CS162
Operating Systems and
Systems Programming
Lecture 9

Tips for Working in a Project Team/
Cooperating Processes and Deadlock

September 28, 2009
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Definition of Monitor

+ Semaphores are confusing because dual purpose:
- Both mutual exclusion and scheduling constraints
- Cleaner idea: Use /ocks for mutual exclusion and
condition variables for scheduling constraints
* Monitor: a lock and zero or more condition variables
for managing concurrent access to shared data
- Use of Monitors is a programming paradigm
¢ Lock: provides mutual exclusion to shared data:
- Always acquire before accessing shared data structure
- Always release after finishing with shared data

* Condition Variable: a queue of threads waiting for
something /nside a critical section
- Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep
- Contrast to semaphores: Can't wait inside critical

section
9/28/09 Kubiatowicz €S162 @UCB Fall 2009 Lec 9.2

Review: Programming with Monitors

* Monitors represent the logic of the program
- Wait if necessary
- Signal when change something so any waiting threads
can proceed
* Basic structure of monitor-based program:

lock
while (need to wait) { Check and/or update
condvar.wait(); state variables

Wait if necessary
unlock

do something so no need to wait

lock

condvar.signal(); Check and/or update
state variables

unlock

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.3

Goals for Today

* Tips for Programming in a Project Team
* Language Support for Synchronization
- Discussion of Deadlocks
- Conditions for its occurrence
- Solutions for breaking and avoiding deadlock

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.4

Tips for Programming in a Project Team

- Big projects require more than one
person (or long, long, long time)

- Big OS: thousands of person-years!

+ It's very hard to make software
project teams work correctly
- Doesn't seem to be as true of big
construction projects
» Empire state building finished in
one year: staging iron production
thousands of miles away
» Or the Hoover dam: built towns to
hold workers

- Is it OK to miss deadlines?

"You just have
to get your » We make it free (slip days)

» Reality: they're very expensive as
time-to-market is one of the most
important things!

9/28/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 9.5

synchronization right!”

Big Projects

* What is a big project?
- Time/work estimation is hard
- Programmers are eternal o,aﬂmisﬂcs
(it will only take two days)!

» This is why we bug you about
starting the project early

» Had a grad student who used to say he just needed
"10 minutes” to fix something. Two hours later...
+ Can a project be efficiently partitioned?
- Par'ﬁ'rci‘cénable Imsk decreases in time as
you add people
- But, if you require communication: "
» Time reaches a minimum bound v\—
» With complex interactions, time increases! \v
- Mythical person-month problem:
» You estimate how long a project will take
» Starts to fall behind, so you add more people

» Project takes even more timel
9/28/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 9.6

Techniques for Partitioning Tasks

* Functional

- Person A implements threads, Person B implements
semaphores, Person C implements locks...
- Problem: Lots of communication across APIs
» If B changes the API, A may need to make changes
» Story: Large airline company spent $200 million on a new
scheduling and booking system. Two teams “working
together™ After two years, went to merge software.

Failed! Interfaces had changed (documenfed, but no one
noticed). Result: would cost another $200 million to fix.

* Task
- Person A designs, Person B writes code, Person C tests

- Ma{\ be difficult to find right balance, but can focus on
each person's strengths (Theory vs systems hacker)

- Since Debugging is hard, Microsoft has fwo testers for
each programmer

* Most CS5162 project teams are functional, but people

have had success with task-based divisions
9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.7

Communication

* More people mean more communication
- Changes have to be propagated to more people

- Think about person writing code for most
fundﬁmelntal component of system: everyone depends
on them!

+ Miscommunication is common

- "Index starts at 0? I thought you said 1!”
+ Who makes decisions?

- Individual decisions are fast but trouble

- 6roup decisions take time

- Centralized decisions require a big picture view (someone
who can be the "system architecf”)

- Often designating someone as the system architect
can be a good thing
- Better not be clueless
- Better have good people skills
- Better let other people do work
9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.8

Coordination
* More people = no one can make all meetmgs!'\‘

- They miss decisions and associated discussion

- Example from earlier class: one person missed
meetings and did something group had rejected

- Why do we limit groups to 5 people?
» You would never be able to schedule meetings otherwise
- Why do we require 4 people minimum?
» You need to experience groups to get ready for real world
* People have different work styles
- Some people work in the morning, some at night
- How do you decide when to meet or work together?
* What about project slippage?
- It will happen, guaranteed!

- Ex: phase 4, everyone busy but not talking. One person
way behind. No one knew until very end - too latel

* Hard to add people to existing group
- Members have already figured out how to work together

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.9

How to Make it Work?

* People are human. Get over it.

- People will make mistakes, miss meetings, miss
deadlines, etc. You need to live with it and adapt

- It is better to anticipate problems than clean up
afterwards.
+ Document, document, document
- Why Document?
» Expose decisions and communicate to others
» Easier to spot mistakes early
» Easier to estimate progress
- What to document?
» Everything (but don't overwhelm people or no one will read)
- Standardize!

» One programming format: variable naming conventions, tab
indents,etc.

» Comments (Requires, effects, modifies)—javadoc?

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.10

Suggested Documents for You to Maintain

* Project objectives: goals, constraints, and priorities
* Specifications: the manual plus performance specs

- This should be the first document generated and the
last one finished

* Meeting notes
- Document all decisions
- You can often cut & paste for the design documents
* Schedule: What is your anticipated timing?
- This document is criticall
* Organizational Chart
- Who is responsible for what task?

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.11

Use Software Tools

+ Source revision control software

- (Subversion, CVS, others..)

- Easy to go back and see history/undo mistakes

- Figure out where and why a bug got introduced

- Communicates changes to everyone (use CVS's features)
* Use automated testing tools

- Write scripts for non-interactive software

- Use “expect” for interactive software

- JUnit: automate unit testing

- Microsoft rebuilds the Vista kernel every night with the
day's changes. Everyone is running/testing the latest
software

*+ Use E-mail and instant messaging consistently to
leave a history trail

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.12

Test Continuously

+ Integration tests all the time, not at 11pm
on due datel!

- Write dummy stubs with simple functionality /,-:ﬂllﬂn
» Let's people test continuously, but more work [§FliAT Pt
- Schedule periodic integration tests =

» Get everyone in the same room, check out code, build,
and test.

» Don't wait until it is too late!
+ Testing types:
- Unit tests: check each module in isolation (use JUnit?)
- Daemons: subject code to exceptional cases
- Random testing: Subject code to random timing changes
* Test early, test later, test again

- Tendency is to test once and forget: what if something
changes in some other part of the code?

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.13

Administrivia
*+ Project 1 Code (and final design document)
- Due Friday 10/2 (this Friday!), Document Saturday
- Project 2 starts after you are done with Project 1
* Autograder issues
- Autograder not intended to run frequently at beginning
» Assume running every 4 hours or so at beginning of week
- We did have problems over the weekend
» Hopefully fixed by now
* Midterm I coming up in three weeks:
- Monday, 10/19, Location TBA still
- Will be 3 hour exam in evening (5:30-8:30 or 6:00-9:00)
» Should be 2 hour exam with extra time
- Closed book, one page of hand-written notes (both sides)
- Topics: Everything up to previous Wednesday
* No class on day of Midterm

+ I will post extra office hours for people who have questions about
the material (or life, whatever)
9/28/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 9.14

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.15

Resources

* Resources - passive entities needed by threads to do
their work

- CPU time, disk space, memory
+ Two types of resources:
- Preemptable - can take it away
» CPU, Embedded security chip
- Non-preemptable - must leave it with the thread
» Disk space, plotter, chunk of virtual address space
» Mutual exclusion - the right to enter a critical section

+ Resources may require exclusive access or may be
sharable

- Read-only files are typically sharable
- Printers are not sharable during time of printing

* One of the major tasks of an operating system is to

manage resources
9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.16

Starvation vs Deadlock @
+ Starvation vs. Deadlock

- Starvation: thread waits indefinitely

» Example, low-priority thread wai'l'inﬁ for resources
constantly in use by high-priority threads

- Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

- Deadlock = Starvation but not vice versa
» Starvation can end (but doesn't have to)

» Deadlock can't end without external intervention
9/28/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 9.17

Conditions for Deadlock
+ Deadlock not always deterministic - Example 2 mutexes:

Thread A Thread B
x.PQO:; y-PO;
y-PQO; X.PO;
y-VO; x.VQO;
x.VQO; y-VO:;

- Deadlock won't always happen with this code
» Have to have exactly the right timing ("wrong” timing?)

» So you release a piece of software, and you tested it, and
there it is, controlling a nuclear power plant...

+ Deadlocks occur with multiple resources

- Means you can't decompose the problem

- Can't solve deadlock for each resource independently
+ Example: System with 2 disk drives and two threads

- Each thread needs 2 disk drives to function

- Each thread gets one disk and waits for another one
9/28/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 9.18

Bridge Crossing Example

+ Each segment of road can be viewed as a resource
- Car must own the segment under them
- Must acquire segment that they are moving into

* For bridge: must acquire both halves
- Traffic only in one direction at a time

- Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

« If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)

- Several cars may have to be backed up
+ Starvation is possible

- East-going traffic really fast = no one goes west
9/28/09 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 9.19

Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)

9/28/09 Lec 9.20

Dining Lawyers Problem

* Five chopsticks/Five lawyers (really cheap restaurant)
- Free-for all: Lawyer will grab any one they can
- Need two chopsticks to eat
* What if all grab at same time?
- Deadlock!
+ How to fix deadlock?
- Make one of them give up a chopstick (Hah!)
- Eventually everyone will get chance to eat
* How to prevent deadlock?
- Never let Iawyer‘ take last chopsflck if no hungry

o/28/00 1OWYer has two chopsticks afterwards

Four requirements for Deadlock

* Mutual exclusion
- Only one thread at a time can use a resource.
* Hold and wait
- Thread holding at least one resource is waiting to
acquire additional resources held by other threads
* No preemption
- Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it
+ Circular wait
- There exists a set {T;, .., T,} of waiting threads
» T, is waiting for a resource that is held by T,

» T, is waiting for a resource that is held by T;
» ...

» T, is waiting for a resource that is held by T;

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.22

Resource-Allocation Graph

+ System Model Symbols

-Asetof Threads 7,, T, .. ., T, @ @
R

- Resource types R, R,, . . .,

m
CPU cycles, memory space, I/0 devices . :
- Each resource type R has W, instances. R .
1
- Each thread utilizes a resource as follows: R,

» Request() 7/ Use() / Release()

+ Resource-Allocation 6raph:
- V is partitioned into two types:
» T={T;, T,, .., T}, the set threads in the system.
» R={R, R, .., R}, the set of resource types in system
- request edge - directed edge T; - R;
- assignment edge - directed edge R, —> T;

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.23

Resource Allocation Graph Examples

* Recall:
- request edge - directed edge T; » R;
- assignment edge - directed edge R, 3 T;

R, Re R, R, R,
10 e s
A

Vi E Vi E S
R : . =
: R, 20 R, R,

Simple Resource Allocation Graph Allocation Graph
Allocation 6raph With Deadlock With Cycle, but
No Deadlock
9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.24

Methods for Handling Deadlocks @

* Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm

- Some technique for forcibly preempting resources
and/or terminating tasks

* Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

+ Ignore the problem and pretend that deadlocks
never occur in the system

- Used by most operating systems, including UNIX

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.25

Deadlock Detection Algorithm

* Only one of each type of resource = look for loops
* More General Deadlock Detection Algorithm
- Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources]: Current free resources each 'r%?e
[Request,]: Current requests from thread
[Alloc,]: Current resources held by thread X

- See if tasks can eventually terminate on their own
[Avail] = [FreeResources]

Add all nodes to UNFINISHED Ry @
do { o]
S

done = true
Foreach node in UNFINISHED {
if (JRequest, 4] <= [Avail]) {
remove node From UNFINISHED Ty T
[Avail] = [Avail] + [Alloc, g1 A
Yo
} until(done)

done = false o~
®,
- Nodes left in UNFINISHED = deadlocked

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.26

What to do when detect deadlock?

+ Terminate thread, force it to give up resources

- In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

- Shoot a dining lawyer

- But, not always possible - killing a thread holding a
mutex leaves world inconsistent

* Preempt resources without killing off thread

- Take away resources from thread temporarily

- Doesn't always fit with semantics of computation
* Roll back actions of deadlocked threads

- Hit the rewind button on TiVo, pretend last few
minutes never happened

- For bridge example, make one car roll backwards (may
require others behind him)

- Common technique in databases (transactions)

- Of course, if you restart in exactly the same way, may
reenter deadlock once again

* Many operating systems use other ogﬁons
9/28/09 Kubiatowicz €S162 ©UCB Fall 200!

Lec 9.27

Summary

+ Suggestions for dealing with Project Partners
- Start Early, Meet Often

- Develop Good Organizational Plan, Document Everything,
Use the right tools, Develop Comprehensive Testing Plan

- (Oh, and add 2 years to every deadline!)
+ Starvation vs. Deadlock
- Starvation: thread waits indefinitely
- Deadlock: circular waiting for resources
* Four conditions for deadlocks
- Mutual exclusion
» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait

» 3 set {7, .., T.} of threads with a cgyclic waiting pattern
Kubidtowicz €S162 ©UCB Fall 200 Lec 9.28

9/28/09

Summary (2)

* Techniques for addressing Deadlock
- Allow system to enter deadlock and then recover
- Ensure that system will never enter a deadlock

- Ignore the problem and pretend that deadlocks never
occur in the system

+ Deadlock detection

- Attempts to assess whether waiting graph can ever
make progress

* Next Time: Deadlock prevention

- Assess, for each allocation, whether it has the
potential to lead to deadlock

- Banker's algorithm gives one way to assess this

9/28/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.29

