
CS162
Operating Systems and
Systems Programming

Lecture 27

Protection and Security II,
ManyCore Operating Systems

December 8, 2008
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 27.212/08/08 Kubiatowicz CS162 ©UCB Fall 2008

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys can be acquired by anyone/used by anyone
– Only person with private key can decrypt message

• What about authentication?
– Alice→Bob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• Suppose we want X to sign message M?
– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature:
» Signed message = [M,H(M)Xprivate]

– Now, anyone can verify that M was signed by X
» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

Bprivate
Aprivate

Review: Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Lec 27.312/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Goals for Today

• Use of Cryptographic Mechanisms
• Authorization Mechanisms
• Worms and Viruses

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Also, slides on Taint Tracking adapted from Nickolai Zeldovich

Lec 27.412/08/08 Kubiatowicz CS162 ©UCB Fall 2008

(pms)Ks

• SSL Web Protocol
– Port 443: secure http
– Use public-key encryption
for key-distribution

• Server has a certificate signed by certificate authority
– Contains server info (organization, IP address, etc)
– Also contains server’s public key and expiration date

• Establishment of Shared, 48-byte “master secret”
– Client sends 28-byte random value nc to server
– Server returns its own 28-byte random value ns, plus its certificate certs
– Client verifies certificate by checking with public key of
certificate authority compiled into browser
» Also check expiration date

– Client picks 46-byte “premaster” secret (pms), encrypts
it with public key of server, and sends to server

– Now, both server and client have nc, ns, and pms
» Each can compute 48-byte master secret using one-way

and collision-resistant function on three values
» Random “nonces” nc and ns make sure master secret fresh

ns,certs

Security through SSL
nc

Lec 27.512/08/08 Kubiatowicz CS162 ©UCB Fall 2008

• How do we decide who is authorized
to do actions in the system?

• Access Control Matrix: contains
all permissions in the system
– Resources across top

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a
group of permissions

» E.g. above: User D3 can read F2 or execute F3
– In practice, table would be huge and sparse!

• Two approaches to implementation
– Access Control Lists: store permissions with each object

» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users

and permissions for each group
– Capability List: each process tracks objects has
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has

access to, not each page has list of processes …

Recall: Authorization: Who Can Do What?

Lec 27.612/08/08 Kubiatowicz CS162 ©UCB Fall 2008

How fine-grained should access control be?
• Example of the problem:

– Suppose you buy a copy of a new game from “Joe’s Game
World” and then run it.

– It’s running with your userid
» It removes all the files you own, including the project due

the next day…
• How can you prevent this?

– Have to run the program under some userid.
» Could create a second games userid for the user, which

has no write privileges.
» Like the “nobody” userid in UNIX – can’t do much

– But what if the game needs to write out a file recording
scores?
» Would need to give write privileges to one particular file

(or directory) to your games userid.
– But what about non-game programs you want to use,
such as Quicken?
» Now you need to create your own private quicken userid, if

you want to make sure tha the copy of Quicken you bought
can’t corrupt non-quicken-related files

– But – how to get this right??? Pretty complex…

Lec 27.712/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Authorization Continued
• Principle of least privilege: programs, users, and

systems should get only enough privileges to perform
their tasks
– Very hard to do in practice

» How do you figure out what the minimum set of privileges
is needed to run your programs?

– People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows

• One solution: Signed Software
– Only use software from sources that you trust, thereby
dealing with the problem by means of authentication

– Fine for big, established firms such as Microsoft, since
they can make their signing keys well known and people
trust them
» Actually, not always fine: recently, one of Microsoft’s

signing keys was compromised, leading to malicious
software that looked valid

– What about new startups?
» Who “validates” them?
» How easy is it to fool them?

Lec 27.812/08/08 Kubiatowicz CS162 ©UCB Fall 2008

How to perform Authorization for Distributed Systems?

• Issues: Are all user names in world unique?
– No! They only have small number of characters

» kubi@mit.edu → kubitron@lcs.mit.edu →
kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu
and I got very private email intended for someone else…

– Need something better, more unique to identify person
• Suppose want to connect with any server at any time?

– Need an account on every machine! (possibly with
different user name for each account)

– OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)
» People are their public keys

Different
Authorization

Domains

Lec 27.912/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Client 1
Domain 1

Distributed Access Control

• Distributed Access Control List (ACL)
– Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

– ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key: 0x22347EF…

File X
Owner Key: 0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW:Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp,
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp,
Signature (group)

(Re
ad

 X
)K
clie

nt

Ke
y:

0x
66

47
DB

C9
AC

…

Re
ad

Gr
ou

p

GA
CL

(da
ta)

Kse
rve

r

Lec 27.1012/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Analysis of Previous Scheme
• Positive Points:

– Identities checked via signatures and public keys
» Client can’t generate request for data unless they have

private key to go with their public identity
» Server won’t use ACLs not properly signed by owner of file

– No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

• Revocation:
– What if someone steals your private key?

» Need to walk through all ACLs with your key and change…!
» This is very expensive

– Better to have unique string identifying you that people
place into ACLs
» Then, ask Certificate Authority to give you a certificate

matching unique string to your current public key
» Client Request: (request + unique ID)Cprivate; give server

certificate if they ask for it.
» Key compromise⇒must distribute “certificate revocation”,

since can’t wait for previous certificate to expire.
– What if you remove someone from ACL of a given file?

» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

Lec 27.1112/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Analysis Continued
• Who signs the data?

– Or: How does the client know they are getting valid
data?

– Signed by server?
» What if server compromised? Should client trust server?

– Signed by owner of file?
» Better, but now only owner can update file!
» Pretty inconvenient!

– Signed by group of servers that accepted latest update?
» If must have signatures from all servers ⇒ Safe, but one

bad server can prevent update from happening
» Instead: ask for a threshold number of signatures
» Byzantine agreement can help here

• How do you know that data is up-to-date?
– Valid signature only means data is valid older version
– Freshness attack:

» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server

and prevents payroll from seeing latest version of update
– Hard problem

» Needs to be fixed by invalidating old copies or having a
trusted group of servers (Byzantine Agrement?) Lec 27.1212/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Administrivia
• Midterm II: Still grading

– Solutions are up
– Will be back by Wednesday (I hope)
– Final date for regrade requests: Friday (12/12)

• Final Exam
– December 18th,8:00-11:00AM, Bechtel Auditorium
– Covers whole course (except last lecture)
– Two pages of handwritten notes, both sides

• Last Day of Class – Next Wednesday
• Final Topics suggestions (so far). Obviously too many…

– Quantum Computers (and factoring)
– Mobile Operating Systems
– Multicore Systems
– Dragons
– User Sessions
– Power Management
– Data Privacy
– Berkeley OS History

Lec 27.1312/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Involuntary Installation
• What about software loaded without your consent?

– Macros attached to documents (such as Microsoft Word)
– Active X controls (programs on web sites with potential
access to whole machine)

– Spyware included with normal products
• Active X controls can have access to the local machine

– Install software/Launch programs
• Sony Spyware [Sony XCP] (October 2005)

– About 50 CDs from Sony automatically installed software
when you played them on Windows machines
» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies

and to prevent peer-to-peer sharing
– Side Effects:

» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx; easy for

other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)

– Vendors of virus protection software declare it spyware
» Computer Associates, Symantec, even Microsoft

Lec 27.1412/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Enforcement
• Enforcer checks passwords, ACLs, etc

– Makes sure the only authorized actions take place
– Bugs in enforcer⇒things for malicious users to exploit

• In UNIX, superuser can do anything
– Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work

– If there is a bug in any one of these programs, you lose!
• Paradox

– Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model

– Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right

• Same argument for Java or C++: What do you make
private vs public?
– Hard to make sure that code is usable but only necessary
modules are public

– Pick something in middle? Get bugs and weak protection!

Lec 27.1512/08/08 Kubiatowicz CS162 ©UCB Fall 2008

State of the World
• State of the World in Security

– Authentication: Encryption
» But almost no one encrypts or has public key identity

– Authorization: Access Control
» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing

– Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole!

• Some types of security problems
– Abuse of privilege

» If the superuser is evil, we’re all in trouble/can’t do anything
» What if sysop in charge of instructional resources went

crazy and deleted everybody’s files (and backups)???
– Imposter: Pretend to be someone else

» Example: in unix, can set up an .rhosts file to allow logins
from one machine to another without retyping password

» Allows “rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted

user→install .rhosts file granting you access
Lec 27.1612/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Other Security Problems
• Virus:

– A piece of code that attaches itself to a program or file
so it can spread from one computer to another, leaving
infections as it travels

– Most attached to executable files, so don’t get
activated until the file is actually executed

– Once caught, can hide in boot tracks, other files, OS
• Worm:

– Similar to a virus, but capable of traveling on its own
– Takes advantage of file or information transport
features

– Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself

• Trojan Horse:
– Named after huge wooden horse in Greek mythology
given as gift to enemy; contained army inside

– At first glance appears to be useful software but does
damage once installed or run on your computer

Lec 27.1712/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Security Problems: Buffer-overflow Condition
#define BUFFER SIZE 256
int process(int argc, char *argv[])
{
char buffer[BUFFER SIZE];
if (argc < 2)

return -1;
else {

strcpy(buffer,argv[1]);
return 0;

}
} Before attack After attack

• Technique exploited by many network attacks
– Anytime input comes from network request and is not
checked for size

– Allows execution of code with same privileges as running
program – but happens without any action from user!

• How to prevent?
– Don’t code this way! (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don’t execute code in this page”
Lec 27.1812/08/08 Kubiatowicz CS162 ©UCB Fall 2008

The Morris Internet Worm
• Internet worm (Self-reproducing)

– Author Robert Morris, a first-year Cornell grad student
– Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program

Lec 27.1912/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Some other Attacks
• Trojan Horse Example: Fake Login

– Construct a program that looks like normal login program
– Gives “login:” and “password:” prompts

» You type information, it sends password to someone, then
either logs you in or says “Permission Denied” and exits

– In Windows, the “ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “know” that you are
getting official login program

• Salami attack: Slicing things a little at a time
– Steal or corrupt something a little bit at a time
– E.g.: What happens to partial pennies from bank interest?

» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.

» Doesn’t seem like much, but if you are large bank can be
millions of dollars

• Eavesdropping attack
– Tap into network and see everything typed
– Catch passwords, etc
– Lesson: never use unencrypted communication!

Lec 27.2012/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Timing Attacks: Tenex Password Checking

• Tenex – early 70’s, BBN
– Most popular system at universities before UNIX
– Thought to be very secure, gave “red team” all the
source code and documentation (want code to be
publicly available, as in UNIX)

– In 48 hours, they figured out how to get every
password in the system

• Here’s the code for the password check:
for (i = 0; i < 8; i++)
if (userPasswd[i] != realPasswd[i])
go to error

• How many combinations of passwords?
– 2568?
– Wrong!

Lec 27.2112/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Defeating Password Checking

• Tenex used VM, and it interacts badly with the above code
– Key idea: force page faults at inopportune times to break

passwords quickly
• Arrange 1st char in string to be last char in pg, rest on next pg

– Then arrange for pg with 1st char to be in memory, and rest
to be on disk (e.g., ref lots of other pgs, then ref 1st page)

a|aaaaaa
|

page in memory| page on disk
• Time password check to determine if first character is correct!

– If fast, 1st char is wrong
– If slow, 1st char is right, pg fault, one of the others wrong
– So try all first characters, until one is slow
– Repeat with first two characters in memory, rest on disk

• Only 256 * 8 attempts to crack passwords
– Fix is easy, don’t stop until you look at all the characters

Lec 27.2212/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Protecting Information with Taint Tracking
• How can we prevent the illegal flow of information?

– Consider Virus Scanner that scans your private files
» Example from Nickolai Zeldovich

– What is to prevent a buggy scanner from leaking info?

Virus
Scanner

Private
UserFiles

/tmp Virus
Database NetworkNetwork

Update
Process

Virus
Checker

Lec 27.2312/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Possible avenues of leakage (MANY!)
• Possible ways of giving out private information:

– Buggy Scanner gives out private info to update process
– Leaks info through file system (or other file systems!)
– Leaking info by setting title of process… Etc.

Virus
Scanner

Private
UserFiles

/tmp Virus
Database NetworkNetwork

Update
Process

Virus
Checker

ProcTitle:
“Secret”

ps

Lec 27.2412/08/08 Kubiatowicz CS162 ©UCB Fall 2008

What is problem/Solution

• Kernel not designed to enforce these policies
• Retrofitting difficult:

– Must track any memory observed or modified by a system call!
– Hard to even enumerate all possible channels

• Answer: Make all state explicit, track all communication
– Example: Asbestos (MIT), HiStar (Stanford)

• Think of all data, threads, files, etc having a “Label”
– Like a color; track colors through system, don’t allow colors to

“bleed” incorrectly into places they are not supposed to

Lec 27.2512/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Simple Taint Tracking Example
• Give a particular Label

to every Thread
– Propagate this label
to all data modified
by the thread

• Allow accesses only if
accessing thread has a
compatible Label
– Deny access is labels
do not match

• Question: Where do
labels come from?
– New Labels may be
allocated dynamically
by apps

– No privileged “root”

Lec 27.2612/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Strawman has Covert Channel

• Still possible to leak information by reflecting bits
through failure
– In example, Thread B finds out that secret is “1”
because unable to read from File 1

• One fix to this covert channel: don’t allow labels to
change (i.e. must already exist, never propagated)
– HiStar (Stanford) takes this approach

Lec 27.2712/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Asbestos Labels and Taint Tracking
• Labels are sets of pairs of (category, Level)

– Category like “color” in previous examples
– So, Lx={ (h1,l1), (h2,l2), … ldefault }

» Notation: Lx(a) = level of handle a in Lx or default
» They form a partial order: L1 ⊆ L2 if ∀h, L1(h) ≤ L2(h)

– Any active component of system can allocate new categories
» Could produce data that root cannot access

• Each entity (thread, file, socket,…) has send and receive label
– Send level called “contamination”.

» All outgoing messages tagged with send level of sender.
– Receive level is max contamination allowed

• Communication from entity A to B allowed if As ⊆ Br
– After received, Bs=Bs ∪ As

» Received message increases contamination level of receiving entity
– Asbestos has special “*” level (the declassifier)

» Person with * in a category can declassify information tagged with
that category and give it to anyone

» They can also read any information

Lec 27.2812/08/08 Kubiatowicz CS162 ©UCB Fall 2008

“Owner” privilege

• Yellow objects can only interact with other yellow
objects, or objects with yellow star

• Small, trusted shell can isolate a large, frequently-
changing virus scanner
– Try to reduce size of trusted code base

• Label checker is most trusted code and must be very
carefully verified

Lec 27.2912/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Multiple categories of taint

• Owner privilege and information flow control are
the only access control mechanism

• Anyone can allocate a new category, gets star

Lec 27.3012/08/08 Kubiatowicz CS162 ©UCB Fall 2008

ManyCore Chips: The future is here (for EVERYONE)

• “ManyCore” refers to many processors/chip
– 64? 128? Hard to say exact boundary

• Question: How can ManyCore change our view of OSs?
– ManyCore is a challenge

» Need to be able to take advantage of parallelism
» Must utilize many processors somehow

– ManyCore is an opportunity
» Manufacturers are desperate to figure out how to program
» Willing to change many things: hardware, software, etc.

– Can we improve: security, responsiveness, programmability?

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores
– Two floating point engines /core
– Mesh-like "network-on-a-chip“
– 100 million transistors
– 65nm feature size

Lec 27.3112/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Important New Mechanism: Spatial Partitioning

• Spatial Partition: group of processors acting within
hardware boundary
– Boundaries are “hard”, communication between partitions controlled
– Anything goes within partition

• Each Partition receives a vector of resources
– Some number of dedicated processors
– Some set of dedicated resources (exclusive access)

» Complete access to certain hardware devices
» Dedicated raw storage partition

– Some guaranteed fraction of other resources (QoS guarantee):
» Memory bandwidth, Network bandwidth
» fractional services from other partitions

• Key Idea: Resource Isolation Between Partitions Lec 27.3212/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Tessellation: The Exploded OS
• Normal Components split

into pieces
– Device drivers

(Security/Reliability)
– Network Services

(Performance)
» TCP/IP stack
» Firewall
» Virus Checking
» Intrusion Detection

– Persistent Storage
(Performance,
Security, Reliability)

– Monitoring services
» Performance counters
» Introspection

– Identity/Environment
services (Security)

» Biometric, GPS,
Possession Tracking

• Applications Given
Larger Partitions
– Freedom to use

resources arbitrarily

DeviceDevice
DriversDrivers

Video &Video &
WindowWindow
DriversDrivers

FirewallFirewall
VirusVirus

IntrusionIntrusion

MonitorMonitor
AndAnd

AdaptAdapt

PersistentPersistent
Storage &Storage &

File SystemFile System

HCI/HCI/
VoiceVoice
RecRec

Large ComputeLarge Compute--BoundBound
ApplicationApplication

RealReal--TimeTime
ApplicationApplication

Iden
tity

Iden
tity

Lec 27.3312/08/08 Kubiatowicz CS162 ©UCB Fall 2008

• Use lessons from from Large Distributed Systems
– Like Peer-to-Peer on chip
– OS is a set of independent interacting components
– Shared state across components minimized

• Component-based design:
– All applications designed with pieces from many sources
– Requires composition: Performance, Interfaces, Security

• Spatial Partitioning Advantages:
– Protection of computing resources not required within partition

» High walls between partitions ⇒ anything goes within partition
» “Bare Metal” access to hardware resources

– Partitions exist simultaneously ⇒ fast communication between domains
» Applications split into distrusting partitions w/ controlled communication
» Hardware acceleration/tagging for fast secure messaging

OS as Distributed System

SecureSecure
ChannelChannel

BalancedBalanced
GangGang

IndividualIndividual
PartitionPartition

Secure
SecureChannel

Channel

SecureSecure

Channel
ChannelSecureSecure

ChannelChannel

SecureSecure
ChannelChannel

DeviceDevice
DriversDrivers

Lec 27.3412/08/08 Kubiatowicz CS162 ©UCB Fall 2008

It’s all about the communication

• We are interested in communication for many reasons:
– Communication represents a security vulnerability
– Quality of Service (QoS) boils down message tracking
– Communication efficiency impacts decomposability

• Shared components complicate resource isolation:
– Need distributed mechanism for tracking and accounting
of resource usage
» E.g.: How do we guarantee that each partition gets a

guaranteed fraction of the service:

Secure
SecureChannel

Channel

Secure
Secure

Channel

Channel
Application B

Application A

Shared File Service

Lec 27.3512/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Space-Time Partitioning

• Spatial Partitioning Varies over Time
– Partitioning adapts to needs of the system
– Some partitions persist, others change with time
– Further, Partititions can be Time Multiplexed

» Services (i.e. file system), device drivers, hard realtime
partitions

» Some user-level schedulers will time-multiplex threads within a
partition

• Global Partitioning Goals:
– Power-performance tradeoffs
– Setup to achieve QoS and/or Responsiveness guarantees
– Isolation of real-time partitions for better guarantees

• Monitoring and Adaptation
– Integration of performance/power/efficiency counters

TimeTime

Space
Space

Space
Space

Lec 27.3612/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Another Look: Two-Level Scheduling
• First Level: Gross partitioning of resources

– Goals: Power Budget, Overall Responsiveness/QoS, Security
– Partitioning of CPUs, Memory, Interrupts, Devices, other

resources
– Constant for sufficient period of time to:

» Amortize cost of global decision making
» Allow time for partition-level scheduling to be effective

– Hard boundaries ⇒ interference-free use of resources
• Second Level: Application-Specific Scheduling

– Goals: Performance, Real-time Behavior, Responsiveness,
Predictability

– CPU scheduling tuned to specific applications
– Resources distributed in application-specific fashion
– External events (I/O, active messages, etc) deferrable as

appropriate
• Justifications for two-level scheduling?

– Global/cross-app decisions made by 1st level
» E.g. Save power by focusing I/O handling to smaller # of cores

– App-scheduler (2nd level) better tuned to application
» Lower overhead/better match to app than global scheduler
» No global scheduler could handle all applications

Lec 27.3712/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Tessellation Partition Manager

Partition
Management

Layer
Scheduler

Time Scheduling

Hardware Partitioning Mechanisms

Tessellation
K

ernel

Scheduling
Constraints

(Real-Time, Priority)

Application

CPUsPhysical
Memory

Interconnect
Bandwidth Cache

Performance
Counters

Partition
Allocator

Space Scheduling

Resource
Queries/Requests

Partition
Resizing

Partition
Mechanism

Layer

Se
cu

re
 C

ha
nn

el
s

Ta
in

t C
he

ck
in

g

Lec 27.3812/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Achieving Responsiveness & Agility

• Place time-critical components in their own partition
– E.g.: User Interface Components, Jitter-critical applications
– User-level scheduler tuned for deadline scheduling

• Grouping of external events to handle in next partition time slice
– Achieving regularity (low standard deviation of behavior) more

important than lowest latency for many types of real-time
scheduling

– Removes interrupt overhead (replaces it with polling)
• Pre-compose partition configurations

– Quick start of partitions in response to I/O events or real-time
triggers

• Judicious use of Speculation
– Basic variant of the checkpointing mechanism to fork execution
– When long-latency operations intervene, generate speculative

partition
» Can track speculative state through different

partitions/processes/etc
» Can be use to improve I/O speed, interaction with services, etc

Lec 27.3912/08/08 Kubiatowicz CS162 ©UCB Fall 2008

What about faults?
• Ignoring hardware and software failure is not an option!

– Increased number of cores ⇒ increased failure rate
– High software complexity because of parallelism

• Goal: Fast Restart of Partition after failed hardware or software
• Basic techniques: Checkpointing and Versioning with Detection

– Providing automatic generation of stable restore points
» Periodic generation of checkpoints (basic)
» Framework (or application?) initiated checkpoints (more

conservative)
– Detecting when errors have occurred

» Low level errors (ECC, other failures)
» Framework-level checking of correctness signatures:

still research topic
» Duplicate computation with online checking? (power intensive)

• Crash and Restart API to Productivity and Efficiency layers
– Will allow application to say when to checkpoint and when to restart

• All centralized data structures versioned/transaction based?
– Always possible to back out (“Undo”) bad modification
– Goal: allow components (such as device drivers) to crash and restart
– File System (and “Object Storage”) versioned

Lec 27.4012/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Conclusion
• Distributed identity

– Use cryptography (Public Key, Signed by PKI)
• Use of Public Key Encryption to get Session Key

– Can send encrypted random values to server, now share
secret with server

– Used in SSL, for instance
• Authorization

– Abstract table of users (or domains) vs permissions
– Implemented either as access-control list or capability list

• Issues with distributed storage example
– Revocation: How to remove permissions from someone?
– Integrity: How to know whether data is valid
– Freshness: How to know whether data is recent

• Buffer-Overrun Attack: exploit bug to execute code
• Taint Tracking

– Track flow of information
– Protect data rather than processes

Lec 27.4112/08/08 Kubiatowicz CS162 ©UCB Fall 2008

Conclusion (Con’t)
• ManyCore: the future is here!
• Tessellation Goals: RAPPidS

– Responsiveness, Agility,
Power-Efficiency, Persistence, Security

– User experience, real-time behavior,
efficient use of resources

• Spatial Partitioning: grouping processors
& resources behind hardware boundary
– Two-level scheduling

1) Global Distribution of resources
2) Application-Specific scheduling of resources

– Bare Metal Execution within partition
– Composable performance, security, QoS

• Tessellation OS
– Exploded OS: spatially partitioned, interacting services

DeviceDevice
DriversDrivers

Video &Video &
WindowWindow
DriversDrivers

FirewallFirewall
VirusVirus

IntrusionIntrusion
MonitorMonitor

AndAnd
AdaptAdapt

PersistentPersistent
Storage &Storage &

File SystemFile System

HCI/HCI/
VoiceVoice
RecRec

Large ComputeLarge Compute--BoundBound
ApplicationApplication

RealReal--TimeTime
ApplicationApplication

Iden
tity

Iden
tity

