Cs162
Operating Systems and
Systems Programming
Lecture 27

Protection and Security II,
ManyCore Operating Systems

December 8, 2008
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Public Key Encryption Details

* Idea: public

. rivate
Insecure Channef

Alice Insecure Channel Bob

+ Gives message privacy (restricted receiver):
- Public keys can be acquired by anyone/used by anyone
- Only person with private key can decrypt message
* What about authentication?
- Alice—»>Bob: [(I'm Alice)*rrivate Rest of message]®rublic
- Provides restricted sender and receiver
+ Suppose we want X to sign message M?
- Use private key to encrypt the digest, i.e. H(M)Xprivate
- Send both M and its signature:
» Signed message = [M,H(M)*private]
- Now, anyone can verify that M was signed by X
» Simply decrypt the digest with X
12/08/08 > Verify that resylt.matches,HEMIe rai 2008 Lec 27.2

Goals for Today

* Use of Cryptographic Mechanisms
- Authorization Mechanisms
- Worms and Viruses

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Also, slides on Taint Tracking adapted from Nickolai Zeldovich

12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.3

Security through SSL

+ SSL Web Protocol — —_—

- Iaor“l' 41):?_: s‘t(»:cur'e h'l'1'p1_ \ __n.cert, |
- Use public-key encryption ks
for key-distri ution’? < oz ms)e |

+ Server has a certificate signed by certificate authority
- Contains server info (organization, IP address, etc)
- Also contains server's public key and expiration date
+ Establishment of Shared, 48-byte "master secret”
- Client sends 28-byte random value n, to server
- Server returns its own 28-byte random value n_, plus its
certificate cert,
- Client verifies certificate by checking with public key of
certificate authority compiled into browser
» Also check expiration date
- Client picks 46-byte “premaster” secret (pms), encrypts
it with public key of server, and sends to server
- Now, both server and client have n_, n,, and pms
» Each can compute 48-byte master secret using one-way
and collision-resistant function on three values

» Random “nonces” n_ and n, make sure master secret fresh
12/08/08 Kubiatowicz C5162 ©UCB Fall 2008 Lec 27.4

Recall: Authorization: Who Can Do What?

- How do we decide who is authorized [~ .= 1 |
to do actions in the system? o | R B A | e
+ Access Control Maftrix: contains - - :
all permissions in the system P ™| e
- Resources across top b, | o
» Files, Devices, etc... T e
- Domains in COIUmns 0 | | read | execule
» A domain might be a user or a | i ot

group of permissions
» E.g. above: User D; can read F, or execute F;
- In practice, table would be huge and sparsel!
+ Two approaches to implementation
- Access Control Lists: store Fermissions with each object
» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users
and permissions for each group
- Capability List: each process tracks objects has
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has
access to, not each page has list of processes ..
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.5

How fine-grained should access control be?

+ Example of the problem:
- Suppose you buy a copy of a new game from "Joe's Game
World” and then run it.
- It's running with your userid
» It removes all the files you own, including the project due
the next day...
* How can you prevent this?
- Have to run the program under some userid.
» Could create a second games userid for the user, which
has no write privileges.
» Like the “nobody” userid in UNIX - can't do much
- But what if the game needs to write out a file recording
scores?
» Would need to give write privileges to one particular file
(or directory) to your games userid.
- But what about non-game programs you want to use,
such as Quicken?
» Now you need to create your own private quicken userid, if
you want to make sure tha the copy of Quicken you bought
can't corrupt non-quicken-related f)zles

- But - how to get this right??? Pretty complex...
12/08/08 Kubiatowicz 5162 ©UCB Fall 2008 Lec 27.6

Authorization Continued

* Principle of least privilege: programs, users, and
sKsTems should get only enough privileges to perform
their tasks

- Very hard to do in practice

» How do you figure out what the minimum set of privileges
is needed to run your programs?

- People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows
* One solution: Signed Software

- Only use software from sources that you trust, thereby

dealing with the problem by means of authentication
- Fine for big, established firms such as Microsoft, since
they can make their signing keys well known and people
trust them
» Actually, not always fine: recently, one of Microsoft's
sighing ke¥s was compromised, leading to malicious
software that looked valid
- What about new startups?
» Who “validates” them?
» How easy is it to fool them?
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.7

How to perform Authorization for Distributed Systems?

Different
Authorization
Domains

* Issues: Are all user names in world unique?
- No! They only have small number of characters

» kubi@mit.edu — kubitron@Ics.mit.edu —»
kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu
and I got very private email intended for someone else...
- Need something better, more unique to identify person
* Suppose want to connect with any server at any time?
- Need an account on every machine! (possibly with
different user name for each account)
- OR: Need to use something more universal as identity
» Public Keys! (Called "Principles”)

» People are their public keys
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.8

Distributed Access Control
Access Control List (ACL) for X:

File X

Owner Key:
0x22347EF...

ACL verifier
ash, Timestamp, JR: Key: Ox546DFEFA34..
Signature (owner)/RW: Key: 0x467D34EF83..
RX: Group Key: OxA2D3498672..

ash, Timestamp,
signafure (gr-oup) Key: 0x6647DBC9AC...

Server 2: Domain 3

- Distributed Access Control List (ACL)
- Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key
- ACLs can be on different servers than data
» Signatures allow us to validate them

» ACLs could even be stored se ara’relg from verifiers
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.9

Analysis of Previous Scheme

* Positive Points:
- Identities checked via signatures and public keys
» Client can't generate re?‘uesf for data unless they have
private key Yo go with their public identi
» Server won't use ACLs not properly signed by owner of file
- No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

* Revocation:
- What if someone steals Your' private key?
» Need to walk through all ACLs with your key and change..!
» This is very expensive
- Better to have unique string identifying you that people
place into ACLs
» Then, ask Certificate Authority to give you a certificate
matching unique string to your current public key
» Client Request: (request + unique ID)‘rrivate; give server
certificate if they ask for it.
» Key compromise=>must distribute “certificate revocation”,
since can't wait for previous certificate to expire.
- What if you remove someone from ACL of a given file?
» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.10

Analysis Continued
* Who signs The dafa?

- Or: How does the client know they are getting valid
data?
- Signed by server?
» What if server compromised? Should client trust server?
- Signed by owner of file?
» Better, but now only owner can update filel
» Pretfty inconvenient!
- Signed by group of servers that accepted latest update?
» If must have signatures from all servers = Safe, but one
bad server can prevent ugdate from happenin
» Instead: ask for a thresho i

Id number of signatures
» Byzantine agreement can help here
* How do you know that data is up-to-date?
- Valid signature only means data is valid older version
- Freshness attack:
» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server
and prevents payroll from seeing latest version of update
- Hard problem
» Needs to be fixed by invalidating old copies or having a

1270808 Trusted group of servers (Byzanfing, Agrement?) ..,

Administrivia

*+ Midterm II: Still grading
- Solutions are up
- Will be back by Wednesday (I hope)
- Final date for regrade requests: Friday (12/12)

 Final Exam
- December 18™,8:00-11:00AM, Bechtel Auditorium

- Covers whole course (except last lecture)
- Two pages of handwritten notes, both sides

* Last Day of Class - Next Wednesday
* Final Topics suggestions (so far). Obviously too many...
- Quantum Computers (and factoring)
- Mobile Operating Systems
- Multicore Systems
- Dragons
- User Sessions
- Power Management
- Data Privacy

- Berkeley OS History
12/08/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 27.12

Involuntary Installation

* What about soffware foaded without your consent?
- Macros attached to documents (such as Microsoft Word)
- Active X controls (programs on web sites with potential
access to whole machine)
- Spyware included with normal products
+ Active X controls can have access to the local machine
- Install software/Launch programs
+ Sony Spyware [Sony XCP] (October 2005)
- About 50 CDs from Sony automatically installed software
when you played them on Windows machines
» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies
and to prevent peer-to-peer sharing
- Side Effects:
» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx: easy for
other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)
- Vendors of virus protection software declare it spyware
» Computer Associates, Symantec, even Microsoft
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.13

Enforcement

+ Enforcer checks passwords, ACLs, etc
- Makes sure the only authorized actions take place
- Bugs in enforcer=things for malicious users to exploit
+ In UNIX, superuser can do anything
- Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work
- If there is a bug in any one of these programs, you lose!
* Paradox
- Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model
- Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right
+ Same argument for Java or C++: What do you make
private vs public?
- Hard to make sure that code is usable but only necessary
modules are public
- Pick something in middle? Get bugs and weak protection!
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.14

State of the World

- State of the World in Security
- Authentication: Encryption
» But almost no one encrypts or has public key identity
- Authorization: Access Control
» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing
- Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole!
- Some types of security problems
- Abuse of privilege
» If the superuser is evil, we're all in trouble/can't do anything
» What if sysor in charge of instructional resources went
crazy and deleted everybody's files (and backups)???
- Imposter: Pretend to be someone else
» Example: in unix, can set up an .rhosts file to allow logins
from one machine to another without retyping passwor
» Allows "rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted
user—install .rhosts file granting you access
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.15

Other Security Problems

* Virus:

- A piece of code that attaches itself to a program or file
so it can spread from one computer to another, leaving
infections as it travels

- Most attached to executable files, so don't get
activated until the file is actually executed

- Once caught, can hide in boot tracks, other files, OS

* Worm:

- Similar to a virus, but capable of traveling on its own

- Takes advantage of file or information transport
features

- Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself

* Trojan Horse:

- Named after huge wooden horse in Greek mythology
given as gift to enemy; contained army insid)é

- At first glance appears to be useful software but does
damage once installed or run on your computer

12/08/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 27.16

Security Problems: Buffer-overflow Condition

#define BUFFER SIZE 256

int process(int argc,
char *argv[])

retum address address of modified
sheil code

{ saved frame painter ‘

char buffer[BUFFER SI1ZE];

NO 0P

buller{BUFFER_SIZE - 1)

if (argc < 2)

return -1;
else { butter(1) modified shell code
strcpy(buffer,argv[1l]);
return O; bufler(0)) L
}
} Before attack After attack

* Technique exploited by many network attacks
- Anytime input comes from network request and is not
checked for size
- Allows execution of code with same privileges as running
program - but happens without any action from user!
* How to prevent?
- Don't code this way! (ok, wishful thinking)
- New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don't execute code in this page”
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.17

The Morris Internet Worm

* Internet worm (Self-reproducing)
- Author Robert Morris, a first-year Cornell grad student
- Launched close of Workday on November 2, 1988

- Within a few hours of release, it consumed resources to
the point of bringing down infected machines

rsh attack

worm 5o
worm worm

*+ Techniques [zoosen
- Exploited UNIX networking features (remote access)

- Bugs in fil?er (buffer overflow) and sendmail programs
(debug mode allowed remote login)

- Dictionary lookup-based password cracking

- 6rappling hook program uploaded main worm program
12/08/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 27.18

Some other Attacks

*+ Trojan Horse Example: Fake Login
- Construct a program that looks like normal login program
- Gives "login:” and “password:“ prompts
» You type information, it sends password to someone, then
either logs you in or says “"Permission Denied” and exits

- In Windows, the “ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “know" that you are
getting official login program

+ Salami attack: Slicing things a little at a time
- Steal or corrupt something a little bit at a time
- E.g.: What happens to partial pennies from bank interest?
» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.
» Doesn't seem like much, but if you are large bank can be
millions of dollars
- Eavesdropping attack

- Tap into network and see everything typed

- Catch passwords, etc

- Lesson: never use unencrypted communication!

12/08/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 27.19

Timing Attacks: Tenex Password Checking

* Tenex - early 70's, BBN
- Most popular system at universities before UNIX

- Thought to be very secure, gave “red team” all the
source code and documentation (want code to be
publicly available, as in UNIX)

- In 48 hours, they figured out how to get every
password in the system

* Here's the code for the password check:
for (i = 0; 1 < 8; i++)
ifT (userPasswd[i] !'= realPasswd[i])
go to error

* How many combinations of passwords?
- 2568?
- Wrong!

12/08/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 27.20

Defeating Password Checking

+ Tenex used VM, and it interacts badly with the above code

- Key idea: force page faults at inopportune times to break
passwords quickly
* Arrange 15" char in string to be last char in pg, rest on next pg

- Then arrange for pg with 1s* char to be in memory, and rest
to be on disk (e.g., ref lots of other pgs, then ref 15t page)

alaaaaaa
I
page in memory| page on disk
+ Time password check to determine if first character is correct!
- If fast, 1s' char is wrong
- If slow, 15t char is right, pg fault, one of the others wrong
- So try all first characters, until one is slow
- Repeat with first two characters in memory, rest on disk
* Only 256 * 8 attempts to crack passwords

- Fix is easy, don't stop until you look at all the characters
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.21

Protecting Information with Taint Tracking

* How can we prevent the illegal flow of information?
- Consider Virus Scanner that scans your private files
» Example from Nickolai Zeldovich
- What is to prevent a buggy scanner from leaking info?

Update
Process

Virus
Checker /
UserFiles Database
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008

Possible avenues of leakage (MANY!)

* Possible ways of giving out private information:
- Buggy Scanner gives out private info to update process
- Leaks info through file system (or other file systems!)
- Leaking info by setting title of process.. Etc.

(p

ProcTitle:
“Secret”

Update
Process

r /
Private Virus
UserFiles /tmp Database

12/08/08 Kubiatowicz CS162 ©UCB Fall 2008

What is problem/Solution

kil

Unix
Library

Unix
Kernel

Hardware Hardware

+ Kernel not designed to enforce these policies

* Retrofitting difficult:
- Must track any memory observed or modified by a system call!
- Hard to even enumerate all possible channels

+ Answer: Make all state explicit, track all communication
- Example: Asbestos (MIT), HiStar (Stanford)

+ Think of all data, threads, files, etc having a “Label”

- Like a color; track colors through system, don't allow colors to
“bleed” incorrectly into places they are not supposed to

12/08/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 27.24

Simple Taint Tracking Example

* Give a particular Label

to every Thread »‘.’_‘_':‘;e(ﬁ'e’,-'
- Propagate this label e
to all"data modified L | File Thread B
by the thread
- Allow accesses only if write(File)
accessing thread hasa ¥
compatible Label Tainted e -
- Deny access is labels | TreadA|
do not match e
. e
* Question: Where do Ny
labels come from? S :
| ;
- New Labels may be ThreadA — | l° Hhread B
allocated dynamically
by ap?s. (1Y ” mm’ k
- No privileged “root) A
Toeman —> Fie
12/08/08 Kubiatowicz €S1

Strawman has Covert Channel

‘read(File 0)
|_read(File 1)
Uiy J

A 4 il
Thread B | Network

(. Secret=1. 7

_
- ‘.a o

- Still possible to leak information by reflecting bits
through failure
- In example, Thread B finds out that secret is "1”
because unable to read from File 1
+ One fix to this covert channel: don't allow labels to
change (i.e. must already exist, never propagated)

- HiStar (Stanford) takes this aprr'oach
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.26

Asbestos Labels and Taint Tracking

* Labels are sets of pairs of (category, Level)
- Category like “color” in previous examples
- 50, Lx={ (h1:|1): (thIZ): Idefuul*}
» Notation: L,(a) = level of handle a in L, or default
» They form a partial order: L, c L, if Vh, L;(h) < L,(h)
- Any active component of system can allocate new categories
» Could produce data that root cannot access
+ Each entity (thread, file, socket,..) has send and receive label
- Send level called “contamination”.
» All outgoing messages tagged with send level of sender.
- Receive level is max contamination allowed
+ Communication from entity A to B allowed if A, c B,
- After received, B:=B, U A,
» Received message increases contamination level of receiving entity
- Asbestos has special "*" level (the declassifier)

» Person with * in a categorz can declassify information tagged with
that category and give it fo anyone

» They can also read any information

12/08/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 27.27

“"Owner” privilege

* Yellow objects can only interact with other yellow

objects, or objects with yellow star Ao
: Y
/ Network J
e
ice's’ irus & L Al
AI ICe S\\—ﬁ/l Vl rus === 1§ Allce S
Files Scanner ' shell

+ Small, trusted shell can isolate a large, frequently-
changing virus scanner

- Try to reduce size of trusted code base
* Label checker is most trusted code and must be very
carefully verified

12/08/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 27.28

Multiple categories of taint

L] =]

Bob's ® Virus © Bob's
Files Scanner shell

v i \
,:-f"'\ Network
AI 1 (if\‘:“-} V |Kr\\‘\\| \"r\'("AI' 1 -)

ice's irus - - Alice's

Files Scanner shell

* Owner privilege and information flow control are
the only access control mechanism

* Anyone can allocate a new category, gets star

12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.29

J

ManyCore Chips: The future is here (for EVERYONE)
+ Intel 80-core multicore chip (Feb 2007)

- 80 simple cores

- Two floating point engines /core
- Mesh-like "network-on-a-chip"
- 100 million transistors

- 65nm feature size

* “"ManyCore"” refers to many processors/chip
- 64? 128? Hard to say exact boundary
* Question: How can ManyCore change our view of OSs?
- ManyCore is a challenge
» Need to be able to take advantage of parallelism
» Must utilize many processors somehow
- ManyCore is an opportunity
» Manufacturers are desperate to figure out how to program
» Willing to change many things: hardware, software, etc.
- Can we improve: security, responsiveness, programmability?
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.30

Important New Mechanism: Spatial Partitioning

- Spatial Partition: group of processors acting within
hardware boundary
- Boundaries are “hard”, communication between partitions controlled
- Anything goes within partition
+ Each Partition receives a vector of resources
- Some number of dedicated processors
- Some set of dedicated resources (exclusive access)

» Complete access to certain hardware devices
» Dedicated raw storage partition

- Some guaranteed fraction of other resources (QoS guarantee):
» Memory bandwidth, Network bandwidth
» fractional services from other partitions

2/4%¥ Idea: Resourge,lsplation, BetwegnoBartitions Lec 27.31

Tessellation: The Exploded OS
Normal Components split
into pieces
- Device_drivers
(Security/Reliability)

900000

Froval

Large Complute-Bound Gty) E‘&Zﬁ?ﬁ%’;ﬁig‘fg
O @@@@ . i Fir‘ewallsmc

7 y—
(13
;%

(Adapt)

ideo &

Vindow

» Virus Checking
» Intrusion Detection
- Persistent Storage
Performance,
ecurity, Reliability)
- Monitoring services
» Performance counters
» Introspection
- Identity/Environment
services (Security)
» Biometric, GPS,
Possession Tracking
Applications_Given
ol Larger Partitions
i - Freedom to use
12/08/08 Kubiatowicz C5162 ©UCB Fall 2008 resources arbitrarily

000000
(O Ceatfimd

OS as Distributed System

)
&ecure | ! alanced
ant Gang
Secure ..
(1) Secp
Qg
4Q Individual

Device
Drivers

Use lessons from from Large Distributed Systems Partition

- Like Peer-to-Peer on chip
- OS is a set of independent interacting components
- Shared state across components minimized
Component-based design:
- All applications designed with pieces from many sources
- Requires composition: Performance, Interfaces, Security
Spatial Partitioning Advantages:
- Protection of computing resources rnot reguired within partition
» High walls between partitions = anything goes within partition
» “Bare Metal” access to hardware resources
- Partitions exist simultaneously = fast communication between domains
» Applications split into distrusting partitions w/ controlled communication
» Hardware acceleration/tagging for fast secure messaging
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.33

It's all about the communication

* We are interested in communication for many reasons:
- Communication represents a security vulnerability
- Quality of Service (QoS) boils down message tracking
- Communication efficiency impacts decomposability

+ Shared components complicate resource isolation:

- Need distributed mechanism for tracking and accounting
of resource usage

» E.g.: How do we guarantee that each partition gets a
guaranteed fraction of the service:

Application A ::

Shared File Service

Application B ::

12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.34

Space-Time Partitioning
1 e
DU N (N
N~
N

aoeds
[L]

Sp, Qcg

Spatial Partitioning Varies over Time
- Partitioning adapts to needs of the system
- Some partitions persist, others change with time
- Further, Partititions can be Time Multiplexed
» Services (i.e. file system), device drivers, hard realtime
partitions
» Some user-level schedulers will time-multiplex threads within a
partition
Global Partitioning Goals:
- Power-performance tradeoffs
- Setup to achieve QoS and/or Responsiveness guarantees
- Isolation of real-time partitions for better guarantees
* Monitoring and Adaptation
12/08/08Integration of perfermance/powerfefficiency countersi.c 27.35

Another Look: Two-Level Scheduling

FirsT Level: Gross parfitioning of resources
- Goals: Power Budget, Overall Responsiveness/QoS, Security
- Partitioning of CPUs, Memory, Interrupts, Devices, other
resources
- Constant for sufficient period of time to:
» Amortize cost of global decision making
» Allow time for partition-level scheduling to be effective
- Hard boundaries = interference-free use of resources
- Second Level: Application-Specific Scheduling
- Goals: Performance, Real-time Behavior, Responsiveness,
Predictability
- CPU scheduling tuned to specific applications
- Resources distributed in application-specific fashion
- External events (I/0, active messages, etc) deferrable as
appropriate
Justifications for two-level scheduling?
- Global/cross-app decisions made by 1s' level
» E.g. Save power by focusing I/0 handling to smaller # of cores
- App-scheduler (2" level) better tuned to application
» Lower overhead/better match to app than global scheduler

» No global scheduler could handle all apglicaﬁons
12/08/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 27.36

Tessellation Partition Manager

Achieving Responsiveness & Agility

Place time-critical components in their own partition
- E.g.: User Interface Components, Jitter-critical applications

Application . .
bp - User-level scheduler tuned for deadline scheduling
Scheduling Grouping of external events to handle in next partition time slice
Resource Partition Constraints - Achieving regularity (low standard deviation of behavior) more
Queries/Request: Resizing (Real-Time, Priority) lmﬁorfa_n'l' than lowest latency for many types of real-time
ESTEURINIVIRRNINE 20000 ISRV ST scheduling
: Partition Space Scheduling Time Schedulin = - Removes interrupt overhead (replaces it with polling)
! Management Partition Scheduler = o Pre-compose partition configurations
i Layer alieealalm — ® a - Quick start of partitions in response to I/O events or real-time
2 5 Partiti _Z7 15N P c?:ﬂ:’ triggers
= j Partition RTINS P! == Judicious use of Speculation
c X i Mechanism _~ , N NN I =
< QO : Layer - ’ ! v SOs ha S - Basic variant of the checkpointing mechanism to fork execution
= V- y o ¥ R W W | - When long-latency operations intervene, generate speculative
o © Interconnect | . . [IPhysical || ., , | Performance partition
S c Bandwidth Memory Counters » Can track speculative state through different
o ° Hardware Partitioning Mechanisms partitions/processes/etc
wF 9 » Can be use to improve I/0 speed, interaction with services, etc
12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.37 12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.38
Conclusion

What about faults?

Ignoring hardware and software failure is not an option!
- Increased number of cores => increased failure rate

- High software complexity because of parallelism
Goal: Fast Restart of Partition after failed hardware or software
Basic techniques: Checkpointing and Versioning with Detection
- Providing automatic generation of stable restore points
» Periodic generation of checkpoints (basic)
» Framework (or application?) initiated checkpoints (more
conservative
- Detecting when errors have occurred
» Low level errors (ECC, other failures)
» Framework-level checking of correctness signatures:
still research topic
» Duplicate computation with online checking? (power intensive)
Crash and Restart API to Productivity and Efficiency layers
- Will allow application to say when to checkpoint and when to restart
All centralized data structures versioned/transaction based?
- Always possible to back out ("Undo”) bad modification
- Goal: allow components (such as device drivers) to crash and restart

- File System (and "Object Storage”) versioned
12/08/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 27.39

Distributed identity
- Use cryptography (Public Key, Signed by PKI)
Use of Public Key Encryption to get Session Key

- Can send encrypted random values to server, now share
secret with server

- Used in SSL, for instance
Authorization

- Abstract table of users (or domains) vs permissions

- Implemented either as access-control list or capability list
Issues with distributed storage example

- Revocation: How to remove permissions from someone?

- Integrity: How to know whether data is valid

- Freshness: How to know whether data is recent
Buffer-Overrun Attack: exploit bug to execute code

Taint Tracking
- Track flow of information

- Protect data rather than processes
12/08/08 Kubiatowicz €S5162 ©UCB Fall 2008 Lec 27.40

Conclusion (Con't)

ManyCore: the future is herel!

Tessellation Goals: RAPPidS irus
@ ;
- Responsiveness, Agility, Gkl G\ &g@

Power-Efficiency, Persistence, Security O OTTOQC

- User experience, real-time behavior,
efficient use of resources

Spatial Partitioning: grouping processors
& resources behind hardware boundary

- Two-level scheduling
1) Global Distribution of resources
2) Application-Specific scheduling of resources

- Bare Metal Execution within partition

- Composable performance, security, QoS

Tessellation OS

- Exploded OS: spatially partitioned, interacting services

irewal

12/08/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 27.41

