Cs162
Operating Systems and
Systems Programming
Lecture 20

Reliability and Access Control /
Distributed Systems

November 9, 2009
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Example of Multilevel Indexed Files

+ Multilevel Indexed Files: mode
(from UNIX 4.1 BSD) T
- Key idea: efficient for small | oo (o)
files, but still allow big files [Gaa |
- File Header format: _ (g
» First 10 ptrs to data blocks | = :j
» EIIOCI':"“ p*oigrr's 1'02 5‘g\%|i*ecl;r i i
ock” containing ocks I -
» BIOCk 12 POintS to “dOUb|y— single indirect ——t_"[_q@ ' :_@f_
indirect block” containin mub'siﬁﬂi'w—ﬂ: &—eldala
256 indirect blocks for gotal trple indirect E—__@
of 64K blocks .

» Block 13 points to a triply indirect block (16M blocks)
* UNIX 4.1 Pros and cons

- Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy
- Cons: Lots of seeks
Very large files must read many indirect block (four
I/Os per block!)

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.2

Review: UNIX BSD 4.2

+ Inode Structure Same as BSD 4.1 (same file header
and Tri%lx\ indirect blocks), except incorporated ideas
from DEMOS:

- Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
- 10% reserved disk space
- Skip-sector positioning
- BSD 4.2 Fast File System (FFS)
- File Allocation and placement policies
» Put each new file at front of different range of blocks

» To expand a file, you first try successive blocks in
bitmap, then choose new range of blocks

- Inode for file stored in same “cylinder group” as parent
directory of the file
- Store files from same directory near each other
- Note: I put up the original FFS paper as reading for
last lecture (and on Handouts page).
* Later file systems
- Clustering of files used together, automatic defrag of
files, a number of additional optimizations
11/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 20.3

Goals for Today

* File Caching

* Durability

* Authorization

- Distributed Systems

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 20.4

Where are inodes stored?

* In early UNIX and DOS/Windows' FAT file
system, headers stored in special array in
outermost cylinders

- Header not stored near the data blocks. To read a
small file, seek to get header, seek back to data.

- Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.5

Where are inodes stored?

+ Later versions of UNIX moved the header
information to be closer to the data blocks

- Often, inode for file stored in same “cylinder
group” as parent directory of the file (makes an Is
of that directory run fast).

- Pros:

» UNIX BSD 4.2 puts a portion of the file header
array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinder=no
seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from
disk at same time

» Reliability: whatever happens to the disk, you can
find many of the files (even if directories
disconnected)

- Part of the Fast File System (FFS)
» General optimization to avoid seeks

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.6

Linux Example: Ext2/3 Disk Layout

Block Greup ¢

- Disk divided into block & po— ——
groups 2| ewohzar " ien_Thame T ot
12 | 2
- Provides locality et . et (15 |oviE0 | £ 108
Each group has two o e \Iw’mj / ———
- Ea oup |
block-sized bitmaps ook / R
(free blocks/inodes) ¢
. 2 e Block Growp 2
- Block sizes ;eﬂ'able v P —
at format time: Blocks £ f_im s [wom
1K 2K 4K 8K 5055 | Blotk: 18431 . z
. . . .- 13 12jpg | 5088
1 N b {1 et 1
* Actual Inode structure e o, e e
similar to 4.2BSD Bock Inode Sosk et
. . . Bimap Bimag fileyt. i contenis:
- with 12 direct pointers o] [=-]
Ext3: Ext2 w/Journaling e e eI

) S::::;Ii:: %vriiﬁsrr?:re or - Example: create a filel.dat

ess cost under /dir/ in Ext3
11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.7

In-Memory File System Structures

directory structure
open (file namse) =y
file-c

directory structure

P kermel memary secondary slorage

+ Open system call:
- Resolves file name, finds file control block (inode)
- Makes entries in rer-Erocess and system-wide tables
- Returns index (called “file handle™) in open-file table

index

| | / data blocks
read (index) []

per-process system-wide file-control block
open-file table open-file lable

user space kel memory secondary storage

* Read/write system calls:
- Use file handle to locate inode
- Perform appropriate reads or writes

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.8

File System Caching
+ Key Idea: Exploitf localify by caching data in memory

- Name translations: Mapping from paths—inodes
- Disk blocks: Mapping from block address—disk content
+ Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
- Can contain “dirty” blocks (blocks not yet on disk)
* Replacement policy? LRU
- Can afford overhead of timestamps for each disk block
- Advantages:
» Works very well for name translation

» Works well in general as long as memory is big enough to
accommodate a host's working set of files.

- Disadvantages:
» Fails when some aﬁplicaﬁon scans through file system,
thereby flushing the cache with data used only once
» Example: find . —exec grep foo {} \;
* Other Replacement Policies?
- Some systems allow applications to request other policies
- Example, 'Use Once':

» File system can discard blocks as soon as they are used
11/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 20.9

File System Caching (con't)

* Cache Size: How much memory should the OS allocate
to the buffer cache vs virtual memory?
- Too much memory to the file system cache = won't be
able to run many applications at once
- Too little memory to file system cache = man
applications may run slowly (disk caching not e!fecﬂve)
- Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced
* Read Ahead Prefetching: fetch sequential blocks early

- Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

- Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

- How much to prefetch?

» Too many imposes delays on requests by other applications

» Too few causes many seeks (and rotational delays) among
concurrent file requests

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.10

File System Caching (con't)

* Delayed Writes: Writes to files not immediately sent
out to disk
- Instead, write() copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other a|::¢plica'rion tries to read data before
written to disk, file system will read from cache
- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value
for a file
» Some files need never get written to disk! (e..g temporary
scratch files written /fmp often don't exist for 30 sec)
- Disadvantages
» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file
has been written out? (lose pointer to inodel)

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.11

Administrivia

+ Wednesday is a holiday

- No class, No office hours

- We will be having sections tomorrow
* I will be out of town this week

- 6one Tuesday - Friday

- Giving lectures on Quantum Computing and Multicore OS
+ Final Exam

- Thursday, December 17, 8:00-11:00 am

- All material from the course

» With slightly more focus on second half, but you are still
responsible for all the material

- Two sheets of notes, both sides

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.12

Aside: Command Queueing

* Mentioned that some disks do queueing

- Ability for disk to take multiple requests

- Do elevator algorithm automatically on disk
* First showed up in SCSI-2 timeframe

- Released in 1990, but later retracted

- Final release in 1994

» Note that "MSDOS" still under Windows-3.1

* Now prevalent in many drives

- SATA-II: "NCQ" (Native Command Queueing)
* Modern Disk (Seagate):

-2TB

- 7200 RPM

- 36bits/second SATA-II interface (serial)

- 32 MB on-disk cache

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.13

Important “ilities"

* Availability: the pr‘obabili‘l’¥ that the system can
accept and process requests
- Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”
- Key idea here is independence of failures
* Durability: the ability of a system to recover data
despite faults
- This idea is fault tolerance applied to data
- Doesn't necessarily imply availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone
- Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)
- Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly
- Includes availability, security, fault tolerance/durability
- Must make sure data survives system crashes, disk

crashes, other Kpr'oblems
ubiatowicz €5162 ©UCB Fall 2009 Lec 20.14

11/9/09

What about crashes?
Log Structured and Journaled File Systems
. Befﬁ%ﬁﬁﬂﬁﬁrougﬁ use of log
- All changes are treated as fransactions.
» A transaction either happens completely or not at all
- A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

- Although File system may not be updated immediately,
data preserved in the log

- Difference between “Log Structured” and “Journaled”
- Log Structured Filesystem (LFS): data stays in log form
- Journaled Filesystem: Log used for recovery
* For Journaled system:
- Log used to asynchronously update filesystem
» Log entries removed after used
- After crash:
» Remaining transactions in the log performed ("Redo”)
+ Examples of Journaled File Systems:
- Ext3 (Linux), XFS (Uni

xz etc.
11/9/09 Kubiatowicz £5162 ®UCB Fall 2009 Lec 20.15

Other ways to make file system durable?

- Disk blocks contain Reed-Solomon error correcting

codes (ECC) to deal with small defects in disk drive
- Can allow recovery of data from small media defects

- Make sure writes survive in short term

- Either abandon delayed writes or
- use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.

* Make sure that data survives in long term

- Need to replicatel More than one copy of datal
- Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is
struck by lightning....
» Could put copies on servers in different continents...

* RAID: Redundant Arrays of Inexpensive Disks

- Data stored on multiple disks (redundancy)
- Either in software or hardware

» In hardware case, done by disk controller; file system may

not even know that there is more than one disk in use
11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.16

RAID 1: Disk Mirroring/Shadowing

oo, 0dg

<\recovery
group
+ Each disk is fully duplicated onto its "shadow"
- For high I/0 rate, high availability environments
- Most expensive solution: 100% capacity overhead
+ Bandwidth sacrificed on write:
- Logical write = two physical writes
- Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)
* Reads may be optimized
- Can have two independent reads to same data
* Recovery:
- Disk failure = replace disk and copy data to new disk
- Hot Spare: idle disk already attached to system to be
used for immediate replacement

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.17

RAID 5+: High I/0O Rate Parity
Stripe

* Data sTr‘:JJped across Unit
multiple disks

- Successive blocks

DO D1 D2 D3 PO

stored on successive Increasing
(non-parity) disks D4 |D5| [D6| |P1 D7 Lsgiﬁal

- Increased bandwidth Addresses
over single disk D8| |D9| |P2| |D10| [D11

* Parity block (in gr'een)
constructed by XORing ||p12| |pP3 |p13| |p14| [b15
data bocks in stripe

- PO=D0®D1®D20D3 P4 | |p16| |D17] |D18| [D19
- garl\(dez‘l’roy"any one

isk and sti

reconstruct data D20| |b21) |D22] |D23| | P5

- Suppose D3 fails,
then can reconstruct:
D3=D0®D1®D25PO

* Later in term: talk about spreading information widely
across internet for durability.
11/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 20.18

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Hardware RAID: Subsystem Organization

N
h single board —
CPU ost | | array disk
adapter| [controller controller
A
N
manages interfcgl / single board
to ho%‘r, DMA // 9disk
controller
control, buffering, Pm—
parity logic sing‘Ije Boar d N———
is
physical device con'll'r-oller
control ~———
N
single board —
- Some systems duplicate .
all hardware, namely : —
controllers, busses, etc. often piagy- backed.
in small format devices

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.19

Solid State Disk (SSD)

+ Becoming Possible to store Fih rary o
(relatively) large amounts of data s
- E.g. Intel SSD: 80GB - 16068 e
- NAND FLASH most common 2
» Written in blocks - similarity to - -
DISK, without seek time =

Trapped Charge/No charge
on floating gate
MLC: MultiLevel Cell

- Non-volatile - just like disk,
so can be disk replacement

+ Advantages over Disk
- Lower power, greater reliability, lower noise (no moving parts)
- 100X Faster reads than disk (no seek)
+ Disadvantages
- Cost (20-100X) per byte over disk
- Relatively slow writes (but still faster than disk)
- Write endurance: cells wear out if used too many times
» 105 to 106 writes
» Multi-Level Cells = Single-Level Cells = Failed Cells

» Use of "wear-leveling” to distribute writes over less-used blocks
11/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 20.20

Remote File Systems: Virtual File System (VFS)

Bo-system intortace ‘

VFS interface

|

local file system
type 1

|

local file system remote file systam
pe 1
k.

fype 2 typs

1)

A

- VFS: Virtual abstraction similar to local file system

- Instead of “inodes”

has “vnodes”

- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems

* VFS allows the same system call interface (the APT) to
be used for different types of file systems

- The API is to the VFS interface, rather than any specific

type of file system

Network File System (NFS)

Three Layers for NFS system
- UNIX file-system interface: open, read, write, close
calls + file descriptors
- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
NFS Protocol: remote procedure calls (RPC) for file
operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
NFS servers are stateless: each request provides all
arguments require for execution
Modified data must be committed to the server's disk
before results are returned to the client
- lose some of the advantages of caching
- Can lead to weird results: write file on one client, read
on other, get old data

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.21 11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.22
Schematic View of NFS Architecture Authorization: Who Can Do What?
client server + How do we decide who is
authorized to do actions in the
system-calls interface sys'l'em?
-+ Access Control Matrix: contains
VFS interface —> VFSinterface all permissions in the system
I] - Resources across top
other types of | | UNIX file NFS NFS UNIX file » Files, Devices, etc..
file systems system client server system - Domains in columns objoct
Fy R F printar
1 » A domain might be a user or a | *™"
) group of users o, road road
| ‘ RPC/XDR ‘ ‘ RPC/XDR ‘ I » E.g. above: User D3 can read o, prin
i — F2 or execute F3 '
. 0, read | execule
[diﬂ | I [diﬂ - In practice, table would be [o
= e | | huge and sparse! Cl | i
11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.23 11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.24

Authorization: Two Implementation Choices

* Access Control Lists: store permissions with object
- Still might be lots of users!
- UNIX limits each file to: r,w,x for owner, group, world
- More recent systems allow definition of groups of users
and permissions for each group
- ACLs allow easy changing of an object's permissions
» Example: add Users C, D, and F with rw permissions
* Capability List: each process tracks which objects has
permission to touch
- Popular in the past, idea out of favor today
- Consider page table: Each process has list of pages it
has access to, not each page has list of processes ..
- Capability lists allow easy changing of a domain's
permissions

» Example: you are promoted to system administrator and
should be given access to all system files
11/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 20.25

Authorization: Combination Approach

* Users have capabilities, + Objects have ACLs
called “groups” or “roles - ACLs can refer to users or
- Everyone with particular groups
group access is “equivalent - Change object permissions
when accessing group object by modifying ACL

resource
. . . - Change broad user

- Like passport (which gives permissions via changes in
access to country of origin) group membership

- Possessors of proper
credentials get access

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.26

Authorization: How to Revoke?

* How does one revoke someone's access rights to
a particular object?
- Easy with ACLs: just remove entry from the list
- Takes effect immediately since the ACL is checked
on each object access

* Harder to do with capabilities since they aren't
stored with the object being controlled:
- Not so bad in a single machine: could keep all

capability lists in a well-known place (e.g., the OS
capability table).

- Very hard in distributed system, where remote
hosts may have crashed or may not cooperate
(more in a future lecture)

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.27

Revoking Capabilities

* Various approaches to revoking capabilities:

- Put expiration dates on capabilities and force
reacquisition

- Put epoch numbers on capabilities and revoke all
capabilities by bumping the epoch number (which
gets checked on each access attempt)

- Maintain back pointers to all capabilities that have
been handed out (Tough if capabilities can be
copied)

- Maintain a revocation list that gets checked on
every access attempt

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.28

Centralized vs Distributed Systems

CIienf/Srver' Model = <
Peer-to-Peer Model

* Centralized System: System in which major functions
are performed by a single physical computer
- Originally, everything on single computer
- Later: client/server model
+ Distributed Sls'rem: physicaIIK separate computers
working together on some tas
- Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”
- Later models: peer-To—Lpeer/wide-s read collaboration
11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.29

Distributed Systems: Motivation/Issues

WP}'y do we want distributed systems?
- Cheaper and easier to build lots of simple computers
- Easier to add power incrementally
- Users can have complete control over some components
- Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)
The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure
Redlity has been disappointing
- Worse availability: depend on every machine being t:r
» Lamport: “a distributed system is one where I cant do work
because some machine I've never heard of isn't working!”
- Worse reliability: can lose data if ang machine crashes
- Worse security: anyone in world can break into system
Coordination is more difficult
- Must coordinate multiple copies of shared state information
(using only a network)
- What would be easy in a centralized system becomes a lot
more difficult
11/9/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 20.30

Distributed Systems: Goals/Requirements

* Transparency: the ability of the system to mask its
complexity behind a simple interface
* Possible transparencies:
- Location: Can't tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can't tell how many copies of resource exist
- Concurrency: Can't tell how many users there are
- Parallelism: System may speed up large jobs by spliting
them into smaller pieces
- Fault Tolerance: System may hide varoius things that go
wrong in the system
* Transparency and collaboration require some way for
different processors to communicate with one another

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.31

Networking Definitions

 Network: physical connection that allows two computers
to communicate

* Packet: unit of transfer, sequence of bits carried over
the network
- Network carries packets from one CPU to another
- Destination gets interrupt when packet arrives
* Protocol: agreement between two parties as to how
information is to be transmitted

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.32

Conclusion

* Important system properties
- Availability: how often is the resource available?
- Durability: how well is data preserved against faults?
- Reliability: how often is resource performing correctly?
* Use of Log to improve Reliability
- Journaled file systems such as ext3
RAID: Redundant Arrays of Inexpensive Disks
- RAID1: mirroring, RAID5: Parity block
Authorization
- Controlling access to resources using
» Access Control Lists
» Capabilities
* Network: physical connection that allows two
computers to communicate

- Packet: unit of transfer, sequence of bits carried over
the network

11/9/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 20.33

