
CS162
Operating Systems and
Systems Programming

Lecture 20

Reliability and Access Control /
Distributed Systems

November 9, 2009
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 20.211/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Example of Multilevel Indexed Files
• Multilevel Indexed Files:

(from UNIX 4.1 BSD)
– Key idea: efficient for small
files, but still allow big files

– File Header format:
» First 10 ptrs to data blocks
» Block 11 points to “indirect

block” containing 256 blocks
» Block 12 points to “doubly-

indirect block” containing
256 indirect blocks for total
of 64K blocks

» Block 13 points to a triply indirect block (16M blocks)
• UNIX 4.1 Pros and cons

– Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy

– Cons: Lots of seeks
Very large files must read many indirect block (four
I/Os per block!)

Lec 20.311/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: UNIX BSD 4.2
• Inode Structure Same as BSD 4.1 (same file header

and triply indirect blocks), except incorporated ideas
from DEMOS:
– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning

• BSD 4.2 Fast File System (FFS)
– File Allocation and placement policies

» Put each new file at front of different range of blocks
» To expand a file, you first try successive blocks in

bitmap, then choose new range of blocks
– Inode for file stored in same “cylinder group” as parent
directory of the file

– Store files from same directory near each other
– Note: I put up the original FFS paper as reading for
last lecture (and on Handouts page).

• Later file systems
– Clustering of files used together, automatic defrag of
files, a number of additional optimizations

Lec 20.411/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Goals for Today

• File Caching
• Durability
• Authorization
• Distributed Systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 20.511/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Where are inodes stored?

• In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders
– Header not stored near the data blocks. To read a
small file, seek to get header, seek back to data.

– Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

Lec 20.611/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Where are inodes stored?

• Later versions of UNIX moved the header
information to be closer to the data blocks
– Often, inode for file stored in same “cylinder
group” as parent directory of the file (makes an ls
of that directory run fast).

– Pros:
» UNIX BSD 4.2 puts a portion of the file header

array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinderno
seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from
disk at same time

» Reliability: whatever happens to the disk, you can
find many of the files (even if directories
disconnected)

– Part of the Fast File System (FFS)
» General optimization to avoid seeks

Lec 20.711/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Linux Example: Ext2/3 Disk Layout

• Disk divided into block
groups
– Provides locality
– Each group has two
block-sized bitmaps
(free blocks/inodes)

– Block sizes settable
at format time:
1K, 2K, 4K, 8K…

• Actual Inode structure
similar to 4.2BSD
– with 12 direct pointers

• Ext3: Ext2 w/Journaling
– Several degrees of
protection with more or
less cost

• Example: create a file1.dat
under /dir/ in Ext3

Lec 20.811/9/09 Kubiatowicz CS162 ©UCB Fall 2009

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes

In-Memory File System Structures

Lec 20.911/9/09 Kubiatowicz CS162 ©UCB Fall 2009

File System Caching
• Key Idea: Exploit locality by caching data in memory

– Name translations: Mapping from pathsinodes
– Disk blocks: Mapping from block addressdisk content

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
– Can contain “dirty” blocks (blocks not yet on disk)

• Replacement policy? LRU
– Can afford overhead of timestamps for each disk block
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to

accommodate a host’s working set of files.
– Disadvantages:

» Fails when some application scans through file system,
thereby flushing the cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used
Lec 20.1011/9/09 Kubiatowicz CS162 ©UCB Fall 2009

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate

to the buffer cache vs virtual memory?
– Too much memory to the file system cache  won’t be
able to run many applications at once

– Too little memory to file system cache  many
applications may run slowly (disk caching not effective)

– Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced

• Read Ahead Prefetching: fetch sequential blocks early
– Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

– Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among

concurrent file requests

Lec 20.1111/9/09 Kubiatowicz CS162 ©UCB Fall 2009

File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent

out to disk
– Instead, write() copies data from user space buffer
to kernel buffer (in cache)
» Enabled by presence of buffer cache: can leave written

file blocks in cache for a while
» If some other application tries to read data before

written to disk, file system will read from cache
– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value

for a file
» Some files need never get written to disk! (e..g temporary

scratch files written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file

has been written out? (lose pointer to inode!)
Lec 20.1211/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Administrivia

• Wednesday is a holiday
– No class, No office hours
– We will be having sections tomorrow

• I will be out of town this week
– Gone Tuesday – Friday
– Giving lectures on Quantum Computing and Multicore OS

• Final Exam
– Thursday, December 17th, 8:00-11:00 am
– All material from the course

» With slightly more focus on second half, but you are still
responsible for all the material

– Two sheets of notes, both sides

Lec 20.1311/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Aside: Command Queueing

• Mentioned that some disks do queueing
– Ability for disk to take multiple requests
– Do elevator algorithm automatically on disk

• First showed up in SCSI-2 timeframe
– Released in 1990, but later retracted
– Final release in 1994

» Note that “MSDOS” still under Windows-3.1
• Now prevalent in many drives

– SATA-II: “NCQ” (Native Command Queueing)
• Modern Disk (Seagate):

– 2 TB
– 7200 RPM
– 3Gbits/second SATA-II interface (serial)
– 32 MB on-disk cache

Lec 20.1411/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Important “ilities”
• Availability: the probability that the system can

accept and process requests
– Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data

despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone

• Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)
– Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk
crashes, other problems

Lec 20.1511/9/09 Kubiatowicz CS162 ©UCB Fall 2009

What about crashes?
Log Structured and Journaled File Systems

• Better reliability through use of log
– All changes are treated as transactions.

» A transaction either happens completely or not at all
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately,
data preserved in the log

• Difference between “Log Structured” and “Journaled”
– Log Structured Filesystem (LFS): data stays in log form
– Journaled Filesystem: Log used for recovery

• For Journaled system:
– Log used to asynchronously update filesystem

» Log entries removed after used
– After crash:

» Remaining transactions in the log performed (“Redo”)
• Examples of Journaled File Systems:

– Ext3 (Linux), XFS (Unix), etc.
Lec 20.1611/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Other ways to make file system durable?
• Disk blocks contain Reed-Solomon error correcting

codes (ECC) to deal with small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is

struck by lightning….
» Could put copies on servers in different continents…

• RAID: Redundant Arrays of Inexpensive Disks
– Data stored on multiple disks (redundancy)
– Either in software or hardware

» In hardware case, done by disk controller; file system may
not even know that there is more than one disk in use

Lec 20.1711/9/09 Kubiatowicz CS162 ©UCB Fall 2009

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its "shadow“
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)

• Reads may be optimized
– Can have two independent reads to same data

• Recovery:
– Disk failure  replace disk and copy data to new disk
– Hot Spare: idle disk already attached to system to be
used for immediate replacement

recovery
group

Lec 20.1811/9/09 Kubiatowicz CS162 ©UCB Fall 2009

• Data stripped across
multiple disks
– Successive blocks
stored on successive
(non-parity) disks

– Increased bandwidth
over single disk

• Parity block (in green)
constructed by XORing
data bocks in stripe
– P0=D0D1D2D3
– Can destroy any one
disk and still
reconstruct data

– Suppose D3 fails,
then can reconstruct:
D3=D0D1D2P0

• Later in term: talk about spreading information widely
across internet for durability.

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk

Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Lec 20.1911/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Hardware RAID: Subsystem Organization

CPU array
controller

single board
disk

controller

single board
disk

controller

single board
disk

controller

single board
disk

controller

host
adapter

manages interface
to host, DMA

control, buffering,
parity logic

physical device
control

often piggy-backed
in small format devices

• Some systems duplicate
all hardware, namely
controllers, busses, etc.

Lec 20.2011/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Solid State Disk (SSD)
• Becoming Possible to store

(relatively) large amounts of data
– E.g. Intel SSD: 80GB – 160GB
– NAND FLASH most common

» Written in blocks – similarity to
DISK, without seek time

– Non-volatile – just like disk,
so can be disk replacement

• Advantages over Disk
– Lower power, greater reliability, lower noise (no moving parts)
– 100X Faster reads than disk (no seek)

• Disadvantages
– Cost (20-100X) per byte over disk
– Relatively slow writes (but still faster than disk)
– Write endurance: cells wear out if used too many times

» 105 to 106 writes
» Multi-Level Cells  Single-Level Cells  Failed Cells
» Use of “wear-leveling” to distribute writes over less-used blocks

Trapped Charge/No charge
on floating gate

MLC: MultiLevel Cell

Lec 20.2111/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Remote File Systems: Virtual File System (VFS)

• VFS: Virtual abstraction similar to local file system
– Instead of “inodes” has “vnodes”
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to

be used for different types of file systems
– The API is to the VFS interface, rather than any specific
type of file system

Lec 20.2211/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: remote procedure calls (RPC) for file
operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• NFS servers are stateless; each request provides all
arguments require for execution

• Modified data must be committed to the server’s disk
before results are returned to the client
– lose some of the advantages of caching
– Can lead to weird results: write file on one client, read
on other, get old data

Lec 20.2311/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Schematic View of NFS Architecture

Lec 20.2411/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Authorization: Who Can Do What?

• How do we decide who is
authorized to do actions in the
system?

• Access Control Matrix: contains
all permissions in the system
– Resources across top

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a
group of users

» E.g. above: User D3 can read
F2 or execute F3

– In practice, table would be
huge and sparse!

Lec 20.2511/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Authorization: Two Implementation Choices
• Access Control Lists: store permissions with object

– Still might be lots of users!
– UNIX limits each file to: r,w,x for owner, group, world
– More recent systems allow definition of groups of users
and permissions for each group

– ACLs allow easy changing of an object’s permissions
» Example: add Users C, D, and F with rw permissions

• Capability List: each process tracks which objects has
permission to touch
– Popular in the past, idea out of favor today
– Consider page table: Each process has list of pages it
has access to, not each page has list of processes …

– Capability lists allow easy changing of a domain’s
permissions
» Example: you are promoted to system administrator and

should be given access to all system files
Lec 20.2611/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Authorization: Combination Approach

• Users have capabilities,
called “groups” or “roles”
– Everyone with particular

group access is “equivalent”
when accessing group
resource

– Like passport (which gives
access to country of origin)

• Objects have ACLs
– ACLs can refer to users or

groups
– Change object permissions

object by modifying ACL
– Change broad user

permissions via changes in
group membership

– Possessors of proper
credentials get access

Lec 20.2711/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Authorization: How to Revoke?

• How does one revoke someone’s access rights to
a particular object?
– Easy with ACLs: just remove entry from the list
– Takes effect immediately since the ACL is checked
on each object access

• Harder to do with capabilities since they aren’t
stored with the object being controlled:
– Not so bad in a single machine: could keep all
capability lists in a well-known place (e.g., the OS
capability table).

– Very hard in distributed system, where remote
hosts may have crashed or may not cooperate
(more in a future lecture)

Lec 20.2811/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Revoking Capabilities

• Various approaches to revoking capabilities:
– Put expiration dates on capabilities and force
reacquisition

– Put epoch numbers on capabilities and revoke all
capabilities by bumping the epoch number (which
gets checked on each access attempt)

– Maintain back pointers to all capabilities that have
been handed out (Tough if capabilities can be
copied)

– Maintain a revocation list that gets checked on
every access attempt

Lec 20.2911/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Centralized vs Distributed Systems

• Centralized System: System in which major functions
are performed by a single physical computer
– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers
working together on some task
– Early model: multiple servers working together

» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Lec 20.3011/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Distributed Systems: Motivation/Issues
• Why do we want distributed systems?

– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

• Reality has been disappointing
– Worse availability: depend on every machine being up

» Lamport: “a distributed system is one where I can’t do work
because some machine I’ve never heard of isn’t working!”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information
(using only a network)

– What would be easy in a centralized system becomes a lot
more difficult

Lec 20.3111/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its

complexity behind a simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by spliting
them into smaller pieces

– Fault Tolerance: System may hide varoius things that go
wrong in the system

• Transparency and collaboration require some way for
different processors to communicate with one another

Lec 20.3211/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Networking Definitions

• Network: physical connection that allows two computers
to communicate

• Packet: unit of transfer, sequence of bits carried over
the network
– Network carries packets from one CPU to another
– Destination gets interrupt when packet arrives

• Protocol: agreement between two parties as to how
information is to be transmitted

Lec 20.3311/9/09 Kubiatowicz CS162 ©UCB Fall 2009

Conclusion
• Important system properties

– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• Use of Log to improve Reliability
– Journaled file systems such as ext3

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• Authorization
– Controlling access to resources using

» Access Control Lists
» Capabilities

• Network: physical connection that allows two
computers to communicate
– Packet: unit of transfer, sequence of bits carried over
the network

