
 Page 1/11 

University of California, Berkeley 
College of Engineering 

Computer Science Division – EECS 
 

Spring 2001             Anthony D. Joseph 
 

Midterm Exam  
March 7, 2001 

CS162 Operating Systems 
 
 

Your Name: 
 

 

SID AND 162 Login: 
 

 

TA: 
 

 

Discussion Section: 
 

 

 
 
General Information:  
This is a closed book and notes examination. You have ninety minutes to answer as many 
questions as possible.  The number in parentheses at the beginning of each question indicates the 
number of points given to the question; there are 100 points in all. You should read all of the 
questions before starting the exam, as some of the questions are substantially more time 
consuming. 
 
Write all of your answers directly on this paper.  Make your answers as concise as possible. If there 
is something in a question that you believe is open to interpretation, then please ask us about it! 
    Good Luck!! 
 

Problem Possible Score 
1 
 

12  

2 
 

24  

3 
 

23  

4 
 

18  

5 
 

23  

Total 
 

100  

 



CS 162 Spring 2001 Midterm Exam  March 7, 2001

 Page 2/11 

 
1. (12 points total) “Lightweight” versus “Heavyweight” processes – Pros and Cons: 

a. (4 points) List two advantages of running a group of applications as single-threaded 
“heavyweight” processes over running the applications as multiple “lightweight” 
processes, all in one address space. Be explicit in your answers. 
i)  

 
 
 

b. (8 points) List two reasons why lightweight processes are better than heavyweight 
ones. 
i)  
 
 
 
 

 
ii)  

 
 
 
 
 
2. (24 points total) Suppose that we have a multiprogrammed computer in which each job 

has identical characteristics. In one computation period, T, for a job, half the time is 
spent in I/O and the other half in processor activity. Each job runs for a total of N 
periods. Assume that a simple round-robin scheduling scheme is used and that I/O 
operations can overlap with processor operation. We define the following quantities: 
• Turnaround time = actual time to complete a job. 
• Processor utilization = percentage of time that the processor is active (not waiting). 
 
For large N, compute approximate values for these quantities for one, two, and four 
simultaneous jobs, assuming that the period T is distributed in each of the following 
ways: 

 
a. (15 points) I/O first half, processor second half. 

i) 1 job, Turnaround time and Processor utilization:  
 
 
 

ii) 2 jobs, Turnaround time and Processor utilization: 
 

 
 
 

iii)  4 jobs, Turnaround time and Processor utilization:  



CS 162 Spring 2001 Midterm Exam  March 7, 2001

 Page 3/11 

 
 

 
 

b. (9 points) I/O first and fourth quarters, processor second and third quarters.  
i) 1 job, Turnaround time and Processor utilization:  

 
 
 

ii) 2 jobs, Turnaround time and Processor utilization: 
 
 
 

iii)  4 jobs, Turnaround time and Processor utilization:  
 

 
 
 
3. (23 points total) CPU scheduling. 

a. (8 points) Given CPU-bound tasks and a choice between FIFO and Round-Robin 
scheduling algorithms, choose the best algorithm for each of the following 
systems and specify why you chose the algorithm: 
i) Multiprogrammed batch system: 

 
 
 
 
 

ii) Interactive, time-sharing system: 
 
 
 
 
 
 
 



CS 162 Spring 2001 Midterm Exam  March 7, 2001

 Page 4/11 

b. (15 points) Consider the following processes, arrival times, and CPU processing 
requirements: 

 
Process Name Arrival Time Processing Time 

1 0 4 
2 1 4 
3 4 3 
4 8 2 

 
For each of the following scheduling algorithms, fill in the table with the process 
that is running on the CPU. Assume a 1 unit timeslice for timeslice-based 
algorithms. For RR, assume that an arriving thread runs at the beginning of its 
arrival time. 

 
Time  FIFO RR SRTF 
0 
 

1 1 1 

1 
 

   

2 
 

   

3 
 

   

4 
 

   

5 
 

   

6 
 

   

7 
 

   

8 
 

   

9 
 

   

10 
 

   

11 
 

   

12 
 

   

Average 
response time  
 

   

 
 



CS 162 Spring 2001 Midterm Exam  March 7, 2001

 Page 5/11 

4. (18 points total) Concurrency problem: Building H2O.  
The goal of this exercise is for you to create a monitor with methods Hydrogen() 
and Oxygen(), which wait until a water molecule can be formed and then return. 
Don’t worry about actually creating the water molecule; instead only need to wait 
until two hydrogen threads and one oxygen thread can be grouped together. For 
example, if two threads call Hydrogen, and then a third thread calls Oxygen, the third 
thread should wake up the first two threads and they should then all return. 
 
a. (6 points) Specify the correctness constraints. Be succinct and explicit in your 

answer. 
 



CS 162 Spring 2001 Midterm Exam  March 7, 2001

 Page 6/11 

 
b. (12 points) Observe that there is only one condition any thread will wait for (i.e., a 

water molecule being formed). However, it will be necessary to signal hydrogen 
and oxygen threads independently, so we choose to use two condition variables, 
waitingH and waitingO. Define wH and wO to be the number of hydrogen 
and oxygen threads waiting in the monitor, respectively, and we define aH an aO 
as the number of assigned hydrogen and oxygen threads, respectively. These are 
all initialized to 0. 

 
You start with the following code: 

          Hydrogen() { 
            wH++; 
            lock.acquire(); 
            while (aH == 0) { 
              if (wH >= 2 && wO >= 1) { 
                wH-=2; aH+=2; 
                wO-=1; aO+=1; 
                waitingH.broadcast(); 
                waitingO.signal(); 
              } else { 
                lock.release(); 
                waitingH.wait(); 
                lock.acquire(); 
              } 
            } 
            lock.release(); 
            aH--; 
          } 
 
          Oxygen() { 
            wO++; 
            while (aO == 0) { 
              if (wH >= 2 && wO >= 1) { 
                wH-=2; aH+=2; 
                wO-=1; aO+=1; 
                waitingH.signal(); 
                waitingH.signal(); 
              } else { 
                waitingO.broadcast(); 
              } 
            } 
            aO--; 
          } 

 
For each method, say whether the implementation either (i) works, (ii) doesn’t work, 
or (iii) is dangerous – that is, sometimes works and sometimes doesn’t.  If the 
implementation does not work or is dangerous, explain why (there maybe several 
errors) and show how to fix it so it does work. Also, list and fix any inefficiencies.  

i. Hydrogen() 
 
 
 



CS 162 Spring 2001 Midterm Exam  March 7, 2001

 Page 7/11 

 
 
 

ii. Oxygen() 
 
 
 

 
 



CS 162 Spring 2001 Midterm Exam  March 7, 2001

 Page 8/11 

(Additional space for question 4) 



CS 162 Spring 2001 Midterm Exam  March 7, 2001

 Page 9/11 

No Credit – Problem X: (000000000000 points) 
 
 

Late Night Fun in the Labs (don’t try this tonight) 
 
From a student in CS ###: 
For a computer programming class, I sat directly across from someone, and our 
computers were facing away from each other.  A few minutes into the class, he got up to 
leave the room.  I reached between our computers and switched the inputs for the 
keyboards.  He came back and started typing and immediately got a distressed look on his 
face. 
 
He called the Lab TA over and explained that no matter what he typed, nothing would 
happen.  The TA tried everything.  By this time I was hiding behind my monitor and 
quaking red-faced. 
 
I started to type, “Leave me alone!” 
 
They both jumped back, silenced.  “What the #$?!#$” the TA said. 
 
I typed, “I said leave me alone!” 
 
The student got real upset.  “I didn't do anything to it, I swear!” It was all I could do to 
keep from laughing out loud.  The conversation between them and HAL 2000 went on for 
an amazing five minutes. 
 
Me: “Don't touch me!” 
 
Student: “I’m sorry, I didn't mean to hit your keys that hard.” 
 
Me: “Who do you think you are anyway?!” Etc.  Finally, I couldn’t contain myself any 
longer and fell out of my chair laughing. 
 
After they had realized what I had done, they both turned beet red. 
 
Funny, I never got more than a C- in that class. 
 



CS 162 Spring 2001 Midterm Exam  March 7, 2001

 Page 10/11 

5. (23 points) Deadlock: 
 
Consider the following snapshot of a system. There are no current outstanding queued 
unsatisfied requests. 
          currently available resources 

r1 r2 r3 r4 
2 1 0 0 

 
   current allocation  max demand    still needs  
process r1 r2 r3 r4 r1 r2 r3 r4 r1 r2 r3 r4 
p1 0 0 1 2 0 0 1 2     
p2 2 0 0 0 2 7 5 0     
p3 2 3 5 4 4 3 5 6     
p4 2 3 5 4 4 3 5 6     
p5 0 3 3 2 0 6 5 2     
 
a. (5 points) Compute what each process still might request and fill in the “still needs” 

columns. 
 
b. (8 points) Is this system currently deadlocked, or will any process become 

deadlocked? Why or why not? If not, give an execution order. 
 
 
 
 
 
 
 
 
 
c. (10 points) If a request from p3 arrives for (0, 1, 0, 0). can that request be safely 

granted immediately? In what state (deadlocked, safe, unsafe) would immediately 
granting the whole request leave the system? Which processes, if any, are or may 
become deadlocked if this whole request is granted immediately? 

 
 
 
 
 



CS 162 Spring 2001 Midterm Exam  March 7, 2001

 Page 11/11 

This page intentionally left blank. 


