CS162
Operating Systems and
Systems Programming
Lecture 23

Networking ITI

November 19, 2008
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Network Protocols

* Profocol: Agreement between fwo parties as fo how
information”is to be transmitted
- Example: system calls are the protocol between the
operating system and application
- Networking examples: many levels
» Physical level: mechanical and electrical network (e.g. how
are 0 and 1 represented)
» Link level: packet formats/error control (for instance, the
CSMA/CD protocol)
» Network level: network routing, addressing
» Transport Level: reliable message delivery

* Protocols on today's Internet:

ssh

...

...

Physical/Link Ethernet ATM Packet radio

11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22.2

Review: IP Packet Format

- IP Packet Format:

IP Header Size of datagram
Length (header+data)
15 16 J 31

0
IPVerd — 57 JTIHL| ToS Total length(16-bits)
Time + 16-bit identification |flags| 13-bit frag off
Livlem(eho °s)\> TTL __l» protocol [16-bit header checksum
P ~ 32-bit source IP address
Type of _~ 32-bit destination IP address
transport~” g options (if any)
protocol <
Data

J'

11/17/08 Kubiatowicz CS162 ©UCB Fall 2008

Flags &
Fragmentation
to split large

messages

IP header
20 bytes

Lec 22.3

Goals for Today

* Networking
- Continue discussion of reliable messaging
- Sequence numbers for ordering
- Acknowledgments for reliability
*+ TCP windowing
+ Sockets
* Messages
- Send/receive
- One vs. two-way communication

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22.4

Performance Considerations

- Before we continue, need some performance metrics
- Overhead: CPU time to put packet on wire
- Throughput: Maximum number of bytes per second
» Depends on “wire speed”, but limited by slowest router or by congestion
- Latency: time until first bit of packet arrives at receiver
» Raw transfer time + overhead at each routing hop

+ Contributions to Latency
- Wire latency: depends on speed of light on wire
» about 1-1.5 ns/foot
- Router latency: depends on internals of router
» Could be < 1 ms (for a good router)
» Question: can router handle full wire throughput?
* What is the End-to-end MTU? Minimum across path
* What is the End-to-end Throughput? Minimum across path

11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22.5

Sample Computations

. E.gt: Ethernet within Soda
-Latency: speed of light in wire is 1.5ns/foot, which
implies latency in building < 1 ps (if no routers in path)
- Throughput: 10-1000Mb/s
- Thr'ougl;\‘put delay: packet doesn't arrive until all bits
» So: 4KB/100Mb/s = 0.3 milliseconds (same order as disk!)
. E.gt: ATM within Soda
- afencm (same as above, assuming no routing)
- Throughput: 155Mb/s
- Thr'oq?;\xut delay: 4KB/155Mb/s = 200y
. E.q—.: ATM cross-country
-Latency (assuming no routing):
» 3000miles * 5000ft/mile = 15 milliseconds
- How many bits could be in transit at same time?
» 15ms * 155Mb/s = 290KB
- In fact, Berkeley—>MIT Latency ~ 45ms
» 872KB in flight if routers have wire-speed throughput
* Requirements for good performance:
- Local area: minimize overhead/improve bandwidth
- Wide area: keep pipeline fulll
Wwid keep pipeline full!

11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22.6

Sequence Numbers

* Ordered Messages
- Several network services are best constructed by
ordered messaging
» Ask remote machine to first do x, then do y, etc.
- Unfortunately, underlying network is packet based:
» Packets are routed one at a time through the network
» Can take different paths or be delayed individually
- IP can reorder packets! P,,P; might arrive as P,,P,
+ Solution requires queuing at destination
- Need to hold onto packets to undo misordering
- Total degree of reordering impacts queue size
*+ Ordered messages on top of unordered ones:
- Assign seguence numbers to packets
»0,1,2,3,4....
» If packets arrive out of order, reorder before delivering to
user application
» For instance, hold onto #3 until #2 arrives, etc.
- Sequence numbers are specific to particular connection
» Reordering among connections normally doesn't matter
- If restart connection, need to make sure use different

range of sequence numbers than dpr'eviously...
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22.7

Reliable Message Delivery: the Problem

+ All physical networks can garble and/or drop packets
- Physical media: packet not transmitted/received

» If transmit close to maximum rate, get more throughput -
even if some packets get lost

» If transmit at lowest voltage such that error correction just
starts correcting errors, get best power/bit

- Congestion: no place to put incoming packet
» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver
can process?
+ Reliable Message Delivery on top of Unreliable Packets
- Need some way to make sure that packets actually make
it to receiver
» Every packet received at least once
» Every packet received at most once
- Can combine with ordering: every packet received by
process at destination exactly once and in order
11/17/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 22.8

Using Acknowledgements

7Y s— AC_——J8

Packey = (R Acket
> Timeout { e

+ How to ensure transmission of packets?
- Detect garbling at receiver via checksum, discard if bad
- Receiver acknowledges (by sending “ack") when packet
received properly at destination
- Timeout at sender: if no ack, retransmit
+ Some questions:
- If the sender doesn't get an ack, does that mean the
receiver didn't get the original message?
» No
- What if ack gets dropped? Or if message gets delayed?

» Sender doesn't Eet ack, retransmits. Receiver gets message

twice, acks eac
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22.9

How to deal with message duplication
Solufion: put sequence number in message To idenfify

re-transmitted packets

- Receiver checks for duplicate #'s; Discard if detected

Requirements:
- Sender keeps copy of unack'ed messages
» Easy: only need to buffer messages
- Receiver tracks possible duplicate messages

» Hard: when ok to forget about received message?

+ Alternating-bit protocol:

- Send one message at a time; don't send
next message until ack received
- Sender keeps last message: receiver
tracks sequence # of last message received
Pros: simple, small overhead
Con: Poor performance
- Wire can hold multiple messages; want to
fill up at (wire latency x throughput)
Con: doesn't work if network can delay
or duplicate messages arbitrarily
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008

AIP:IB

3

y #1

Ak E

i

Lec 22.10

Better messaging: Window-based acknowledgements

+ Window based protocol:
- Send up to N packets without ack
» Allows pipelining of packets N=5
» Window size (N) < queue at destination
- Each packet has sequence number
» Receiver acknowledges each packet
» Ack says “receivedall packets up
to sequence number X"/send more
* Acks serve dual purpose:
- Reliability: Confirming packet received
- Flow Control: Receiver ready for packet
» Remaining space in queue at receiver
can be returned with ACK
* What if packet gets garbled/dropped?
- Sender will timeout waiting for ack packet
» Resend missing packets=> Receiver gets packets out of order!
- Should receiver discard packets that arrive out of order?
» Simple, but poor performance
- Alternative: Keep copy until sender fills in missing pieces?
» Reduces # of retransmits, but more complex
* What if ack gets garbled/dropped?

- Timeout and resend just the un-acknowledged packets
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22

11

Administrivia

* Projects:

- Project 4 design document due Monday, November 24th

* MIDTERM II: Wednesday Dec 3rd
- Location: 10 Evans, 5:30pm - 8:30pm
- Topics:

» All material from last midterm and up to Monday 12/1

» Lectures #13 - 26
» One cheat sheet (both sides)
* Final Exam
- Thursday, Dec 18th, 8:00-11:00am

- Topics: All Material except last lecture (freebie)

- Two Cheat sheets.
* Final Topics: Any suggestions?
- Please send them to me...

11/17/08 Kubiatowicz CS162 ©UCB Fall 2008

Lec 22.12

Transmission Control Protocol (TCP)

Stream in: N\ N\ Stream out:
zyxwvutd | (Router) (Router) | [afedcba>
_ _

+ Transmission Control Protocol (TCP)
- TCP (IP Protocol 6) layered on top of IP
- Reliable byte stream between two processes on different
machines over Internet (read, write, flush)
* TCP Details
- Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself
- Uses window-based acknowledgement protocol (o minimize
state at sender and receiver)
» "Window" reflects storage at receiver - sender shouldn’t
overrun receiver's buffer space
» Also, window should reflect speed/capacity of network -
sender shouldn't overload network
- Automatically retransmits lost packets
- Adjusts rate of transmission to avoid congestion

» A “good citizen”
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22.13

TCP Windows and Sequence Numbers

—>Sequence Numbers

Sent Sent Not yet R } Sender

acked not acked sent

Given to app| Buffered received

Received Received Not yet
g Receiver

+ Sender has three regions:
- Sequence regions
» sent and ack'ed
» Sent and not ack'ed
» not yet sent
- Window (colored region) adjusted by sender
* Receiver has three regions:
- Sequence regions
» received and ack’'ed (given to application)
» received and buffered

» not yet received (or discarded because out of order
11/17/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 22.14

Window-Based Acknowledgements (TCP)

100 140 190 230 260 300 340 380 400
wn v wn v vl v n v n v |ln O
N 8 N 8 NS INS|I NS | NS | N8 NS
— O .. o .. o .. o -. o -. o .. O < 0 - l——)
..8 a‘._. ..S 6’8 ..3‘) .-8 DY) I.\-’g
S o o 8 3 [« ¥ K=X=) 8 o S o 3 8 (e

Kubiatowicz C5162 ©®UCB Fall 2008

Selective Acknowledgement Option (SACK)

- = T -
>'§ ~SH £~ 5
ot] I 38 g
a4 b ox g]
= el I 4 £ | 4
31Z oo o s
olE w0 a N ol
[E] -~ 3 < :g
10- g
o1 I (1)

TCP Header TCP Header

* Vanilla TCP Acknowledgement
- Every message encodes Sequence number and Ack
- Can include data for forward stream and/or ack for
reverse stream
- Selective Acknowledgement
- Acknowledgement information includes not just one
number, but rather ranges of received packets
- Must be specially negotiated at beginning of TCP setup

» Not widely in use (although in Windows since Windows 98)
11/17/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 22.16

Congestion Avoidance

« Congestion

- How long should timeout be for re-sending messages?
» Too long—»wastes time if message lost

» Too short—retransmit even though ack will arrive shortly
- Stability problem: more congestion = ack is delayed =
unnecessary timeout = more traffic = more congestion

» Closely related to window size at sender: too big means
utting too much data into network

* How does the sender’'s window size get chosen?
- Must be less than receiver's advertised buffer size
- Try to match the rate of sending packets with the rate
that the slowest link can accommodate
- Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver

» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost

* TCP solution: “slow start” (start sending slowly)

- If no timeout, slowly increase window size (throughput)
by 1 for each ack received

- Timeout = congestion, so cut window size in half
1117705 AdEIive Incregse, Mutiplicalive, Resrease

Lec 22.17

Sequence-Number Initialization

* How do you choose an initial sequence number?
- When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!

» Receiver might end up discarding valid packets, or duplicate
ack from original transmission might hide lost packet

- Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection

- Some ways of choosing an initial sequence number:
- Time to live: each packet has a deadline.
» If not delivered in X seconds, then is dropped

» Thus, can re-use sequence numbers if wait for all packets
in flight to be delivered or to expire

- Epoch #: uniquely identifies which set of sequence
numbers are currently being used

» Epoch # stored on disk, Put in every message

» Epoch # incremented on crash and/or when run out of
sequence #

- Pseudo-random increment to previous sequence number

» Used by several protocol implementations
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008

Lec 22.18

Use of TCP: Sockets

* Socket: an abstraction of a network I/O queue
- Embodies one side of a communication channel
» Same interface regardless of location of other end

» Could be local machine s::alled “"UNIX socket”) or remote
machine (called "network socket”)

- First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket
+ Using Sockets for Client-Server (C/C++ interface):
- On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming
connection request
» Each successful accept() returns a new socket for a new
connection; can pass this off to handler thread
- On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

11/17/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 22.19

Socket Setup (Con't)

* Things to remember:

- Connection requires 5 values:
[Src Addr, Src Port, Dst Addr, Dst Port, Protocol]
- Often, Src Port “randomly” assigned
» Done by OS during client socket setup
- Dst Port often “well known"”

» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

11/17/08 Kubiatowicz CS162 ©UCB Fall 2008

Lec 22.20

Socket Example (Java)

server:
//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket(6013);
while(true) {
Socket client = sock.accept();
PrintWriter pout = new
PrintWriter(client.getOutputStream(),true);

pout._println(“Here is data sent to client!”);

cliént.close();

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(“169.229.60.387,6013);
BufferedReader bin =
new BufferedReader(
new InputStreamReader(sock.getlnputStream));
String line;
while ((lIine = bin.readLine(Q))!=null)
System.out.printin(line);
sock.close();
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22.21

Distributed Applications

* How do you actually program a distributed application?
- Need to synchronize multiple threads, running on
different machines
» No shared memory, so cannot use test&set

P S w § P
<= s >

=
- One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and
two receivers cannot get same message
+ Interface:
- Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue
— Send(message, mbox)
» Send message to remote mailbox identified by mbox
—Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return

» If threads sleeping on this mbox, wake up one of them
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22.22

Using Messages: Send/Receive behavior

- When should send(message,mbox) return?

- When receiver gets message? (i.e. ack received)

- When message is safely buffered on destination?

- Right away, if message is buffered on source node?
* Actually two questions here:

- When can the sender be sure that the receiver actually
received the message?

- When can sender reuse the memory containing message?
* Mailbox provides 1-way communication from T1-5T2
- T1obuffer»T2

- Very similar to producer/consumer
» Send = V, Receive = P
» However, can't tell if sender/receiver is local or not!

11/17/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 22.23

Messaging for Producer-Consumer Style

+ Using send/receive for producer-consumer style:
Producer: [1000]
int msgl[1l ;
prepare message; Message
send(msgl,mbox) ;

Consumer:
int buffer[1000];

while(1) { :
receive(buffer,mbox);
3 process message; Message

* No need for producer/consumer to keep track of space
in mailbox: handled by send/receive

- One of the roles of the window in TCP: window is size of
buffer on far end

- Restricts sender to forward only what will fit in buffer

11/17/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 22.24

Messaging for Request/Response communication

* What about two-way communication?
- Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server
- Also called: client-server
» Client = requester, Server = responder
» Server provides “service” (file storage) to the client

+ Example: File service
Client: (requesting the file) ReQPeS*
char response[1000]; File
send(“read rutabaga”, server_mbox);
receive(response, client_mbox); Get
Consumer: (responding with the file)
char command[1000], answer[1000];

receive(command, server_mbox); Receive
decode command; Request

read file into answer;

send(answer, client_mbox); Send
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Response 2225

General's Paradox
* General's paradox:
- Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured
- Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win
- Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early
+ Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
- Remarkably, “no”, even if all messages get through

11 am o>

but what if you
\/gg:\'.,r ;eT this ack?

11/17050 way to be sure last message gets throughl

Two-Phase Commit

- Since we can'T solve The General's Paradox (i.e.
simultaneous action), let's solve a related problem
- Distributed transaction: Two machines agree to do
something, or not do it, atomically
+ Two-Phase Commit protocol does this
- Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash
- Prepare Phase:
» The global coordinator requests that all participants will
Bromlse to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its
log and tells everyone to abort; each records “Abort” in log
- Commit Phase:
» After all participants respond that they are prepared, then
the coordinator writes “Commit” to its log
» Then asks all nodes to commit: they respond with ack
» After receive acks, coordinator writes ““Got Commit” to log
- Log can be used to complete this process such that all
machines either commit or don't commit

11/17/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 22.27

Two phase commit example

. Simﬁle Example: A=WellsFargo Bank, B=Bank of America
- Phase 1: Prepare Phase
» A writes “Begin transaction” to log
A—B: OK to transfer funds to me?
» Not enough funds:
B—A: fransaction aborted; A writes “Abort” to log
» Enoagh funds:
B: Write new account balance & promise to commit to log
B—A: OK, I can commit
- Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to lo
* What if B crashes at begmnmﬁ?
- Wakes up, does nothing:” A will timeout, abort and retry
* What if A crashes at beginning of phase 2?
- Wakes up, sees that there is a transaction in progress;
sends “Abort” to B o
* What if B crashes at beginning of phase 2?)
- B comes back up, looks at log;” when A sends it “Commit”

message, it will say, “"oh, ok, commit”
11/17/08 Kubidtowicz €$162 SUCB Fall 2008 Lec 22.28

Distributed Decision Making Discussion

+ Why is disfribufed decision making desirable?
- Fault Tolerance!
- A group of machines can come to a decision even if one or
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)
- After decision made, result recorded in multiple places
* Undesirable feature of Two-Phase Commit: Blocking
- One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its lo

sends a “yes” vote to the coordinator (site A) and crag';es
» Site A crashes

» Site B wakes up, check its Io?, and realizes that it has
voted "yes"” on the update. If sends a message to site A
asking what happened. At this point, B cannot decide to
aborf, because update may have committed
» B is blocked until A comes back
- A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update
- Alfernative: There are alternatives such as "Three
Phase Commit” which don't have this blocking problem
* What happens if one or more of the nodes is malicious?

- Malicious: attempting to com(;aromise the decision makin
11/17/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 22.29

Byzantine General's Problem

Lieutenant

g
‘%a\cA\

Retreat!
Attack!

s eo‘\\.

w ==

) Lieutenant
General |

- Re “‘
) |
Malicious! “‘ Lieutenant

* Byazantine General's Problem (n players):
- One General
- n-1 Lieutenants
- Some number of these (f) can be insane or malicious
+ The commanding general must send an order to his n-1
lieutenants suc at:
- IC1: All loyal lieutenants obey the same order
- IC2: If the commanding general is loyal, then all loyal

lieutenants obex the order he sends
11/17/08 ubiatowicz €CS162 ©UCB Fall 2008 Lec 22.30

Byzantine General’'s Problem (con't)

+ Impossibility Results:
- Cannot solve Byzantine General's Problem with n=3
because one malicious player can mess up things

- With f faults, need n > 3f to solve problem
* Various algorithms exist to solve problem
- Original algorithm has #messages exponential in n
- Newer algorithms have message complexity O(n?)
» One from MIT, for instance (Castro and Liskov, 1999)
* Use of BFT (Byzantine Fault Tolerance) algorithm
- Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

OO0

Request—» Jisfr‘i.bgfed
9 OO Decision
11/17/08 Ku| hll 2008 Lec 22.31

Conclusion

* Ordered messages:
- Use sequence numbers and reorder at destination
* Reliable messages:
- Use Acknowledgements
- Want a window larger than 1 in order to increase throughput

 TCP: Reliable byte stream between two processes on different
machines over Internet (read, write, flush)

- Uses window-based acknowledgement protocol

- Congestion-avoidance dynamically adapts sender window to
account for congestion in network

+ Two-phase commit: distributed decision making

- First, make sure everyone guarantees that they will commit if
asked (prepare)

- Next, ask everyone to commit

* Byzantine General's Problem: distributed decision making with

malicious failures
- One general, n-1 lieutenants: some number of them may be
malicious (often “f" of them)
- All non-malicious lieutenants must come to same decision
- If general not malicious, lieutenants must follow general

11/17/@nly solvable if n 2 3f+1 .. . oucs Fail 2008 Lec 22.32

