Cs162
Operating Systems and
Systems Programming
Lecture 23

Network Communication Abstractions /
Distributed Programming

November 25, 2009
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Ot:2zIS
001:bas

Review: Window-Based Acknowledgements (TCP)

100 140 190 230 260 300 340 380 400
u!m

:bag
02:2Z
”1 0g€:ba

0G:2zIS
ov1:bas
Ov:2zis
061:bag

0€:2ziS
*|ogz:bas

Ob:22IS
092:bas

Ob:221S

ov:2z1S
ove:bas

“jooe

Kubiatowicz C5162 ©UCB Fall 2009

Review: Congestion Avoidance

- Congestion
- How long should timeout be for re-sending messages?
» Too long—wastes time if message lost
» Too short—retransmit even though ack will arrive shortly
- Stability problem: more congestion = ack is delayed =
unnecessary timeout = more traffic = more congestion
» Closely related to window size at sender: too big means
utting too much data into network
* How does the sender’'s window size get chosen?
- Must be less than receiver's advertised buffer size
- Try to match the rate of sending packets with the rate
that the slowest link can accommodate
- Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost
* TCP solution: “slow start” (start sending slowly)
- If no timeout, slowly increase window size (throughput)
by 1 for each ack received
- Timeout = congestion, so cut window size in half

11725700 Addlitive Incregse, Mulfiplicative Decrease” Lec 23.3

Goals for Today

- Finish Discussion of TCP/IP
* Messages
- Send/receive
- One vs. two-way communication
+ Distributed Decision Making
- Two-phase commit/Byzantine Commit
+ Remote Procedure Call
- Distributed File Systems (Part I)

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.4

Sequence-Number Initialization

* How do you choose an initial sequence number?
- When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!

» Receiver might end up discarding valid packets, or duplicate
ack from original transmission might hide lost packet

- Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection
- Some ways of choosing an initial sequence number:
- Time to live: each packet has a deadline.
» If not delivered in X seconds, then is dropped

» Thus, can re-use sequence numbers if wait for all packets
in flight to be delivered or to expire

- Epoch #: uniquely identifies which set of sequence
numbers are currently being used
» Epoch # stored on disk, Put in every message

» Epoch # incremented on crash and/or when run out of
sequence #

- Pseudo-random increment to previous sequence number

» Used by several protocol implementations
11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.5

Use of TCP: Sockets

* Socket: an abstraction of a network I/O queue
- Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine ﬁ:alled “"UNIX socket”) or remote
machine (called "network socket™)
- First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket
+ Using Sockets for Client-Server (C/C++ interface):
- On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests

» Perform multiple accept() calls on socket to accept incoming
connection request

» Each successful accept() returns a new socket for a new
connection; can pass this off to handler thread
- On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.6

Socket Setup (Con't)

* Things to remember:
- Connection involves 5 values:
[Client Addr, Client Port, Server Addr, Server Port, Protocol]

- Often, Client Port “randomly” assigned

» Done by OS during client socket setup
- Server Port often “well known”

» 80 (web), 443 (secure web), 25 (sendmail), etc

» Well-known ports from 0—1023

* Note that the uniqueness of the tuple is really about two
Addr/Port pairs and a protocol
11/25/09 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 23.7

Socket Example (Java)

server:
//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket(6013);
while(true) {
Socket client = sock.accept();
PrintWriter pout = new
PrintWriter(client.getOutputStream(),true);

pout.printIn(“Here is data sent to client!”);

cliént.close();

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(*169.229.60.38,6013);
BufferedReader bin =
new BufferedReader(
new InputStreamReader(sock.getlnputStream));
String line;
whille ((line = bin.readLine(Q))!=null)
System.out.printin(line);
sock.close();
11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.8

Distributed Applications

* How do you actually program a distributed application?
- Need to synchronize multiple threads, running on

different machines
» No shared memory, so cannot use test&set

O (7)) (? D
NwLA) S) s WL

S /ﬂ
- One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and
two receivers cannot get same message

- Interface:
- Mailbox (mbox): temporary holding area for messages

» Includes both destination location and queue
—Send(message ,mbox)

» Send message to remote mailbox identified by mbox
—Receive(buffer,mbox)

» Wait until mbox has message, copy into buffer, and return

» If threads sleeping on this mbox, wake up one of them
11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.9

Using Messages: Send/Receive behavior

+ When should send(message,mbox) return?

- When receiver gets message? (i.e. ack received)

- When message is safely buffered on destination?

- Right away, if message is buffered on source node?
* Actually two questions here:

- When can the sender be sure that receiver actually

received the message?
- When can sender reuse the memory containing message?

* Mailbox provides 1-way communication from T1-5T2
- T1obuffer»T2
- Very similar to producer/consumer

» Send = V, Receive = P
» However, can't tell if sender/receiver is local or not!

11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.10

Messaging for Producer-Consumer Style

+ Using send/receive for producer-consumer style:

Producer:
int msg1[1000];

prepare message; Message

send(msgl,mbox) ;

Consumer:
int buffer[1000];

while(1l) { -
receive(buffer,mbox);
1 process message; Message

* No need for producer/consumer to keep track of space
in mailbox: handled by send/receive
- One of the roles of the window in TCP: window is size of
buffer on far end
- Restricts sender to forward only what will fit in buffer

11/25/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 23.11

Messaging for Request/Response communication

* What about two-way communication?

- Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server
- Also called: client-server
» Client = requester, Server = responder
» Server provides “service” (file storage) to the client

+ Example: File service
Client: (requesting the file) Req.ueS'l'
File
send(“read rutabaga”, server_mbox);
receive(response, client_mbox); Get
) Response

char response[1000];
Server: (responding with the file
char command[1000], answer[1000];

receive(command, server_mbox);
decode command; Request
read file into answer;
send(answer, client_mbox); Send
11/25/09 Kubiatowicz €5162 ©UCB Fall 2009 Response J23-12

General's Paradox

* General's paradox:
- Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured
- Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win
- Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early
+ Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
- Remarkably, “no”, even if all messages get through

11 am o>

but what if you
"e.ﬁ,":\’-t '9121 this ack?

11/25)50 way to be sure last message gets throughl . .

Administrivia

+ Final Exam
- Thursday 12/17, 8:00AM-11:00AM, 105 Stanley Hall

- All material from the course

» With slightly more focus on second half, but you are still
responsible for all the material

- Two sheets of notes, both sides
- Will need dumb calculator
+ Should be working on Project 4
- Last onel
* There /s a lecture on Wednesday before Thanksgiving
- Including this one, we are down to 6 lectures..!
- Upside: You get extra week of study before finals

11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.14

Two-Phase Commit

- Since we can'T solve The General's Paradox (i.e.
simultaneous action), let's solve a related problem
- Distributed transaction: Two machines agree to do
something, or not do it, atomically
+ Two-Phase Commit protocol does this
- Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash
- Prepare Phase:
» The global coordinator requests that all participants will
Br‘omlse to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its
log and tells everyone to abort; each records “Abort” in log
- Commit Phase:
» After all participants respond that they are prepared, then
the coordinator writes “Commit” to its log
» Then asks all nodes to commit: they respond with ack
» After receive acks, coordinator writes “Got Commit” to log
- Log can be used to complete this process such that all
machines either commit or don't commit
11/25/09 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 23.15

Two phase commit example

. Simﬁle Example: A=WellsFargo Bank, B=Bank of America
- Phase 1: Prepare Phase
» A writes “Begin transaction” to log
A—B: OK to transfer funds to me?
» Not enough funds:
B—>A: transaction aborted; A writes “Abort” to log
» Enoaﬂh funds:
B: Write new account balance & promise to commit to log
B—A: OK, I can commit
- Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to lo
* What if B crashes at begmnmﬁ?
- Wakes up, does nothing:” A will timeout, abort and retry
* What if A crashes at beginning of phase 2?
- Wakes up, sees that there is a transaction in progress;
sends “Abort” to B o
* What if B crashes at beginning of phase 2?)
- B comes back up, looks at log:” when A sends it “Commit

message, it will say, “"oh, ok, commit”
11/25/09 Kubidtowicz €$162 SUCB Fall 2009 Lec 23.16

Distributed Decision Making Discussion

+ Why is disfribufed decision making desirable?
- Fault Tolerance!
- A group of machines can come to a decision even if one or
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)
- After decision made, result recorded in multiple places
* Undesirable feature of Two-Phase Commit: Blocking
- One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its Io%
es

sends a “yes” vote to the coordinator (site A) and cras
» Site A crashes

» Site B wakes up, check its Io?, and realizes that it has
voted "yes"” on the update. If sends a message to site A
asking what happened. At this point, B cannot decide to
aborf, because update may have committed
» B is blocked until A comes back
- A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update
- Alfernative: There are alternatives such as "Three
Phase Commit” which don't have this blocking problem
* What happens if one or more of the nodes is malicious?

- Malicious: attempting to com(;aromise the decision makin
11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.17

Byzantine General’'s Problem

’ . Lieutenant

Atae
‘ kI
‘%a\cA\

Retreat!
= Attack!
s reatl, ¢

Lieutenant

g h ~ Re“ |

o, ‘

General iy m !
Malicious] ”‘ Lieutenant

* Byazantine General's Problem (n players):
- One General
- n-1 Lieutenants
- Some number of these (f) can be insane or malicious
+ The commanding general must send an order to his n-1
lieutenants suc at:
- IC1: All loyal lieutenants obey the same order
- IC2: If the commanding general is loyal, then all loyal

lieutenants obe¥ the order he sends
11/25/09 ubiatowicz €CS162 ©UCB Fall 2009 Lec 23.18

Byzantine General’'s Problem (con't)

+ Impossibility Results:

- Cannot solve Byzantine General's Problem with n=3
because one malicious player can mess up things

- With f faults, need n > 3f to solve problem
* Various algorithms exist to solve problem
- Original algorithm has #messages exponential in n
- Newer algorithms have message complexity O(n?)
» One from MIT, for instance (Castro and Liskov, 1999)
* Use of BFT (Byzantine Fault Tolerance) algorithm
- Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

O%% |_Distributed

Decision
LO-OV0

Request—

11/25/09 Ku ll 2009 Lec 23.19

Remote Procedure Call

- Raw messaging is a bit Too low-level for programming

- Must wrap up information into message at source

- Must decide what to do with message at destination

- May need to sit and wait for multiple messages to arrive
+ Better option: Remote Procedure Call (RPC)

- Calls a procedure on a remote machine

- Client calls:

remoteFileSystem—Read(“rutabaga’™);

- Translated automatically into call on server:
fileSys—»Read(“rutabaga™);

* Implementation:

- Request-response message passing (under covers!)
- "Stub” provides glue on client/server

» Client stub is responsible for "marshalling” arguments and
unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.
* Marshalling involves (depending on system)
- Converting values to a canonical form, serializing

objects, copying arguments passed bg reference, etc.
11/25/09 ubiatowicz €S162 ©UCB Fall 200! Lec 23.20

RPC Information Flow

bundle
' args
P — . ca . send
\‘ |_ﬁ) Client »| Client »| Packet
|
=<~/ |(caller)|« Stub |« - H{andlenr
\@ (r) return u receive ‘an
uﬁm'lre mbo.
. ret vals
Machine A
Machine B
bundle
ret vals
P return send
5 |,_ Server »{Serven
0
=<2 |(callee) Stub |« -
@ (4 call receive
unbundle
args
11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.21

RPC Details

+ Equivalence with regular procedure call
- Parameters < Request Message
- Result < Reply message
- Name of Procedure: Passed in request message
- Return Address: mbox2 (client return mail box)
+ Stub generator: Compiler that generates stubs
- Input: interface definitions in an “interface definition
language (IDL)"
» Contains, among other things, types of arguments/return
- Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for
result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack
results, send them ofF
* Cross-platform issues:
- What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded
(avoids unnecessary conversions).

11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.22

RPC Details (continued)
+ How does client know which mbox o send fo?

- Need to translate name of remote service into network
endpoint SI\Eemofe machine, port, possibly other info)
- Binding: the process of converting a user-visible name
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
+ Dynamic Bmdmg
- Most RPC systems use dynamic binding via name service

» Name service provides dynamic translation of service—>mbox

- Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one
What if there are multiple servers?
- Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
» Choose unloaded server for each new request
» Only works if no state carried from one call to next
* What if multiple clients?
- Pass pointer to client-specific return mbox in request
11/25/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 23.23

Problems with RPC

* Non-Atomic failures
- Different failure modes in distributed system than on a
single machine
- Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same
machine to fail
» Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while
others keep working
- Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?
- Answer? Distributed transactions/Byzantine Commit
* Performance
- Cost of Procedure call « same-machine RPC « network RPC
- Means programmers must be aware that RPC is not free
» Caching can help, but may make failure handling complex

11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.24

Cross-Domain Communication/Location Transparency

* How do address spaces communicate with one another?
- Shared Memory with Semaphores, monitors, etc...
- File System
- Pipes (1-way communication)
- "Remote” procedure call (2-way communication)

« RPC's can be used to communicate between address
spaces on different machines or the same machine

- Services can be run wherever it's most appropriate
- Access to local and remote services looks the same
+ Examples of modern RPC systems:
- CORBA (Common Object Request Broker Architecture)
- DCOM (Distributed COM)
- RMI (Java Remote Method Invocation)

11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.25

Microkernel operating systems

- Example: split kernel into application-level servers.
- File system looks remote, even though on same machine

App [| App | [App App| | £y | |windows
file system windowing RPc address
M Networking h sgaces
Threads Fhreads
Microkernel Structure

Monolithic Structure

* Why split the OS into separate domains?
- Fault isolation: bugs are more isolated (build a firewall)
- Enforces modularity: allows incremental upgrades of pieces
of software (client or server)
- Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can
be on a separate machine from X server: Neither has to run
on the machine with the frame buffer.

11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.26

Distributed File Systems
— E l E.I
\‘//: [Network |

) Data

Client

- Distributed File System:
- Transparent access to files stored on a remote disk

Server

* Naming choices (always an issue):
- Hostname:localname: Name files explicitly
» No location or migration transparency
- Mounting of remote file systems
» System manager mounts remote file system
by giving name and local mount point
» Transparent to user: all reads and writes
look like local reads and writes to user

e.g. /users/sue/foo—/sue/foo on server
- A single, global name space: every file
in the world has unique name

» Location Transparency: servers mount
can change and files can move coeus:/sue

11/25/09 without mvowlrl‘&b%?oewqcz CS162 ©UCB Fall 2009

mount
kubi:/jane

() users l /

Virtual File System (VFS)

Bo-system interlace ‘

VFS interface

[

| |

local file system local file system remote file system
type 1 type 2 1
tesk |

3 8

* VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS allows the same system call interface (the APT) to
be used for different types of file systems
- The API is to the VFS interface, rather than any specific

'I}Ipe of file system
11/25/0 Kubiatowicz CS162 ©UCB Fall 2009 Lec 23.28

Simple Distributed File System

cache

- Remote Disk: Reads and writes forwarded to server
- Use RPC to translate file system calls
- No local caching/can be caching at server-side
* Advantage: Server provides completely consistent view
of file system to multiple clients
* Problems? Performance!
- Going over network is slower than going to local memory
- Lots of network traffic/not well pipelined

- Server can be a bottleneck
11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.29

read(f1)-V1
read(f1)-V1
read(f1)-V1
read(f1)-V1

write(f1)—>0K .
r'ead(g‘l))—_:vz Client
* Idea: Use caching to reduce network load

- In practice: use buffer cache at source and destination
* Advantage: if open/read/write/close can be done

locally, gon'f need to do any network traffic..fast!

* Problems:

- Failure:

» Client caches have data not committed at server
- Cache consistency!

117250 > Client caches not. consistent, with, sghyer/each other ;5

Failures

* What if server crashes? Can client wait until server
comes back up and continue as before?
- Any data in server memory but not on disk can be lost
- Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail
- Message retries: suppose server crashes after it does
UNIX "rm foo“, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with
two-phase commit protocol, but NF5 takes a more ad hoc
approach)
+ Stateless protocol: A protocol in which all information
required to process a request is passed with request
- Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)
- Thus, if server crashes and restarted, requests can
continue where left off (in many cases)
* What if client crashes?
- Might lose modified data in client cache
11/25/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 23.31

Schematic View of NFS Architecture

client server

system-calls interface

VFS interface —* VFS interface

v v |
other types of UNIX file NFS NFS UNIX file
file systems system client server system

o
i ‘ RPC/XDR ‘ ‘ RPC/XDR ‘ R

[dq B | | [GTJ

11/25/09 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 23.32

Network File System (NFS)

+ Three Layers for NFS system
- UNIX file-system interface: open, read, write, close
calls + file J;scrip'rors
- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: RPC for file operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
* Write-through caching: Modified data committed to
server's disk before results are returned to the client
- lose some of the advantages of caching
- time to perform write() can be long

- Need some mechanism for readers to eventually notice
changes! (more on this later)

11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.33

NFS Continued

NF35 servers are sTafeless; each request provides all
ar'gélmen*rs require for execution
- E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)
- No need to perform network open() or close() on file -
each operation stands on its own

+ Idempotent: Performing requests multiple times has

same effect as performing it exactly once
- Example: Server crashes between disk I/O and message
send, client resend read, server does operation again
- Example: Read and write file blocks: just re-read or re-
write file block - no side effects
- Example: What about “"remove”? NFS does operation
twice and second time returns an advisory error
Failure Model: Transparent to client system
- Is this a good idea? What if you are in the middle of
reading a file and server crashes?
- Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don't know

11/25/00 They are talkjng over network) . .. Lec 23.34

NFS Cache consistency

* NFS protocol: weak consistency
- Client polls server periodically to check for changes

» Polls server if data hasn't been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,

but other clients use old version of file until timeout.

F1 still ok? "\
o: (FI:

cache
1:v2
Client

- What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)

» Completely arbitrary!
11/25/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 23.35

cache

Conclusion

+ Two-phase commit: distributed decision making

- First, make sure everyone guarantees that they will commit if
asked (prepare)
- Next, ask everyone to commit

* Byzantine General's Problem: distributed decision making with

malicious failures
- One general, n-1 lieutenants: some number of them may be
malicious (often “f" of them)
- All non-malicious lieutenants must come to same decision
- If general not malicious, lieutenants must follow general
- Only solvable if n > 3f+1

* Remote Procedure Call (RPC): Call procedure on remote machine

- Provides same interface as procedure
- Automatic packing and unpacking of arguments without user
programming (in stub)

* VFS: Virtual File System layer

- Provides mechanism which gives same system call interface for
different types of file systems

- Distributed File System:

- Transparent access to files stored on a remote disk
- Caching for performance

11/25/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 23.36

