CS162
Operating Systems and
Systems Programming
Lecture 4

Thread Dispatching

September 9, 2009
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Recall: Modern Process with Multiple Threads

* Process: Operating system abstraction to represent
what is needed to run a single, multithreaded
program

+ Two parts:

- Multiple Threads

» Each thread is a single, sequential stream of execution
- Protected Resources:

» Main Memory State (contents of Address Space)

» I/O state (i.e. file descriptors)

* Why separate the concept of a thread from that of
a process?

- Discuss the "thread” part of a process (concurrency)
- Separate from the “address space” (Protection)
- Heavyweight Process = Process with one thread

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.2

Recall: Single and Multithreaded Processes

| code ” data H files | | code || data || files |

|registers] [stack I Iregistersl [registers] [regislers]

| stack || stack ” stack |

thread ——= ; ; g ;4—— thread

multithreaded process

single-threaded process

* Threads encapsulate concurrency
- "Active” component of a process
* Address spaces encapsulate protection
- Keeps buggy program from trashing the system

- "Passive” component of a process
9/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Lec 4.3

Goals for Today

* Further Understanding Threads
* Thread Dispatching
+ Beginnings of Thread Scheduling

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
9/9/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 4.4

Classification

of addr
spaces

threads One Many
Per AS:
One Ms&zgf{o:ﬁrly Traditional UNIX
Embedded systems Mach, 05/2, Linux,
Man (6eoworks, VxWorks, | Win 95?2, Mac OS X,
y J avaOS,.e'rc) Win NT to XP,
Java0s, Pilot(PC) Solaris, HP-UX

* Real operating systems have either

- One or many

address spaces

- One or many threads per address space
- Did Windows 95/98/ME have real memory protection?
- No: Users could overwrite process tables/System DLLs
Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.5

9/9/09

Thread State

+ State shared by all threads in process/addr space
- Contents of memory (global variables, heap)
- I/0 state (file system, network connections, etc)
- State “private” to each thread
- Kept in TCB = Thread Control Block
- CPU registers (including, program counter)
- Execution stack - what is this?

- Execution Stack
- Parameters, Temporary variables

- return PCs are kept while called procedures are
executing

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.6

Execution Stack Example

ACint tmp) {

it (tmp<2)
BO;

printf(tmp);

}

BO {
CO:;

}

CO {
A(2);

}

A(D);

Az tmp=1

ret=exit

B: ret=A+2

C: ret=B+1

Stack

A: tmp=2

ret=C+1

Pointer

9/9/09

'

Stack Growth

+ Stack holds temporary results
* Permits recursive execution
* Crucial to modern languages

Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.7

MIPS: Software conventions for Registers

0 constant 0 16
1 reserved for assembler ... (callee must save)
2 v0 expression evaluation & 23
3 vl function results 24 t8 temporary (cont'd)
4 a0 arguments 25 19
5 al 26 reserved for OS kernel
6 a2 27
7 a3 28 gp Pointerto global area
8 t0 temporary: caller saves 29 sp Stack pointer
. 30 fp frame pointer
15 t7 31 Return Address (HW)

+ Before calling procedure: - After return, assume
- Save caller-saves regs - Callee-saves reg OK
- Save V0, vl - gp,sp.fp OK (restored!)
- Save ra - Other things trashed
9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.8

Single-Threaded Example

+ Imagine the following C program:

main() {
ComputePIl (“pi.txt”);
PrintClassList(““clist.text”);

}

* What is the behavior here?
- Program would never print out class list
- Why? ComputePI would never finish

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.9

Use of Threads
* Version of program with Threads:

main(Q) {
CreateThread(ComputeP 1 (“pi.txt’));
CreateThread(PrintClassList(“clist.text™));

}

* What does “"CreateThread” do?
- Start independent thread running given procedure

* What is the behavior here?
- Now, you would actually see the class list
- This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

9/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 4.10

Memory Footprint of Two-Thread Example

+ If we stopped this program and examined it with a
debugger, we would see

- Two sets of CPU registers Stack 1
- Two sets of Stacks)
* Questions:
- How do we position stacks relative to Stack 2 | &
each other? t -3
- What maximum size should we choose a
for the stacks? s -§‘
- What happens if threads violate this? Heap Y
- How might you catch violations?
Global Data
Code

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.11

Per Thread State

- Each Thread has a Thread Control Block (TCB)

- Execution State: CPU registers, program counter,
pointer to stack

- Scheduling info: State (more later), priority, CPU time

- Accounting Info

- Various Pointers (for implementing scheduling queues)

- Pointer to enclosing process? (PCB)?

- Etc (add stuff as you find a need)
* In Nachos: "Thread” is a class that includes the TCB
+ OS Keeps track of TCBs in protected memory

- In Array, or Linked List, or ..

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.12

Lifecycle of a Thread (or Process)

» admitted interrupt exi ‘,

scheduler dispateh

IO or event completion 1/O or event wait

waiting

* As a thread executes, it changes state:

- new: The thread is being created
ready: The thread is waiting to run
running: Instructions are being executed
waiting: Thread waiting for some event to occur
terminated: The thread has finished execution
+ “"Active” threads are represented by their TCBs

- TCBs organized into queues based on their state
9/9/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 4.13

Ready Queue And Various I/0 Device Queues

*+ Thread not running = TCB is in some scheduler queue
- Separate queue for each device/signal/condition
- Each queue can have a different scheduler policy

Ready | Head Link Link Link —
Queue Tail Registers Registers Registers| =
Other Other Other
Tape Head D State State State
Unit o = TCB, TCB, TCBy¢
D'ZSk Head Link Link [
Unit O Tail Registers Registers| =
Other Other
Disk Head 1 State State
Unit 2 Tail __l_: TCB, TCB,
Ether Head 7 R L'intk L
. egisters -
Netwk O [Tqil e
State
TCB,
9/9/09 KUbTaTowicz CS162 ©UCB Fall 2009 Lec 4.14

Administrivia

+ Tentative Group assignments now posted on website
- Check out the “6roup/Section Assignment” link
- Please attend your newly assigned section!

*+ As you can see, we are a bit unbalanced in sections.

- Many of you didn't listen: you only listed one section
without sending me email to explain!

- Those of you who only selected one section must send me a
NEW email explaining why you can only make one section

» I expect 15 of these messages. Make sure to include your
group number and list of members

* Anyone without a group?
- Please come up to talk with me afterwards

+ Sections in this class are mandatory
- Go to the section that you have been assigned!
- Important information will be given in section
- 5% of grade is participation

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.15

Administrivia (2)
Information about Subversion on Handouts page
- Make sure to take a look

* We understand that there have been problems with
the Subversion server

- Hopefully will be already fixed
Other things on Handouts page

- Interesting papers

- Synchronization examples

- Previous finals/solutions
* Reader now available at Copy Central on Hearst
+ RSS feeds available (see top of lectures page)
Should be reading Nachos code by now!

- Start working on the first project

- Set up regular meeting times with your group

- Try figure out group interaction problems early on
9/9/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 4.16

Dispatch Loop

+ Conceptually, the dispatching loop of the operating system
looks as follows:

Loop {
RunThread();
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

- This is an infinite loop

- One could argue that this is all that the OS does
+ Should we ever exit this loop???

- When would that be?

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.17

Running a thread

Consider first portion: RunThread()

* How do I run a thread?
- Load its state (registers, PC, stack pointer) into CPU
- Load environment (virtual memory space, etc)
- Jump to the PC

* How does the dispatcher get control back?
- Internal events: thread returns control voluntarily
- External events: thread gets preempted

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.18

Internal Events

* Blocking on I/0

- The act of requesting I/0 implicitly yields the CPU
* Waiting on a “signal” from other thread

- Thread asks to wait and thus yields the CPU
+ Thread executes a yield()

- Thread volunteers to give up CPU

computeP1 O {
while(TRUE) {
ComputeNextDigit();

yieldQ;

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.19

Stack for Yielding Thread

ComputePL

yield
Trap to OS (

yimoub o015

* How do we run a new thread?
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* next Lecture */

}
* How does dispatcher switch to a new thread?
- Save anything next thread may trash: PC, regs, stack

- Maintain isolation for each thread
9/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 4.20

What do the stacks look like?

+ Consider the following

code blocks:
proc AQ { Thread S Thread T
BO; £ A A
} § B(while) B(while)
(<]
proc BQ { 3 yield yield
while(TRUE) { &
yieldQ);
¥
b
* Suppose we have 2
threads:
- Threads S and T
9/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 4.21

Saving/Restoring state (often called “"Context Switch)

Switch(tCur,tNew) {
/* Unload old thread */
TCB[tCur].regs.r7 = CPU.r7;

TCB[tCur].-regs.r0 = CPU.rO;
TCB[tCur].regs.sp = CPU.sp;
TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */
CPU.r7 TCB[tNew] .regs.r7;

CPU.rO TCB[tNew] .regs.r0;
CPU.sp = TCB[tNew].regs.sp;
CPU.retpc = TCB[tNew].regs.retpc;
return; /* Return to CPU.retpc */

9/9/09} Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.22

Switch Details

* How many registers need to be saved/restored?
- MIPS 4k: 32 Int(32b), 32 Float(32b)
- Pentium: 14 Int(32b), 8 Float(80b), 8 SSE(128b), ...

- Sparc(v7): 8 Regs(32b), 16 Int regs (32b) * 8 windows =
136 (32b)+32 Float (32b)

- Itanium: 128 Int (64b), 128 Float (82b), 19 Other(64b)
= retpc is where the return should jump to.

- In reality, this is implemented as a jump
* There is a real implementation of switch in Nachos.

- See switch.s

» Normally, switch is implemented as assembly!
- Of course, it's magical!
- But you should be able to follow it!

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.23

Switch Details (continued)

* What if you make a mistake in implementing switch?
- Suppose you forget to save/restore register 4

- Get intermittent failures der‘ending on when context switch
occurred and whether new thread uses register 4

- System will give wrong result without warning
+ Can you devise an exhaustive test to test switch code?
- No! Too many combinations and inter-leavings
* Cautionary tail:
- For speed, Topaz kernel saved one instruction in switch()
- Carefully documented!
» Only works As long as kernel size < 1MB
- What happened?
» Time passed, People forgot

» Later, they added features to kernel (no one removes
features!)

» Very weird behavior started happening

- Moral of story: Design for simplicity
9/9/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 4.24

What happens when thread blocks on I/0?

CopyFile

read
Trap to OS C

Y4moub 3o04s

* What happens when a thread requests a block of
data from the file system?

- User code invokes a system call
- Read operation is initiated
- Run new thread/switch
* Thread communication similar
- Wait for Signal/Join

- Networking
9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.25

External Events

* What happens if thread never does any I/0,
never waits, and never yields control?

- Could the ComputePI program grab all resources
and never release the processor?

» What if it didn't print to console?
- Must find way that dispatcher can regain control!
- Answer: Utilize External Events

- Interrupts: signals from hardware or software
that stop the running code and jump to kernel

- Timer: like an alarm clock that goes off every
some many milliseconds

+ If we make sure that external events occur
frequently enough, can ensure dispatcher runs

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.26

Example: Network Interrupt

> Raise priority ~
Qq,b@&‘ {¢Reenable All Ints

O N\ /A0 H
add $r1,8r2,8r3 7 DAV Save registers |-
subi $r4,$rl1,#4 ZCH Dispatch to Handley +

slli $r4,%$r4,#2
R Transfer Network
Packet from hardware>

Plpelme Flush to Kernel Buffers

Iw $r2,0(%$rd)
Iw $r3,4($r4)
add $r2,$r2,%$r3
sw 8($r4d),$r2

Restore registers
Clear current Int
Disable All Ints
Restore priority./
RTI

* An interrupt is a hardware-invoked context switch
- No separate step to choose what to run next

- Always run the interrupt handler immediately
9/9/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 4.27

External Interrupt
Interrupt Handler

“w

Use of Timer Interrupt to Return Control

+ Solution to our dispatcher problem
- Use the timer interrupt to force scheduling decisions

Some Routine

Interrupt

yimoub 3o0ig

* Timer Interrupt routine:
TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

+ I/0 interrupt: same as timer interrupt except that
DoHousekeeping() replaced by Servicel0().

9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.28

Choosing a Thread to Run Summary

* How does Dispatcher decide what to run? * The state of a thread is contained in the TCB
- Zero ready threads - dispatcher loops - Registers, PC, stack pointer
» Alternative is to create an “idle thread”
» Can put machine into low-power mode
- Exactly one ready thread - easy
- More than one ready thread: use scheduling priorities
* Possible priorities:
- LIFO (last in, first out): . .
) - Can be very expensive if many registers
» put ready threads on front of list, remove from front
. - Must be very carefully constructed!
- Pick one at random M heduli .
- FIFO (first in, first out): any scheduling options

- Decision of which thread to run complex enough for
complete lecture

- States: New, Ready, Running, Waiting, or Terminated
* Multithreading provides simple illusion of multiple CPUs
- Switch registers and stack to dispatch new thread
- Provide mechanism to ensure dispatcher regains control
+ Switch routine

» Put ready threads on back of list, pull them from front
» This is fair and is what Nachos does
- Priority queue:

» keep ready list sorted by TCB priority field
9/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 4.29 9/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.30

