
CS162
Operating Systems and
Systems Programming

Lecture 2

History of the World Parts 1—5
Operating Systems Structures

August 31st, 2008
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 2.28/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Virtual Machine Abstraction

• Software Engineering Problem:
– Turn hardware/software quirks 

what programmers want/need
– Optimize for convenience, utilization, security,
reliability, etc…

• For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):

– What’s the hardware interface? (physical reality)
– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

Lec 2.38/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Protecting Processes from Each Other

• Problem: Run multiple applications in such a way
that they are protected from one another

• Goal:
– Keep User Programs from Crashing OS
– Keep User Programs from Crashing each other
– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:
– Address Translation
– Dual Mode Operation

• Simple Policy:
– Programs are not allowed to read/write memory of
other Programs or of Operating System

Lec 2.48/31/09 Kubiatowicz CS162 ©UCB Fall 2009

CPU MMU

Virtual
Addresses

Physical
Addresses

Review: Address Translation
• Address Space

– A group of memory addresses usable by something
– Each program (process) and kernel has potentially
different address spaces.

• Address Translation:
– Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

– Mapping often performed in Hardware by Memory
Management Unit (MMU)

Lec 2.58/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Example of Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 2.68/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Goals for Today

• Finish Protection Example
• History of Operating Systems

– Really a history of resource-driven choices
• Operating Systems Structures
• Operating Systems Organizations
• Abstractions and layering

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Joseph.

Lec 2.78/31/09 Kubiatowicz CS162 ©UCB Fall 2009

The other half of protection: Dual Mode Operation

• Hardware provides at least two modes:
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• Some instructions/ops prohibited in user mode:
– Example: cannot modify page tables in user mode

» Attempt to modify  Exception generated
• Transitions from user mode to kernel mode:

– System Calls, Interrupts, Other exceptions

Lec 2.88/31/09 Kubiatowicz CS162 ©UCB Fall 2009

UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 2.98/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Moore’s Law Change Drives OS Change

Typical academic computer 1981 vs 2009

0.2$3,500$25,000

 0.1 110s

46416

110,0001 Gb/s9600 b/s

150,0001.5TB10MB

49,1526GB128KB

1,280
6—40

Quad 3.2G
0.25—0.5

10
3—10

Factor20091981

Price

#users/machine

addr bits

Net bandwidth

Disk capacity

DRAM capacity

CPU MHz,
Cycles/inst

Lec 2.108/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Moore’s law effects

• Nothing like this in any other area of business
• Transportation in over 200 years:

– 2 orders of magnitude from horseback @10mph to
Concorde @1000mph

– Computers do this every decade (at least until 2002)!
• What does this mean for us?

– Techniques have to vary over time to adapt to
changing tradeoffs

• I place a lot more emphasis on principles
– The key concepts underlying computer systems
– Less emphasis on facts that are likely to change over
the next few years…

• Let’s examine the way changes in $/MIP has
radically changed how OS’s work

Lec 2.118/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Dawn of time
ENIAC: (1945—1955)

• “The machine designed by Drs. Eckert and Mauchly
was a monstrosity. When it was finished, the
ENIAC filled an entire room, weighed thirty tons,
and consumed two hundred kilowatts of power.”

• http://ei.cs.vt.edu/~history/ENIAC.Richey.HTML

Lec 2.128/31/09 Kubiatowicz CS162 ©UCB Fall 2009

History Phase 1 (1948—1970)
Hardware Expensive, Humans Cheap

• When computers cost millions of $’s, optimize for
more efficient use of the hardware!

– Lack of interaction between user and computer

• User at console: one user at a time
• Batch monitor: load program, run, print

• Optimize to better use hardware
– When user thinking at console, computer idleBAD!
– Feed computer batches and make users wait
– Autograder for this course is similar

• No protection: what if batch program has bug?

Lec 2.138/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Core Memories (1950s & 60s)

• Core Memory stored data as magnetization in iron rings
– Iron “cores” woven into a 2-dimensional mesh of wires
– Origin of the term “Dump Core”
– Rumor that IBM consulted Life Saver company

• See: http://www.columbia.edu/acis/history/core.html

The first magnetic core
memory, from the IBM 405
Alphabetical Accounting
Machine.

Lec 2.148/31/09 Kubiatowicz CS162 ©UCB Fall 2009

History Phase 1½ (late 60s/early 70s)
• Data channels, Interrupts: overlap I/O and compute

– DMA – Direct Memory Access for I/O devices
– I/O can be completed asynchronously

• Multiprogramming: several programs run simultaneously
– Small jobs not delayed by large jobs
– More overlap between I/O and CPU
– Need memory protection between programs and/or OS

• Complexity gets out of hand:
– Multics: announced in 1963, ran in 1969

» 1777 people “contributed to Multics” (30-40 core dev)
» Turing award lecture from Fernando Corbató (key

researcher): “On building systems that will fail”
– OS 360: released with 1000 known bugs (APARs)

» “Anomalous Program Activity Report”
• OS finally becomes an important science:

– How to deal with complexity???
– UNIX based on Multics, but vastly simplified

Lec 2.158/31/09 Kubiatowicz CS162 ©UCB Fall 2009

A Multics System (Circa 1976)

• The 6180 at MIT IPC, skin doors open, circa 1976:
– “We usually ran the machine with doors open so the
operators could see the AQ register display, which
gave you an idea of the machine load, and for
convenient access to the EXECUTE button, which the
operator would push to enter BOS if the machine
crashed.”

• http://www.multicians.org/multics-stories.html
Lec 2.168/31/09 Kubiatowicz CS162 ©UCB Fall 2009

1973:
1. 7 Mbit/sq. in
140 MBytes

1979:
7. 7 Mbit/sq. in
2,300 MBytes

Early Disk History

Contrast: Seagate 2TB,
400 GB/SQ in, 3½ in disk,
4 platters

Lec 2.178/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Administrivia

• Waitlist: Everyone has been let into the class
• Cs162-xx accounts:

– Make sure you got an account form
» We have more forms for those of you who didn’t get one

– If you haven’t logged in yet, you need to do so
• Nachos readers:

– TBA: Will be down at Copy Central on Hearst
– Will include lectures and printouts of all of the code

• Video “Screencast” archives available off lectures page
– Just click on the title of a lecture for webcast
– Only works for lectures that I have already given!

• No slip days on first design document for each phase
– Need to get design reviews in on time

• Don’t know Java well?
– Perhaps try CS 9G self-paced Java course

Lec 2.188/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Administrivia
• Waitlist: Everyone has been let into the class

– Enough people dropped over weekend
• Cs162-xx accounts:

– Make sure you got an account form
» We have more forms for those of you who didn’t get one

– If you haven’t logged in yet, you need to do so
• Nachos readers:

– TBA: Will be down at Copy Central on Hearst
– Will include lectures and printouts of all of the code

• Video “Screencast” archives available off lectures page
– Just click on the title of a lecture for webcast
– Only works for lectures that I have already given!

• No slip days on first design document for each phase
– Need to get design reviews in on time

• Don’t know Java well?
– Perhaps try CS 9G self-paced Java course

Lec 2.198/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Administriva: Time for Project Signup
• Project Signup: Watch “Group/Section Assignment Link”

– 4-5 members to a group
» Everyone in group must be able to actually attend same section
» The sections assigned to you by Telebears are temporary!

– Only submit once per group!
» Everyone in group must have logged into their cs162-xx

accounts once before you register the group
» Make sure that you select at least 2 potential sections
» Due Thursday 9/3 by 11:59pm

• Sections:
– Watch for section assignments next Monday/Tuesday
– Attend new sections next week

Jingtao Wang75 EvansTu 3:00P-4:00P 104
4 Evans
4 Evans
4 Evans
6 Evans
Location

Jingtao WangTu 2:00P-3:00P 103
Alex SmolenTu 1:00P-2:00P 105 (New)
Gunho LeeTu 11:00A-12:00P 102
Gunho LeeTu 10:00A-11:00A 101

TATimeSection

Lec 2.208/31/09 Kubiatowicz CS162 ©UCB Fall 2009

History Phase 2 (1970 – 1985)
Hardware Cheaper, Humans Expensive

• Computers available for tens of thousands of dollars
instead of millions

• OS Technology maturing/stabilizing
• Interactive timesharing:

– Use cheap terminals (~$1000) to let multiple users
interact with the system at the same time

– Sacrifice CPU time to get better response time
– Users do debugging, editing, and email online

• Problem: Thrashing
– Performance very non-linear

response with load
– Thrashing caused by many

factors including
» Swapping, queueing

Users

Response
tim

e

Lec 2.218/31/09 Kubiatowicz CS162 ©UCB Fall 2009

The ARPANet (1968-1970’s)

• Paul Baran
– RAND Corp, early 1960s
– Communications networks

that would survive a
major enemy attack

• ARPANet: Research vehicle for
“Resource Sharing Computer
Networks”

– 2 September 1969: UCLA
first node on the
ARPANet

– December 1969: 4 nodes
connected by 56 kbps
phone lines

– 1971: First Email
– 1970’s: <100 computers

SRI
940

UCLA
Sigma 7

UCSB
IBM 360

Utah
PDP 10

IMPs

BBN team that implemented
the interface message processor

Lec 2.228/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Lec 2.238/31/09 Kubiatowicz CS162 ©UCB Fall 2009

ARPANet Evolves into Internet
• First E-mail SPAM message: 1 May 1978 12:33 EDT

• 80-83: TCP/IP, DNS; ARPANET and MILNET split
• 85-86: NSF builds NSFNET as backbone, links 6

Supercomputer centers, 1.5 Mbps, 10,000 computers
• 87-90: link regional networks, NSI (NASA), ESNet

(DOE), DARTnet, TWBNet (DARPA), 100,000 computers

ARPANet
SATNet
PRNet

TCP/IP NSFNet Deregulation &
Commercialization

1965 1975 1985 1995 2005
WWW

ISP
ASP
AIP

SATNet: Satelite network
PRNet: Radio Network

Lec 2.248/31/09 Kubiatowicz CS162 ©UCB Fall 2009

What is a Communication Network?
(End-system Centric View)

• Network offers one basic service: move information
– Bird, fire, messenger, truck, telegraph, telephone,
Internet …

– Another example, transportation service: move
objects

» Horse, train, truck, airplane ...
• What distinguish different types of networks?

– The services they provide
• What distinguish the services?

– Latency
– Bandwidth
– Loss rate
– Number of end systems
– Service interface (how to invoke the service?)
– Others

» Reliability, unicast vs. multicast, real-time...

Lec 2.258/31/09 Kubiatowicz CS162 ©UCB Fall 2009

What is a Communication Network?
(Infrastructure Centric View)

• Communication medium: electron, photon
• Network components:

– Links – carry bits from one place to another (or maybe
multiple places): fiber, copper, satellite, …

– Interfaces – attach devices to links
– Switches/routers – interconnect links: electronic/optic,
crossbar/Banyan

– Hosts – communication endpoints: workstations, PDAs,
cell phones, toasters

• Protocols – rules governing communication between
nodes

– TCP/IP, ATM, MPLS, SONET, Ethernet, X.25
• Applications: Web browser, X Windows, FTP, ...

Lec 2.268/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Network Components (Examples)

Fibers

Coaxial
Cable

Links Interfaces Switches/routers

Ethernet card

Wireless card

Large router

Telephone
switch

Lec 2.278/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Types of Networks

• Geographical distance
– Local Area Networks (LAN): Ethernet, Token ring,
FDDI

– Metropolitan Area Networks (MAN): DQDB, SMDS
– Wide Area Networks (WAN): X.25, ATM, frame
relay

– Caveat: LAN, MAN, WAN may mean different
things

» Service, network technology, networks
• Information type

– Data networks vs. telecommunication networks
• Application type

– Special purpose networks: airline reservation
network, banking network, credit card network,
telephony

– General purpose network: Internet
Lec 2.288/31/09 Kubiatowicz CS162 ©UCB Fall 2009

History Phase 3 (1981—)
Hardware Very Cheap, Humans Very Expensive

• Computer costs $1K, Programmer costs $100K/year
– If you can make someone 1% more efficient by giving
them a computer, it’s worth it!

– Use computers to make people more efficient
• Personal computing:

– Computers cheap, so give everyone a PC
• Limited Hardware Resources Initially:

– OS becomes a subroutine library
– One application at a time (MSDOS, CP/M, …)

• Eventually PCs become powerful:
– OS regains all the complexity of a “big” OS
– multiprogramming, memory protection, etc (NT,OS/2)

• Question: As hardware gets cheaper does need for
OS go away?

Lec 2.298/31/09 Kubiatowicz CS162 ©UCB Fall 2009

History Phase 3 (con’t)
Graphical User Interfaces

• CS160  All about GUIs
• Xerox Star: 1981

– Originally a research
project (Alto)

– First “mice”, “windows”
• Apple Lisa/Machintosh: 1984

– “Look and Feel” suit 1988
• Microsoft Windows:

– Win 1.0 (1985)
– Win 3.1 (1990)
– Win 95 (1995)
– Win NT (1993)
– Win 2000 (2000)
– Win XP (2001)
– Win Vista (2007)

X
erox Star

W
indows 3.1

Single
Level

HAL/Protection

No HAL/
Full Prot

Lec 2.308/31/09 Kubiatowicz CS162 ©UCB Fall 2009

History Phase 4 (1988—): Distributed Systems

• Networking (Local Area Networking)
– Different machines share resources
– Printers, File Servers, Web Servers
– Client – Server Model

• Services
– Computing
– File Storage

Lec 2.318/31/09 Kubiatowicz CS162 ©UCB Fall 2009

• Developed by the research community
– Based on open standard: Internet Protocol
– Internet Engineering Task Force (IETF)

• Technical basis for many other types of networks
– Intranet: enterprise IP network

• Services Provided by the Internet
– Shared access to computing resources: telnet (1970’s)
– Shared access to data/files: FTP, NFS, AFS (1980’s)
– Communication medium over which people interact

» email (1980’s), on-line chat rooms, instant messaging (1990’s)
» audio, video (1990’s, early 00’s)

– Medium for information dissemination
» USENET (1980’s)
» WWW (1990’s)
» Audio, video (late 90’s, early 00’s) – replacing radio, TV?
» File sharing (late 90’s, early 00’s)

History Phase 4 (1988—): Internet

Lec 2.328/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Network “Cloud”

Lec 2.338/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Regional
Net

Regional Nets + Backbone

Regional
Net Regional

Net

Regional
Net Regional

Net

Regional
Net

Backbone

LAN LANLAN

LAN: Local Area Network

Lec 2.348/31/09 Kubiatowicz CS162 ©UCB Fall 2009

ISP

Backbones + NAPs + ISPs

ISP

ISP
ISP

Business
ISP

Consumer
ISP

LAN LANLAN

NAP NAP
Backbones

Dial-up

ISP: Internet Service Provide
NAP: Network Access Point

Lec 2.358/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Covad

Computers Inside the Core

@home

ISP
Cingular

Sprint AOL

LAN LANLAN

NAP

Dial-up

DSL
Always on

NAP

Cable
Head Ends

Cell
Cell

Cell

Satellite
Fixed Wireless

Lec 2.368/31/09 Kubiatowicz CS162 ©UCB Fall 2009

The Morris Internet Worm (1988)
• Internet worm (Self-reproducing)

– Author Robert Morris, a first-year Cornell grad student
– Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program

Lec 2.378/31/09 Kubiatowicz CS162 ©UCB Fall 2009

LoveLetter Virus (May 2000)
• E-mail message with

VBScript (simplified Visual
Basic)

• Relies on Windows
Scripting Host

– Enabled by default in
Win98/2000

• User clicks on
attachment infected!

– E-mails itself to everyone
in Outlook address book

– Replaces some files with a
copy of itself

– Searches all drives
– Downloads password

cracking program
• 60-80% of US companies

infected and 100K
European servers

Lec 2.388/31/09 Kubiatowicz CS162 ©UCB Fall 2009

History Phase 5 (1995—): Mobile Systems

• Ubiquitous Mobile Devices
– Laptops, PDAs, phones
– Small, portable, and inexpensive

» Recently twice as many smart phones as PDAs
» Many computers/person!

– Limited capabilities (memory, CPU, power, etc…)
• Wireless/Wide Area Networking

– Leveraging the infrastructure
– Huge distributed pool of resources extend devices
– Traditional computers split into pieces. Wireless
keyboards/mice, CPU distributed, storage remote

• Peer-to-peer systems
– Many devices with equal responsibilities work together
– Components of “Operating System” spread across globe

Lec 2.398/31/09 Kubiatowicz CS162 ©UCB Fall 2009

CITRIS’s Model:
A Societal Scale Information System

• Center for Information
Technology Research in the
Interest of Society

• The Network is the OS
– Functionality spread
throughout network

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Clusters

Massive Cluster

Gigabit Ethernet

Mobile, Ubiquitous Systems

Lec 2.408/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Datacenter is the Computer

• (From Luiz Barroso’s talk at RAD Lab 12/11)
• Google program == Web search, Gmail,…
• Google computer ==

– Thousands of computers, networking, storage
• Warehouse-sized facilities and workloads may be

unusual today but are likely to be more common in
the next few years

Lec 2.418/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Migration of Operating-System Concepts and Features

Lec 2.428/31/09 Kubiatowicz CS162 ©UCB Fall 2009

History of OS: Summary
• Change is continuous and OSs should adapt

– Not: look how stupid batch processing was
– But: Made sense at the time

• Situation today is much like the late 60s
– Small OS: 100K lines
– Large OS: 10M lines (5M for the browser!)

» 100-1000 people-years
• Complexity still reigns

– NT developed (early to late 90’s): Never worked well
– Windows 2000/XP: Very successful
– Windows Vista (aka “Longhorn”) delayed many times

» Finally released in January 2007
» Promised by removing some of the intended technology
» Slow adoption rate, even in 2008/2009

• CS162: understand OSs to simplify them

Lec 2.438/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Now for a quick tour of OS Structures

Lec 2.448/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Operating Systems Components
(What are the pieces of the OS)

• Process Management
• Main-Memory Management
• I/O System management
• File Management
• Networking
• User Interfaces

Lec 2.458/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Operating System Services
(What things does the OS do?)

• Services that (more-or-less) map onto components
– Program execution

» How do you execute concurrent sequences of instructions?
– I/O operations

» Standardized interfaces to extremely diverse devices
– File system manipulation

» How do you read/write/preserve files?
» Looming concern: How do you even find files???

– Communications
» Networking protocols/Interface with CyberSpace?

• Cross-cutting capabilities
– Error detection & recovery
– Resource allocation
– Accounting
– Protection

Lec 2.468/31/09 Kubiatowicz CS162 ©UCB Fall 2009

System Calls (What is the API)

• See Chapter 2 of 7th edition or Chapter 3 of 6th

Lec 2.478/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Operating Systems Structure
(What is the organizational Principle?)

• Simple
– Only one or two levels of code

• Layered
– Lower levels independent of upper levels

• Microkernel
– OS built from many user-level processes

• Modular
– Core kernel with Dynamically loadable modules

Lec 2.488/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Simple Structure

• MS-DOS – written to provide the most functionality
in the least space

– Not divided into modules
– Interfaces and levels of functionality not well
separated

Lec 2.498/31/09 Kubiatowicz CS162 ©UCB Fall 2009

UNIX: Also “Simple” Structure

• UNIX – limited by hardware functionality
• Original UNIX operating system consists of two

separable parts:
– Systems programs
– The kernel

» Consists of everything below the system-call
interface and above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system
functions;

» Many interacting functions for one level

Lec 2.508/31/09 Kubiatowicz CS162 ©UCB Fall 2009

UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 2.518/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Layered Structure

• Operating system is divided many layers (levels)
– Each built on top of lower layers
– Bottom layer (layer 0) is hardware
– Highest layer (layer N) is the user interface

• Each layer uses functions (operations) and services of
only lower-level layers

– Advantage: modularity  Easier debugging/Maintenance
– Not always possible: Does process scheduler lie above or
below virtual memory layer?

» Need to reschedule processor while waiting for paging
» May need to page in information about tasks

• Important: Machine-dependent vs independent layers
– Easier migration between platforms
– Easier evolution of hardware platform
– Good idea for you as well!

Lec 2.528/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Layered Operating System

Lec 2.538/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Microkernel Structure

• Moves as much from the kernel into “user” space
– Small core OS running at kernel level
– OS Services built from many independent user-level
processes

• Communication between modules with message passing
• Benefits:

– Easier to extend a microkernel
– Easier to port OS to new architectures
– More reliable (less code is running in kernel mode)
– Fault Isolation (parts of kernel protected from other
parts)

– More secure
• Detriments:

– Performance overhead severe for naïve implementation

Lec 2.548/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Modules-based Structure

• Most modern operating systems implement modules
– Uses object-oriented approach
– Each core component is separate
– Each talks to the others over known interfaces
– Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible

Lec 2.558/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Partition Based Structure for Multicore chips?

• Normal Components split
into pieces

– Device drivers
(Security/Reliability)

– Network Services
(Performance)

» TCP/IP stack
» Firewall
» Virus Checking
» Intrusion Detection

– Persistent Storage
(Performance,
Security, Reliability)

– Monitoring services
» Performance counters
» Introspection

– Identity/Environment
services (Security)

» Biometric, GPS,
Possession Tracking

• Applications Given
Larger Partitions

– Freedom to use
resources arbitrarily

DeviceDevice
DriversDrivers

Video &Video &
WindowWindow
DriversDrivers

FirewallFirewall
VirusVirus

IntrusionIntrusion

MonitorMonitor
AndAnd

AdaptAdapt

PersistentPersistent
Storage &Storage &

File SystemFile System

HCI/HCI/
VoiceVoice
RecRec

Large ComputeLarge Compute--BoundBound
ApplicationApplication

RealReal--TimeTime
ApplicationApplication

Iden
tity

Iden
tity

Lec 2.568/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Implementation Issues
(How is the OS implemented?)

• Policy vs. Mechanism
– Policy: What do you want to do?
– Mechanism: How are you going to do it?
– Should be separated, since both change

• Algorithms used
– Linear, Tree-based, Log Structured, etc…

• Event models used
– threads vs event loops

• Backward compatability issues
– Very important for Windows 2000/XP

• System generation/configuration
– How to make generic OS fit on specific hardware

Lec 2.578/31/09 Kubiatowicz CS162 ©UCB Fall 2009

Conclusion
• Rapid Change in Hardware Leads to changing OS

– Batch  Multiprogramming  Timeshare 
Graphical UI  Ubiquitous Devices 
Cyberspace/Metaverse/??

• OS features migrated from mainframes  PCs
• Standard Components and Services

– Process Control
– Main Memory
– I/O
– File System
– UI

• Policy vs Mechanism
– Crucial division: not always properly separated!

• Complexity is always out of control
– However, “Resistance is NOT Useless!”

