
CS162
Operating Systems and
Systems Programming

Lecture 15

Page Allocation and 
Replacement

October 21, 2009
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 15.210/21/09 Kubiatowicz CS162 ©UCB Fall 2009

• PTE helps us implement demand paging
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find 
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace 
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs 
another process from ready queue
» Suspended process sits on wait queue

Review: Demand Paging Mechanisms

Lec 15.310/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Goals for Today

• Precise Exceptions
• Page Replacement Policies

– Clock Algorithm
– Nth chance algorithm
– Second-Chance-List Algorithm

• Page Allocation Policies
• Working Set/Thrashing

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.

Lec 15.410/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Software-Loaded TLB
• MIPS/Nachos TLB is loaded by software

– High TLB hit rateok to trap to software to fill the 
TLB, even if slower

– Simpler hardware and added flexibility: software can 
maintain translation tables in whatever convenient format

• How can a process run without hardware TLB fill?
– Fast path (TLB hit with valid=1):

» Translation to physical page done by hardware
– Slow path (TLB hit with valid=0 or TLB miss)

» Hardware receives a TLB Fault
– What does OS do on a TLB Fault? 

» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “Page Fault” detailed previously
» Continue thread

• Everything is transparent to the user process:
– It doesn’t know about paging to/from disk
– It doesn’t even know about software TLB handling



Lec 15.510/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Transparent Exceptions

• How to transparently restart faulting instructions?
– Could we just skip it? 

» No: need to perform load or store after reconnecting 
physical page

• Hardware must help out by saving:
– Faulting instruction and partial state 

» Need to know which instruction caused fault 
» Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

• What if an instruction has side-effects?

Load TLB
Fa

ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 2

Fa
ul
ti
ng

In
st

 2

Fetch page/
Load TLB

User

OS

TLB Faults

Lec 15.610/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once 

read-only
• What about “RISC” processors?

– For instance delayed branches?
» Example: bne somewhereld r1,(sp)
» Precise exception state consists of two PCs: PC and nPC

– Delayed exceptions:
» Example: div r1, r2, r3ld r1, (sp)
» What if takes many cycles to discover divide by zero, 

but load has already caused page fault?

Lec 15.710/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Precise Exceptions
• Precise  state of the machine is preserved as if 

program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as 
if they have not even started

– Same system code will work on different implementations 
– Difficult in the presence of pipelining, out-of-order 
execution, ...

– MIPS takes this position
• Imprecise  system software has to figure out what is 

where and put it all back together
• Performance goals often lead designers to forsake 

precise interrupts
– system software developers, user, markets etc. usually 
wish they had not done this

• Modern techniques for out-of-order execution and 
branch prediction help implement precise interrupts

Lec 15.810/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Steps in Handling a Page Fault



Lec 15.910/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Demand Paging Example
• Since Demand Paging like caching, can compute 

average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = (1 – p) x 200ns + p x 8 ms
= (1 – p)  x 200ns + p x 8,000,000ns
= 200ns + p x 7,999,800ns

• If one access out of 1,000 causes a page fault, then 
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT  p < 2.5 x 10-6

– This is about 1 page fault in 400000!
Lec 15.1010/21/09 Kubiatowicz CS162 ©UCB Fall 2009

What Factors Lead to Misses?
• Compulsory Misses: 

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow!  More later.

• Capacity Misses:
– Not enough memory. Must somehow increase size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option:  If multiple processes in memory: adjust 

percentage of memory allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, 
since it is a “fully-associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out 
prematurely because of the replacement policy

– How to fix? Better replacement policy

Lec 15.1110/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page.  Be fair – let every page live in 
memory for same amount of time.

– Bad, because throws out heavily used pages instead of 
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time 
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s.  Simple hardware
– Pretty unpredictable – makes it hard to make real-time 
guarantees

Lec 15.1210/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a 
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that 
can change position in list…

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)



Lec 15.1310/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Administrivia
• Exam not graded yet

– Hopefully get it back to you in section on Tuesday
– Will get solutions up early next week

• Project II
– Due by Friday at midnight
– Good Luck!

• In the news: Sunday (10/18)
First use of On Star to recover stolen vehicle
– Two guys carjacked in 2009 Chevy Tahoe
– On Star locates vehicle and while police chasing it, give command 

to SUV to slow down
» On Star operator flashed lights first so that police could make sure 

that they had correct car
» Hapless crook tries to escape on foot, falls in swimming pool

– Is this Big Brother, or a Good Thing???
• Related: My OS group talked to researchers from Bosch

– They make lots of things – including car electronics
– Confirmed that high-end cars have over 70 Engine Control Units

» ECU for short
» Processors controlling breaks, fuel injection, navigation, climate
» Interconnected with CAN (Controller Area Network)

– Thinking about consolidating functions into smaller number of 
MultiCore chips (But—how to meet hard realtime requirements??)

Lec 15.1410/21/09 Kubiatowicz CS162 ©UCB Fall 2009

In the News: Android
• Android is the new operating system from Google

– For Mobile devices
» Phones
» Ebook Readers 

(i.e. B&N)
– Linux version 2.6.x
– Java virtual machine and 
runtime system

– Lots of media extensions
» WebKit for browsing
» Media Libraries
» Cellular Networking

• Mobile Systems are the hottest new software stack
– Ubiquitous Computing
– Worldwide, more than 1 billion new cell phones 
purchased/year for last few years
» Compare: worldwide number PCs purchased/year ~ 250M

Lec 15.1510/21/09 Kubiatowicz CS162 ©UCB Fall 2009

• Suppose we have 3 page frames, 4 virtual pages, and 
following reference stream: 
– A B C A B D A D B C B

• Consider FIFO Page replacement:

– FIFO: 7 faults. 
– When referencing D, replacing A is bad choice, since 
need A again right away

Example: FIFO

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Lec 15.1610/21/09 Kubiatowicz CS162 ©UCB Fall 2009

• Suppose we have the same reference stream: 
– A B C A B D A D B C B

• Consider MIN Page replacement:

– MIN: 5 faults 
– Where will D be brought in? Look for page not 
referenced farthest in future.

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:



Lec 15.1710/21/09 Kubiatowicz CS162 ©UCB Fall 2009

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

B

C

DC

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

Lec 15.1810/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the 
miss rate goes down
– Does this always happen?
– Seems like it should, right?

• No: BeLady’s anomaly 
– Certain replacement algorithms (FIFO) don’t have this 
obvious property!

Lec 15.1910/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO!  (Called Belady’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with 
X pages are a subset of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

Lec 15.2010/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Implementing LRU
• Perfect:

– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with 
single clock hand
– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy 

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1used recently; clear and leave alone

0selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop aroundFIFO



Lec 15.2110/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Clock Algorithm: Not Recently Used

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• What if hand moving slowly?
– Good sign or bad sign?

» Not many page faults and/or find page quickly
• What if hand is moving quickly?

– Lots of page faults and/or lots of reference bits set
• One way to view clock algorithm: 

– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Lec 15.2210/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1clear use and also clear counter (used in last sweep)
» 0increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without 
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give 
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 15.2310/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Clock Algorithms: Details
• Which bits of a PTE entry are useful to us?

– Use: Set when page is referenced; cleared by clock 
algorithm

– Modified: set when page is modified, cleared when page 
written to disk

– Valid: ok for program to reference this page
– Read-only: ok for program to read page, but not modify

» For example for catching modifications to code pages!
• Do we really need hardware-supported “modified” bit?

– No.  Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages
» On write, trap to OS. OS sets software “modified” bit, 

and marks page as read-write.
» Whenever page comes back in from disk, mark read-only

Lec 15.2410/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Clock Algorithms Details (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits 
and mark page as invalid again 

• Remember, however, that clock is just an 
approximation of LRU
– Can we do a better approximation, given that we have 
to take page faults on some reads and writes to collect 
use information?

– Need to identify an old page, not oldest page!
– Answer: second chance list



Lec 15.2510/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to 
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list, 
mark RW

– Not on SC list: page in to front of Active list, mark RW; 
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second 
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

Ac
ce
ss

New
SC

Victims

Overflow

Lec 15.2610/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Second-Chance List Algorithm (con’t)
• How many pages for second chance list?

– If 0  FIFO
– If all  LRU, but page fault on every page reference

• Pick intermediate value.  Result is:
– Pro: Few disk accesses (page only goes to disk if unused 
for a long time) 

– Con: Increased overhead trapping to OS (software / 
hardware tradeoff)

• With page translation, we can adapt to any kind of 
access the program makes
– Later, we will show how to use page translation / 
protection to share memory between threads on widely 
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they 
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway

Lec 15.2710/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other 
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep 
freelist full (“background”)

D

D

Free Pages
For Processes

Lec 15.2810/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Demand Paging (more details) 

• Does software-loaded TLB need use bit? 
Two Options:
– Hardware sets use bit in TLB; when TLB entry is 
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything 
not in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page  physical page 
– Do we need a reverse mapping (i.e. physical page 
virtual page)?
» Yes. Clock algorithm runs through page frames. If sharing, 

then multiple virtual-pages per physical page
» Can’t push page out to disk without invalidating all PTEs



Lec 15.2910/21/09 Kubiatowicz CS162 ©UCB Fall 2009

Summary
• Precise Exception specifies a single instruction for 

which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have 
started 

• Replacement policies
– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past 

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approx LRU
– Divide pages into two groups, one of which is truly LRU 
and managed on page faults.


