
CS162
Operating Systems and
Systems Programming

Lecture 28

ManyCore, Quantum Computing
and Other Topics

December 10, 2008
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 28.212/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Requests for Final Topics
• Some topics people requested:

– Dragons: too big of a topic for today
– ManyCore Operating Systems
– Quantum Computers (and factoring)
– Mobile Operating Systems
– User Sessions
– Power Management
– Data Privacy
– Berkeley OS History

• Today:
– ManyCore/Parallel OS
– Realtime OS
– Quantum Computing and Quantum factoring

• Other Topics:
– Come look for me at office hours (Or any other time)

Lec 28.312/10/08 Kubiatowicz CS162 ©UCB Fall 2008

ManyCore Chips: The future is on the way

• “ManyCore” refers to many processors/chip
– 64? 128? Hard to say exact boundary

• How to program these?
– Use 2 CPUs for video/audio
– Use 1 for word processor, 1 for browser
– 76 for virus checking???

• Something new is clearly needed here…

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores
– Two floating point engines /core
– Mesh-like "network-on-a-chip“
– 100 million transistors
– 65nm feature size

Frequency Voltage Power Bandwidth Performance
3.16 GHz 0.95 V 62W 1.62 Terabits/s 1.01 Teraflops
5.1 GHz 1.2 V 175W 2.61 Terabits/s 1.63 Teraflops
5.7 GHz 1.35 V 265W 2.92 Terabits/s 1.81 Teraflops

Lec 28.412/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Traditional Parallel OS
• Job of OS is support and protect

– Need to stay out of way of application
• Traditional single-threaded OS

– Only one thread active inside kernel at a time
» One exception – interrupt handlers
» Does not mean that that there aren’t many threads – just

that all but one of them are asleep or in user-space
» Easiest to think about – no problems introduced by sharing

– Easy to enforce if only one processor (with single core)
» Never context switch when thread is in middle of system call
» Always disable interrupts when dangerous

– Didn’t get in way of performance, since only one task could
actually happen simultaneously anyway

• Problem with Parallel OSs: code base already very large
by time that parallel processing hit mainstream

– Lots of code that couldn’t deal with multiple simultaneous
threads ⇒One or two locks for whole system

Lec 28.512/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Some Tricky Things about Parallel OSs
• How to get truly multithreaded kernel?

– More things happening simultaneously⇒need for:
» Synchronization: thread-safe queues, critical sections, …
» Reentrant Code – code that can have multiple threads

executing in it at the same time
» Removal of global variables – since multiple threads may

need a variable at the same time
– Potential for greater performance⇒need for:

» Splitting kernel tasks into pieces
• Very labor intensive process of parallelizing kernel

– Starting from pre-existing code base: very hard
– Needed to rewrite major portions of kernel with finer-
grained locks

» Shared among multiple threads on multiple processors⇒
Must satisfy multiple parallel requests

» Bottlenecks (coarse-grained locks) in resource allocation
can kill all performance

• Truly multithreaded mainstream kernels are recent:
– Linux 2.6, Windows XP, … Lec 28.612/10/08 Kubiatowicz CS162 ©UCB Fall 2008

How Should OSs
Change for ManyCore?

Lec 28.712/10/08 Kubiatowicz CS162 ©UCB Fall 2008

ManyCore opportunities: Rethink the Sink
• Computing Resources are not Limited

– High Utilization of every core unnecessary
– Partition Spatially rather than Temporally

• Protection domains not necessarily heavyweight
– Spatial Partitioning⇒ protection crossing as simple as
sending a message from one part of chip to another

• I/O devices not necessarily limited and do not need to
be heavily multiplexed

– High bandwidth devices available through network
– FLASH or other persistent storage yields fast, flat
hierarchy (not necessarily disk as bottleneck)

• New constraints
– Power/Energy major concern
– Security extremely important
– Parallelism must be exploited in applications

» Extremely important for OS to get out of the way

Lec 28.812/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Important New Mechanism: Spatial Partitioning

• Spatial Partition: group of processors acting within
hardware boundary

– Boundaries are “hard”, communication between partitions controlled
– Anything goes within partition

• Each Partition receives a vector of resources
– Some number of dedicated processors
– Some set of dedicated resources (exclusive access)

» Complete access to certain hardware devices
» Dedicated raw storage partition

– Some guaranteed fraction of other resources (QoS guarantee):
» Memory bandwidth, Network bandwidth
» fractional services from other partitions

• Key Idea: Resource Isolation Between Partitions

Lec 28.912/10/08 Kubiatowicz CS162 ©UCB Fall 2008

• Use lessons from from Large Distributed Systems
– Like Peer-to-Peer on chip
– OS is a set of independent interacting components
– Shared state across components minimized

• Component-based design:
– All applications designed with pieces from many sources
– Requires composition: Performance, Interfaces, Security

• Spatial Partitioning Advantages:
– Protection of computing resources not required within partition

» High walls between partitions ⇒ anything goes within partition
» “Bare Metal” access to hardware resources

– Partitions exist simultaneously ⇒ fast communication between domains
» Applications split into distrusting partitions w/ controlled communication
» Hardware acceleration/tagging for fast secure messaging

OS as Distributed System

SecureSecure
ChannelChannel

BalancedBalanced
GangGang

IndividualIndividual
PartitionPartition

Secure
SecureChannel

Channel

SecureSecure

Channel
ChannelSecureSecure

ChannelChannel

SecureSecure
ChannelChannel

DeviceDevice
DriversDrivers

Lec 28.1012/10/08 Kubiatowicz CS162 ©UCB Fall 2008

It’s all about the communication

• We are interested in communication for many reasons:
– Communication represents a security vulnerability
– Quality of Service (QoS) boils down message tracking
– Communication efficiency impacts decomposability

• Shared components complicate resource isolation:
– Need distributed mechanism for tracking and accounting
of resource usage

» E.g.: How do we guarantee that each partition gets a
guaranteed fraction of the service:

Secure
SecureChannel

Channel

Secure
Secure

Channel

Channel
Application B

Application A

Shared File Service

Lec 28.1112/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Tessellation: The Exploded OS
• Normal Components split

into pieces
– Device drivers

(Security/Reliability)
– Network Services

(Performance)
» TCP/IP stack
» Firewall
» Virus Checking
» Intrusion Detection

– Persistent Storage
(Performance,
Security, Reliability)

– Monitoring services
» Performance counters
» Introspection

– Identity/Environment
services (Security)

» Biometric, GPS,
Possession Tracking

• Applications Given
Larger Partitions

– Freedom to use
resources arbitrarily

DeviceDevice
DriversDrivers

Video &Video &
WindowWindow
DriversDrivers

FirewallFirewall
VirusVirus

IntrusionIntrusion

MonitorMonitor
AndAnd

AdaptAdapt

PersistentPersistent
Storage &Storage &

File SystemFile System

HCI/HCI/
VoiceVoice
RecRec

Large ComputeLarge Compute--BoundBound
ApplicationApplication

RealReal--TimeTime
ApplicationApplication

Iden
tity

Iden
tity

Lec 28.1212/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Space-Time Partitioning

• Spatial Partitioning Varies over Time
– Partitioning adapts to needs of the system
– Some partitions persist, others change with time
– Further, Partititions can be Time Multiplexed

» Services (i.e. file system), device drivers, hard realtime
partitions

» Some user-level schedulers will time-multiplex threads within a
partition

• Global Partitioning Goals:
– Power-performance tradeoffs
– Setup to achieve QoS and/or Responsiveness guarantees
– Isolation of real-time partitions for better guarantees

• Monitoring and Adaptation
– Integration of performance/power/efficiency counters

TimeTime

Space
Space

Space
Space

Lec 28.1312/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Another Look: Two-Level Scheduling
• First Level: Gross partitioning of resources

– Goals: Power Budget, Overall Responsiveness/QoS, Security
– Partitioning of CPUs, Memory, Interrupts, Devices, other

resources
– Constant for sufficient period of time to:

» Amortize cost of global decision making
» Allow time for partition-level scheduling to be effective

– Hard boundaries ⇒ interference-free use of resources
• Second Level: Application-Specific Scheduling

– Goals: Performance, Real-time Behavior, Responsiveness,
Predictability

– CPU scheduling tuned to specific applications
– Resources distributed in application-specific fashion
– External events (I/O, active messages, etc) deferrable as

appropriate
• Justifications for two-level scheduling?

– Global/cross-app decisions made by 1st level
» E.g. Save power by focusing I/O handling to smaller # of cores

– App-scheduler (2nd level) better tuned to application
» Lower overhead/better match to app than global scheduler
» No global scheduler could handle all applications

Lec 28.1412/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Tessellation Partition Manager

Partition
Management

Layer
Scheduler

Time Scheduling

Hardware Partitioning Mechanisms

Tessellation
K

ernel

Scheduling
Constraints

(Real-Time, Priority)

Application

CPUsPhysical
Memory

Interconnect
Bandwidth Cache

Performance
Counters

Partition
Allocator

Space Scheduling

Resource
Queries/Requests

Partition
Resizing

Partition
Mechanism

Layer

Se
cu

re
 C

ha
nn

el
s

Ta
in

t C
he

ck
in

g

Lec 28.1512/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Administrivia

• Midterm II
– Grading is done!

» Mean=66.2, Std=14
– I put up solutions already

• Status of Project 3 grading – hopefully very soon.
• Final Exam

– 8:00-11:00AM, December 18th

– Bechtel Auditorium
– Bring 2 sheets of notes, double-sided
– All lectures – except today (this is a freebie!)

Lec 28.1612/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Realtime OS/Embedded Applications

• Embedded applications:
– Limited Hardware
– Dedicated to some particular task
– Examples: 50-100 CPUs in modern car!

• What does it mean to be “Realtime”?
– Meeting time-related goals in the real world

» For instance: to show video, need to display X frames/sec
– Hard real-time task:

» one which we must meet its deadline
» otherwise, fatal damage or error will occur.

– Soft real-time task:
» one which we should meet its deadline, but not mandatory.
» We should schedule it even if the deadline has passed

– Determinism:
» Sometimes, deterministic behavior is more important than high

performance

Lec 28.1712/10/08 Kubiatowicz CS162 ©UCB Fall 2008

ManyCore and Realtime
• Realtime OS Details

– Realtime scheduler looks at deadlines to decide who to
schedule next

» Example: schedule the thread whose deadline is next
– What makes it hard to perform realtime scheduling:

» Too many background tasks
» Optimizing for overall responsiveness or throughput is

different from meeting explicit deadlines
• Why are Realtime apps often handled by embedded

processors?
– Because they are dedicated and more predictable
– Idea: Only need to meet throughput requirements

» Might as well slow down processor (via lower voltage) as long
as performance criteria met

» Power reduces as V2!
• ManyCore

– Opportunity to devote cores to realtime activities
– “Bare metal” partitions: best of realtime and general OSs

in one chip…!
Lec 28.1812/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Achieving Responsiveness & Agility in Tessellation

• Place time-critical components in their own partition
– E.g.: User Interface Components, Jitter-critical applications
– User-level scheduler tuned for deadline scheduling

• Grouping of external events to handle in next partition time slice
– Achieving regularity (low standard deviation of behavior) more

important than lowest latency for many types of real-time
scheduling

– Removes interrupt overhead (replaces it with polling)
• Pre-compose partition configurations

– Quick start of partitions in response to I/O events or real-time
triggers

• Judicious use of Speculation
– Basic variant of the checkpointing mechanism to fork execution
– When long-latency operations intervene, generate speculative

partition
» Can track speculative state through different

partitions/processes/etc
» Can be use to improve I/O speed, interaction with services, etc

Lec 28.1912/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Quantum Computing

Lec 28.2012/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Can we Use Quantum Mechanics to Compute?

• Weird properties of quantum mechanics?
– Quantization: Only certain values or orbits are good

» Remember orbitals from chemistry???
– Superposition: Schizophrenic physical elements don’t
quite know whether they are one thing or another

• All existing digital abstractions try to eliminate QM
– Transistors/Gates designed with classical behavior
– Binary abstraction: a “1” is a “1” and a “0” is a “0”

• Quantum Computing:
Use of Quantization and Superposition to compute.

• Interesting results:
– Shor’s algorithm: factors in polynomial time!
– Grover’s algorithm: Finds items in unsorted database in
time proportional to square-root of n.

Lec 28.2112/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Quantization: Use of “Spin”

• Particles like Protons have an intrinsic “Spin”
when defined with respect to an external
magnetic field

• Quantum effect gives “1” and “0”:
– Either spin is “UP” or “DOWN” nothing between

North

South

Spin ½ particle:
(Proton/Electron)

Representation:
|0> or |1>

Lec 28.2212/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Kane Proposal II (First one didn’t quite work)

• Bits Represented by combination of proton/electron spin
• Operations performed by manipulating control gates

– Complex sequences of pulses perform NMR-like operations
• Temperature < 1° Kelvin!

Phosphorus
Impurity Atoms

Single Spin
Control Gates

Inter-bit
Control Gates

Lec 28.2312/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Now add Superposition!
• The bit can be in a combination of “1” and “0”:

– Written as: Ψ= C0|0> + C1|1>
– The C’s are complex numbers!
– Important Constraint: |C0|2 + |C1|2 =1

• If measure bit to see what looks like,
– With probability |C0|2 we will find |0> (say “UP”)
– With probability |C1|2 we will find |1> (say “DOWN”)

• Is this a real effect? Options:
– This is just statistical – given a large number of protons,
a fraction of them (|C0|2) are “UP” and the rest are
down.

– This is a real effect, and the proton is really both things
until you try to look at it

• Reality: second choice!
– There are experiments to prove it!

Lec 28.2412/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Implications: A register can have many values
• Implications of superposition:

– An n-bit register can have 2n values simultaneously!
– 3-bit example:

Ψ= C000|000>+ C001|001>+ C010|010>+ C011|011>+
C100|100>+ C101|101>+ C110|110>+ C111|111>

• Probabilities of measuring all bits are set by
coefficients:
– So, prob of getting |000> is |C000|2, etc.
– Suppose we measure only one bit (first):

» We get “0” with probability: P0=|C000|2+ |C001|2+ |C010|2+ |C011|2
Result: Ψ= (C000|000>+ C001|001>+ C010|010>+ C011|011>)

» We get “1” with probability: P1=|C100|2+ |C101|2+ |C110|2+ |C111|2
Result: Ψ= (C100|100>+ C101|101>+ C110|110>+ C111|111>)

• Problem: Don’t want environment to measure before
ready!
– Solution: Quantum Error Correction Codes!

Lec 28.2512/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Spooky action at a distance
• Consider the following simple 2-bit state:

Ψ= C00|00>+ C11|11>
– Called an “EPR” pair for “Einstein, Podolsky, Rosen”

• Now, separate the two bits:

• If we measure one of them, it instantaneously sets other one!
– Einstein called this a “spooky action at a distance”
– In particular, if we measure a |0> at one side, we get a |0>

at the other (and vice versa)
• Teleportation

– Can “pre-transport” an EPR pair (say bits X and Y)
– Later to transport bit A from one side to the other we:

» Perform operation between A and X, yielding two classical bits
» Send the two bits to the other side
» Use the two bits to operate on Y
» Poof! State of bit A appears in place of Y

Light-Years?

Lec 28.2612/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Model? Operations on coefficients + measurements

• Basic Computing Paradigm:
– Input is a register with superposition of many values

» Possibly all 2n inputs equally probable!
– Unitary transformations compute on coefficients

» Must maintain probability property (sum of squares = 1)
» Looks like doing computation on all 2n inputs simultaneously!

– Output is one result attained by measurement
• If do this poorly, just like probabilistic computation:

– If 2n inputs equally probable, may be 2n outputs equally
probable.

– After measure, like picked random input to classical function!
– All interesting results have some form of “fourier transform”

computation being done in unitary transformation

Unitary
Transformations

Input
Complex

State
Measure

Output
Classical
Answer

Lec 28.2712/10/08 Kubiatowicz CS162 ©UCB Fall 2008

• The Security of RSA Public-key cryptosystems
depends on the difficult of factoring a number N=pq
(product of two primes)
– Classical computer: sub-exponential time factoring
– Quantum computer: polynomial time factoring

• Shor’s Factoring Algorithm (for a quantum computer)
1) Choose random x : 2 ≤ x ≤ N-1.
2) If gcd(x,N) ≠ 1, Bingo!
3) Find smallest integer r : xr ≡ 1 (mod N)
4) If r is odd, GOTO 1
5) If r is even, a = x r/2 (mod N) ⇒ (a-1)×(a+1) = kN
6) If a = N-1 GOTO 1
7) ELSE gcd(a ± 1,N) is a non trivial factor of N.

Hard

Security of Factoring

Easy
Easy

Easy
Easy
Easy
Easy

Lec 28.2812/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Shor’s Factoring Algorithm

∑
k

/
\k /

\xk∑
k

/
\k /

\1

∑ /
\

/
\x∑

y

+r yw
0w =

w1−r

∑ () /
\x

r
0

r r
1 k

0w =
w

1−r
Quantum
Fourier

Transform

• Finally: Perform measurement
– Find out r with high probability
– Get |y>|aw’> where y is of form k/r and w’ is related

Lec 28.2912/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Some Issues in building quantum computer
• What are the bits and how do we manipulate them?

– NMR computation: use “cup of liquid”.
» Use nuclear spins (special protons on complex molecules).
» Manipulate with radio-frequencies
» IBM Has produced a 7-bit computer

– Silicon options (more scalable)
» Impurity Phosphorus in silicon
» Manipulate through electrons (including measurement)
» Still serious noise/fabrication issues

– Other options:
» Optical (Phases of photons represent bits)
» Single ions trapped in magnetic fields

• How do we prevent the environment from “Measuring”?
– Make spins as insulated from environment as possible
– Quantum Error Correction!

• Where get “clean” bits (I.e. unsuperposed |0> or |1>)?
– Entropy exchange unit:

» Radiates heat to environment (entropy)
» Produces clean bits (COLD) to enter into device

Lec 28.3012/10/08 Kubiatowicz CS162 ©UCB Fall 2008

ION Trap Quantum Computer: Promising technology

• IONS of Be+ trapped in
oscillating quadrature field

– Internal electronic modes of
IONS used for quantum bits

– MEMs technology
– Target? 50,000 ions
– ROOM Temperature!

• Ions moved to interaction regions
– Ions interactions with one

another moderated by lasers

Cross-
Sectional

View

Top View

Top

Proposal: NIST Group

Lec 28.3112/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Conclusions

• Spatial Partitioning: grouping processors and resources
behind hardware boundary
– Two-level scheduling

1)Global Distribution of resources
2)Application-Specific scheduling of resources

– Bare Metal Execution within partition
– Distributed systems view of OS design

• Tessellation OS: ParLAB’s new OS
– Exploded, spatially partitioned, interacting services

• Quantum Computing
– Using interesting properties of physics to compute

• Berkely PARLAb
– Check out: view.eecs.berkeley.edu

parlab.eecs.berkeley.edu
• Let’s give a hand to the TAs!

Lec 28.3212/10/08 Kubiatowicz CS162 ©UCB Fall 2008

Good Bye!

