excep- 
tion so that more than one person 
at a time could be logged into it. 
They assured me that they would 
be careful to not make mistakes. 

But of course a mistake was 
made. A software design decision in 
the standard system text editor was 
overlooked. It was assumed that the 
editor would only be used by one 
user at a time working in one direc- 
tory so that a temporary file could 

CTSS: A Mishap 
System Password File became the Message-of-the-Day 
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CTSS Is full of Surprises 

user with its own directory that in- 
cluded a large number  of support- 
ing applications and files, including 
the message-of-the day and the 
password file. So far, so good. Nor- 
mally a single-system programmer 
could login to the system directory 
and make any necessary changes. 
But the number  of system pro- 
grammers had grown to about a 
dozen in number ,  and, further, the 
system by then was being operated 
almost continuously so that the 
need to do live maintenance of the 
system files became essential. Not 
surprisingly, the system program- 
mers saw the one-user-to-a-direc- 
tory restriction as a big bottleneck 
for themselves. They thereupon 

have the same name for all instan- 
tiations of the editor. But with two 
system programmers editing at the 
same time in the system directory, 
the editor temporary files became 
swapped and the disaster occurred. 

One can draw two lessons from 
this: First, design bugs are often 
subtle and occur by evolution with 
early assumptions being forgotten 
as new features or uses are added to 
systems. Second, even skilled pro- 
grammers make mistakes. 

Multlcs 
Let me turn  now to the develop- 
ment  of Muhics [12]. I will be brief 
since the system has been docu- 
mented well and there have already 
been two retrospective papers writ- 
ten [3, 4]. The Muhics system was 
meant to do time-sharing "right" 

and replace the previous ad hoc 
systems such as CTSS. It started as 
a cooperative effort among Project 
MAC of MIT, the Bell Telephone 
Laboratories, and the Computer  
Department  of General Electric, 
later acquired by Honeywell. In our  
expansiveness of purpose we took 
on a long list of innovations. 

Among the most important  ones 
were the following: First, we intro- 
duced into the processor hardware 
the mechanisms for paging and 
segmentation along with a careful 
scheme for access control. Second, 
we introduced an idea for rings of 
protection around the supervisor 
software. Third,  we planned from 
the start that the system would be 
composed of interchangeable mul- 
tiple processors, memory modules, 
and so forth. And fourth, we made 
the decision to implement  nearly all 
of the system in the newly defined 
compiler language, PL/I. 

Let me share a few of my obser- 
vations about the Muhics experi- 
ence. The novel hardware we had 
commissioned meant  that the sys- 
tem had to be built from the 
ground up so that we had an im- 
mense task on our hands. 

The  decision to use a compiler to 
implement  the system software was 
a good one, but what we did not 
appreciate was that new language 
PL/I presented us with two big dif- 
ficulties: First, the language had 
constructs in it which were intrinsi- 
cally complicated, and it required a 
learning period on the part of sys- 
tem programmers to learn to avoid 
them. Second, no one knew how to 
do a good job of implement ing the 
compiler. Eventually we overcame 
these difficulties but it took pre- 
cious time. 

That  Muhics succeeded is re- 
markable, for it was the result of a 
cooperative effort of three highly 
independent  organizations and had 
no administrative head. This meant  
decisions were made by persuasion 
and consensus. Consequently, it 
was difficult to reject weak ideas 
until considerable time and effort 
had been spent on them. 

The  Muhics system did tu rn  into 
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a commercial product. Some of its 
major strengths were the virtual 
memory system, the file system, the 
attention to security, the ability to 
do online reconfiguration, and the 
information backup system for the 
file system. 

And, as was also true with CTSS, 
many of the alumni of the Multics 
development have gone on to play 
important  roles in the computing 
field [11]. 

A few more observations can be 
made about the ambitious Multics 
experience. In particular, we were 
misled by our earlier successes with 
previous systems such as CTSS, 
where we were able to build them 
"brick-by-brick," incrementally add- 
ing ideas to a large base of already 
working software. 

We also were embarrassed by our 
inability to set and meet accurate 
schedules for completion of the dif- 
ferent phases of the project. In  ret- 
rospect, we should not have been, 
for we had never done anything 
like it before. However in many 
cases, our  estimations should have 
been called guesses. 

The  Unix system [15] was a reac- 
tion to Multics. Even the name was 
a joke. Ken Thompson was part of 
the Bell Laboratories' Multics ef- 
fort, and, frustrated with the at- 
tempts to bring a large system de- 
velopment under  control, decided 
to start over. His strategy was c lear - -  
Start small and build up the ideas 
one by one as he saw how to imple- 
ment them well. As we all know, 
Unix has evolved and become im- 
mensely successful as the system of 
choice for workstations. Still there 
are aspects of Multics that have 
never been replicated in Unix. 

As a commercial product of 
Honeywell and Bull, Multics devel- 
oped a loyal following. At the peak 
there were about 77 sites worldwide 
and even today many of the sites 
tenaciously continue for want of an 
alternative. 

Sources of Complexity 
The general problem with ambi- 
tious systems is complexity. Let me 
next try to abstract some of the 

major causes. The most obvious 
complexity problems arise from 
scale. In  particular, the larger the 
personnel required, the more levels 
of management  there will be. We 
can see the problem even if we use 
simplistic calculations. Thus  if we 
assume a fixed supervision ratio, 
for example six, the levels of man- 
agement will grow as the logarithm 
of the personnel. The difficulty is 
that with more layers of manage- 
ment, the top-most layers become 
out of touch with the relevant bot- 
tom issues and the likelihood of 
random serendipitous communica- 
tion decreases. 

Another  problem of organiza- 
tions is that subordinates hate to 
report bad news, sometimes for 
fear of "being shot as the messen- 
ger" and at other times because 
they may have a different set of 
goals than the upper  management.  

And finally, large projects en- 
courage specialization so that few 
team members unders tand all of 
the project. Misunderstandings and 
miscommunication begin, and soon 
a significant part of the project re- 
sources are spent fighting internal 
confusion. And, of course, mistakes 
occur. 

My next category of complexity 
arises because of new design do- 
mains. The most vivid examples 
come from the 'world of physical 
systems, but software too is subject 
to the same problems, albeit often 
in more subtle ways. 

Consider the destruction of the 
Tacoma Narrows Bridge, in Wash- 
ington State, on November 7, 1940. 
The bridge bad been proudly 
opened about four months earlier. 
Many of you have probably seen 
the amateur movie that was fortu- 
nately made of the collapse. What 
happened is that a strong but not 
unusual  crosswind blew that day. 
Soon the roadbed, suspended by 
cables from the main span, began to 
vibrate like a reed, and the more it 
flexed, the better cross section it 
presented to the wind. The  result 
was that the bridge tore itself apart 
as the oscillations became large and 
violent. What we had was a case of a 

new design domain where the clas- 
sic bridge builder, concerned with 
gravity-loaded structures, had en- 
tered into the realm of aeronautics. 
The result was a major mistake. 

Next, let us look at the complexi- 
ties that arise from human  usage of 
computer  systems. In using online 
systems that allow the sharing or 
exchanging of in fo rmat ion- -and  
here networked workstations 
clearly fall in this class--one is 
faced with a dilemma: If  one places 
total trust in all other users, one is 
vulnerable to the antisocial behav- 
ior of any malicious user- -consider  
the case of viruses. B u t  

if one tries 

to b e  t o t a l l y  
r e c l u s i v e  a n d  
i s o l a t e d ,  o n e  
i s  n o t  o n l y  
b o r e d ,  b u t  
one ' s 

i n f o r m a t i o n  
u n i v e r s e  
w i l l  c e a s e  
to g r o w  
a n d  b e  
e n h a n c e d  
b y  i n t e r -  
a c t i o n  w i t h  
o t h e r s .  

The result is that 
most of us operate in a complicated 
trade-off zone with various ar- 
rangements of trust and security 
mechanisms. Even such simple 
ideas as passwords are often a prob- 
lem. They are a nuisance to re- 
member, they can easily be com- 
promised inadvertently, and they 
cannot be selectively revoked if 
shared. Privacy and security issues 
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are part icularly difficult to deal 
with since responsibilities are often 
split among users, managers,  and 

vendors. Wor s e 

yet, there 
is no way 
to simply 

"look" at a 
system and 
determine 
what the 
privacy 

and security 
implications 

are. It is 
no wonder 
mistakes 

occur all 
the time 

in this area. 

One of  the consequences of  
using compute r  systems is that in- 
creasingly information is being kept 
on-line in central storage devices. 
Compute r  storage devices have 
become remarkably  re l i ab le - -  
except when they b r e a k - - a n d  that 
is the rub. Even the most experi-  
enced computer  user can find him- 
or herself  lulled into a false sense of  
security by the almost perfect  oper-  
ation of  today's devices. The  prob- 
lem is compounded  by the att i tude 
of  vendors,  not unlike the initial 
at t i tude of  the automobile industry 
toward safety, where inevitable disk 
failure is t reated as a negative issue 
that dampens  sales. 

What  is needed is constant vigi- 
lance against a long list of  "what 
ifs": hardware  failure, human slips, 
vandalism, theft, fire, earthquakes,  
long-term media  failure, and even 

the loss of  institutional memories  
concerning recovery procedures.  
And  as long as some individuals 
have to "learn the hard  way," mis- 
takes will continue to be made. 

A fur ther  complication in dis- 
cussing risk or  reliability is that 
there  is not a good language with 
which to carry on a dialog. Statistics 
are as often misapplied as they are 
misunderstood.  We also get absurd 
absolutes such as "the Strategic 
Defense Initiative will produce a 
perfect  unsaturatable shield against 
nuclear  attack" [14] or  "it is impos- 
sible for the reactor to overheat."  
The  problem is that we always have 
had risks in our  lives, we never have 
been very good at discussing them, 
and with computers  we now have a 
lot of  new sources. 

Another  source of  complexity 
arises with rapid  change, change 
which is often driven by technology 
improvements .  A result is that 
changes in procedures  or  usage 
occur and new vulnerabilities can 
arise. For  example,  in the area of  
te lephone networks, the economies 
and efficiencies of  fiber optic cables 
compared  to copper  wire are rap- 
idly causing major  upgrades  and 
replacements  in the national tele- 
phone  plant. Because one fiber 
cable can carry at a reasonable cost 
the equivalent traffic of  thousands 
of  copper  wires, fiber is quickly 
replacing copper.  As a result, a 
t ransformat ion is likely to occur 
where network links become spar- 
ser over a given area and multiply 
interconnected nodes become less 
connected. 

The  difficulty is that there is re- 
duced redundancy  and a much 
higher  vulnerability to isolated acci- 
dents. In  the Chicago area not long 
ago there was a fire at a fiber optics 
switching center  that caused a loss 
of  service to a huge number  of  cus- 
tomers for several weeks. More re- 
cently, in New York City there was a 
shutdown of  the financial ex- 
changes for several hours because 
of  a single mishap with a backhoe in 
New Jersey. Obviously in both in- 
stances, efficiency had gotten ahead 
of  robustness. 

The  last source of  complexity 
that I will single out  arises from the 
frailty of  human users when forced 
to deal with the multiplicity of  tech- 
nologies in modern  life. In a little 
more than a century,  there has 
been an awesome progression of  
technological changes from tele- 
phones and electricity, th rough  
automobiles,  movies and r a d i o - - I  
will not even try to complete the list 
since we all know it well. The  over- 
all consequence has been to pro- 
duce vast changes in our  life-styles, 
and we see these changes even hap- 
pening today. Consider  the changes 
in the television edit ing styles that 
have occurred over a few decades, 
the impact of  viewgraph overhead 
projectors on college classrooms, 
and the way we now do our  banking 
with automatic teller machines. 
And  the progression of  life-style 
changes continues at a seemingly 
more rapid  pace with word process- 
ing, answering machines, facsimile 
machines, and electronic mail. 

One consequence of  the many 
life-style changes is that some indi- 
viduals feel stressed and overstimu- 
lated by the ple thora  of  inputs. The  
natural  defense is to increasingly 
depend  on others to act as informa- 
tion filters. But the combinat ion of  
stressful life-styles and insu'lation 
from original data will inevitably 
lead to more  confusion and mis- 
takes. 

Conclusions 
Most of  this talk has been directed 
toward trying to persuade  you that 
failures in complex,  ambitious sys- 
tems are inevitable. However,  I 
would be remiss if I did not address 
ways to resolve the problem. Un- 
fortunately,  the list I can offer  is 
ra ther  short  but  worthy of  br ief  
review. 

First, it is impor tant  to emphasize 
the value of  simplicity and ele- 
gance, for complexity has a way of  
compound ing  difficulties and as we 
have seen, creat ing mistakes. My 
definit ion of  elegance is the 
achievement of  a given functional- 
ity with a min imum of  mechanism 
and a maximum of  clarity. 
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Second, the value of metaphors 
should not be underestimated. 
Metaphors have the virtue of an 
expected behavior that is under-  
stood by all. Unnecessary commu- 
nication and misunderstandings 
are reduced. Learning and educa- 
tion are quicker. In effect, meta- 
phors are a way of internalizing and 
abstracting concepts allowing one's 
thinking to be on a higher plane 
and low-level mistakes to be 
avoided. 

Third,  use of constrained lan- 
guages for design or synthesis is a 
powerful methodology. By not al- 
lowing a programmer or designer 
to express irrelevant ideas, the 
domain of possible errors becomes 
far more limited. 

Fourth, one must try to antici- 
pate both errors of human  usage 
and of hardware failure and prop- 
erly develop the necessary contin- 
gency paths. This process of play- 
ing "what if" is not as easy as it may 
sound, since the need to attach like- 
lihoods of occurrence to events and 
to address issues of the indepen- 
dence of failures is implicit. 

Fifth, it should be assumed in the 
design of a system, that it will have 
to be repaired or modified. The 
overall effect will be a much more 
robust system, where there is a high 
degree of functional modularity 
and structure, and repairs can be 
made easily. 

Sixth, and last, on a large project, 
one of the best investments that can 
be made is the cross edtccation of 
the team so that nearly everyone 
knows more than he or she needs to 
know. Clearly, with educational 
redundancy,  the team is more resil- 
ient to unexpected tragedies or 
departures. But in addition, the 
increased awareness of team mem- 
bers can help catch global or sys- 
temic mistakes early. It really is a 
case of "more heads are better than 
one." 

Finally, I have touched on many 
different themes in this talk but  I 
will single out three: First, the evo- 
lution of technology supports a rich 
future for ambitious visions and 
dreams that will inevitably involve 

complex systems. Second, one must 
always try to learn from past mis- 
takes, but at the same time be alert 
to the possibility that new circum- 
stances require new solutions. And 
third, one must remember  that 
ambitious systems demand a defen- 
sive philosophy of design and im- 
plementation. In other words, 
"Don't w o n d e r / f  some mishap may 
happen, but rather ask what one will 
do about it when it does occur." r'.l 
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