
CS162
Operating Systems and
Systems Programming

Lecture 6

Synchronization

September 16, 2009
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 6.29/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue

• Arguments to ThreadFork()
– Pointer to application routine (fcnPtr)
– Pointer to array of arguments (fcnArgPtr)
– Size of stack to allocate

• Implementation
– Sanity Check arguments
– Enter Kernel-mode and Sanity Check arguments again
– Allocate new Stack and TCB
– Initialize TCB and place on ready list (Runnable).

Lec 6.39/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: How does Thread get started?

• Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()
– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 6.49/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping

– Includes things like recording
start time of thread

– Other Statistics
• Stack will grow and shrink

with execution of thread
• Final return from thread returns into ThreadRoot()

which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack growth

Thread Code

Lec 6.59/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way,

programs must work under all circumstances
• Independent Threads:

– No state shared with other threads
– Deterministic Input state determines results
– Reproducible Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that
bugs can be intermittent
– Sometimes called “Heisenbugs”

Lec 6.69/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Goals for Today

• Concurrency examples
• Need for synchronization
• Examples of valid synchronization

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 6.79/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Interactions Complicate Debugging
• Is any program truly independent?

– Every process shares the file system, OS resources,
network, etc

– Extreme example: buggy device driver causes thread A to
crash “independent thread” B

• You probably don’t realize how much you depend on
reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

– Example: Debugging statements can overrun stack
• Non-deterministic errors are really difficult to find

– Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

Lec 6.89/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives,
so computers must cooperate
– By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

Lec 6.99/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Threaded Web Server

• Multithreaded version:
serverLoop() {

connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Advantages of threaded version:

– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• What if too many requests come in at once?

Lec 6.109/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of threads,

representing the maximum level of multiprogramming

master() {
allocThreads(slave,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

slave(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool
queue

Lec 6.119/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Administrivia

• Should be working on first project
– Make sure to be reading Nachos code
– First design document due next Wednesday! (One week)
– Set up regular meeting times with your group
– Let’s get group interaction problems solved early

• Design Document:
– Information up on the Nachos page
– Important inclusion: Testing methodology!

» Give us a strategy for testing your code
» We will be grading your methodology in the document

• If you need to know more about synchronization
primitives before I get to them, use book!
– Chapter 6 (in 7th/8th edition) and Chapter 7 (in 6th
edition) are all about synchronization

Lec 6.129/16/09 Kubiatowicz CS162 ©UCB Fall 2009

ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

Lec 6.139/16/09 Kubiatowicz CS162 ©UCB Fall 2009

ATM bank server example
• Suppose we wanted to implement a server process to

handle requests from an ATM network:
BankServer() {while (TRUE) {ReceiveRequest(&op, &acctId, &amount);ProcessRequest(op, acctId, amount);}}
ProcessRequest(op, acctId, amount) {if (op == deposit) Deposit(acctId, amount);else if …}
Deposit(acctId, amount) {acct = GetAccount(acctId); /* may use disk I/O */acct->balance += amount;StoreAccount(acct); /* Involves disk I/O */}

• How could we speed this up?
– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)

Lec 6.149/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Event Driven Version of ATM server
• Suppose we only had one CPU

– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-
driven style

• Example
BankServer() {

while(TRUE) {event = WaitForNextEvent();if (event == ATMRequest)StartOnRequest();else if (event == AcctAvail)ContinueRequest();else if (event == AcctStored)FinishRequest();}}
– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces
which could be blocking?

– This technique is used for graphical programming

Lec 6.159/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without

“deconstructing” code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance

Lec 6.169/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Multiprocessing vs Multiprogramming
• What does it mean to run two threads “concurrently”?

– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

• Also recall: Hyperthreading
– Possible to interleave threads on a per-instruction basis
– Keep this in mind for our examples (like multiprocessing)

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 6.179/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Problem is at the lowest level
• Most of the time, threads are working on separate

data, so scheduling doesn’t matter:
Thread A Thread B
x = 1; y = 2;

• However, What about (Initially, y = 12):
Thread A Thread B
x = 1; y = 2;

x = y+1; y = y*2;
– What are the possible values of x?

• Or, what are the possible values of x below?
Thread A Thread B
x = 1; x = 2;

– X could be 1 or 2 (non-deterministic!)
– Could even be 3 for serial processors:

» Thread A writes 0001, B writes 0010.
» Scheduling order ABABABBA yields 3!

Lec 6.189/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Atomic Operations
• To understand a concurrent program, we need to know

what the underlying indivisible operations are!
• Atomic Operation: an operation that always runs to

completion or not at all
– It is indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the middle

– Fundamental building block – if no atomic operations, then
have no way for threads to work together

• On most machines, memory references and assignments
(i.e. loads and stores) of words are atomic
– Consequently – weird example that produces “3” on
previous slide can’t happen

• Many instructions are not atomic
– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole
array

Lec 6.199/16/09 Kubiatowicz CS162 ©UCB Fall 2009

• Threaded programs must work for all interleavings of
thread instruction sequences
– Cooperating threads inherently non-deterministic and
non-reproducible

– Really hard to debug unless carefully designed!
• Example: Therac-25

– Machine for radiation therapy
» Software control of electron

accelerator and electron beam/
Xray production

» Software control of dosage
– Software errors caused the
death of several patients
» A series of race conditions on

shared variables and poor
software design

» “They determined that data entry speed during editing
was the key factor in producing the error condition: If
the prescription data was edited at a fast pace, the
overdose occurred.”

Correctness Requirements

Lec 6.209/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Space Shuttle Example
• Original Space Shuttle launch aborted 20 minutes

before scheduled launch
• Shuttle has five computers:

– Four run the “Primary Avionics
Software System” (PASS)
» Asynchronous and real-time
» Runs all of the control systems
» Results synchronized and compared every 3 to 4 ms

– The Fifth computer is the “Backup Flight System” (BFS)
» stays synchronized in case it is needed
» Written by completely different team than PASS

• Countdown aborted because BFS disagreed with PASS
– A 1/67 chance that PASS was out of sync one cycle
– Bug due to modifications in initialization code of PASS

» A delayed init request placed into timer queue
» As a result, timer queue not empty at expected time to

force use of hardware clock
– Bug not found during extensive simulation

PASS

BFS

Lec 6.219/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Another Concurrent Program Example

• Two threads, A and B, compete with each other
– One tries to increment a shared counter
– The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > -10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

• Who wins? Could be either
• Is it guaranteed that someone wins? Why or why not?
• What it both threads have their own CPU running at

same speed? Is it guaranteed that it goes on
forever?

Lec 6.229/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Hand Simulation Multiprocessor Example

• Inner loop looks like this:
Thread A Thread B

r1=0 load r1, M[i]
r1=0 load r1, M[i]

r1=1 add r1, r1, 1
r1=-1 sub r1, r1, 1

M[i]=1 store r1, M[i] M[i]=-1 store r1, M[i]
• Hand Simulation:

– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor?
– Yes! Unlikely, but if you depending on it not happening,
it will and your system will break…

Lec 6.239/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Motivation: “Too much milk”

• Great thing about OS’s – analogy between
problems in OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Lec 6.249/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Definitions

• Synchronization: using atomic operations to ensure
cooperation between threads
– For now, only loads and stores are atomic
– We are going to show that its hard to build anything
useful with only reads and writes

• Mutual Exclusion: ensuring that only one thread does
a particular thing at a time
– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread
can execute at once. Only one thread at a time will
get into this section of code.
– Critical section is the result of mutual exclusion
– Critical section and mutual exclusion are two ways of
describing the same thing.

Lec 6.259/16/09 Kubiatowicz CS162 ©UCB Fall 2009

More Definitions
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on

the refrigerator
– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet

#$@%@#$@

Lec 6.269/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Too Much Milk: Correctness Properties

• Need to be careful about correctness of
concurrent programs, since non-deterministic
– Always write down behavior first
– Impulse is to start coding first, then when it
doesn’t work, pull hair out

– Instead, think first, then code
• What are the correctness properties for the

“Too much milk” problem???
– Never more than one person buys
– Someone buys if needed

• Restrict ourselves to use only atomic load and
store operations as building blocks

Lec 6.279/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory
read/write are atomic):

if (noMilk) {if (noNote) {leave Note;buy milk;remove note;}}
• Result?

– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and
note but before buying milk!

• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…
– Must work despite what the dispatcher does!

Lec 6.289/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {if (noNote) {leave Note;buy milk;}}
remove note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

Lec 6.299/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Too Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;if (noNote B) { if (noNoteA) {if (noMilk) { if (noMilk) {buy Milk; buy Milk;} }} }remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead
each to think that the other is going to buy

• Really insidious:
– Extremely unlikely that this would happen, but will at
worse possible time

– Probably something like this in UNIX
Lec 6.309/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

Lec 6.319/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;while (note B) { //X if (noNote A) { //Ydo nothing; if (noMilk) {} buy milk;if (noMilk) { }buy milk; }} remove note B;remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 6.329/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece

of code for each thread:
if (noMilk) {buy milk;}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way

– Have hardware provide better (higher-level) primitives
than atomic load and store

– Build even higher-level programming abstractions on this
new hardware support

Lec 6.339/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a

lock (more in a moment).
– Lock.Acquire() – wait until lock is free, then grab
– Lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are
waiting for the lock and both see it’s free, only one
succeeds to grab the lock

• Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)

buy milk;
milklock.Release();

• Once again, section of code between Acquire() and Release() called a “Critical Section”
• Of course, you can make this even simpler: suppose

you are out of ice cream instead of milk
– Skip the test since you always need more ice cream.

Lec 6.349/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Where are we going with synchronization?

• We are going to implement various higher-level
synchronization primitives using atomic operations
– Everything is pretty painful if only atomic primitives are
load and store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

Higher-
level
API

Programs

Lec 6.359/16/09 Kubiatowicz CS162 ©UCB Fall 2009

Summary

• Concurrent threads are a very useful abstraction
– Allow transparent overlapping of computation and I/O
– Allow use of parallel processing when available

• Concurrent threads introduce problems when accessing
shared data
– Programs must be insensitive to arbitrary interleavings
– Without careful design, shared variables can become
completely inconsistent

• Important concept: Atomic Operations
– An operation that runs to completion or not at all
– These are the primitives on which to construct various
synchronization primitives

• Showed how to protect a critical section with only
atomic load and store pretty complex!

