
CS162
Operating Systems and
Systems Programming

Lecture 26

Protection and Security II,
ManyCore Operating Systems

December 2nd, 2009
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 26.212/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Use of Hash Functions
• Several Standard Hash Functions:

– MD5: 128-bit output
– SHA-1: 160-bit output, SHA-256: 256-bit output

• Can we use hashing to securely reduce load on server?
– Yes. Use a series of insecure mirror servers (caches)
– First, ask server for digest of desired file

» Use secure channel with server
– Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Client

Read File X

Here is hx = H(X)

Insecure
Data
Mirror

File X
Read X

File X File X

Server

Lec 26.312/02/09 Kubiatowicz CS162 ©UCB Fall 2009

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys can be acquired by anyone/used by anyone
– Only person with private key can decrypt message

• What about authentication?
– AliceBob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• Suppose we want X to sign message M?
– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature: [M,H(M)Xprivate]
– Now, anyone can verify that M was signed by X

» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

Bprivate
Aprivate

Review: Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Lec 26.412/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Goals for Today

• Use of Cryptographic Mechanisms
• Distributed Authorization/Remote Storage
• Worms and Viruses
• ManyCore operating systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Also, slides on Taint Tracking adapted from Nickolai Zeldovich

Lec 26.512/02/09 Kubiatowicz CS162 ©UCB Fall 2009

• How do we decide who is authorized
to do actions in the system?

• Access Control Matrix: contains
all permissions in the system
– Resources across top

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a
group of permissions

» E.g. above: User D3 can read F2 or execute F3
– In practice, table would be huge and sparse!

• Two approaches to implementation
– Access Control Lists: store permissions with each object

» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users

and permissions for each group
– Capability List: each process tracks objects has
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has

access to, not each page has list of processes …

Recall: Authorization: Who Can Do What?

Lec 26.612/02/09 Kubiatowicz CS162 ©UCB Fall 2009

How to perform Authorization for Distributed Systems?

• Issues: Are all user names in world unique?
– No! They only have small number of characters

» kubi@mit.edu  kubitron@lcs.mit.edu 
kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu
and I got very private email intended for someone else…

– Need something better, more unique to identify person
• Suppose want to connect with any server at any time?

– Need an account on every machine! (possibly with
different user name for each account)

– OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)
» People are their public keys

Different
Authorization

Domains

Lec 26.712/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Client 1
Domain 1

Distributed Access Control

• Distributed Access Control List (ACL)
– Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

– ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key: 0x22347EF…

File X
Owner Key: 0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW:Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp,
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp,
Signature (group)

(Re
ad

 X
)K
clie

nt

Ke
y:

0x
66

47
DB

C9
AC

…

Re
ad

Gr
ou

p

GA
CL

(da
ta)

Kse
rve

r

Lec 26.812/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Analysis of Previous Scheme
• Positive Points:

– Identities checked via signatures and public keys
» Client can’t generate request for data unless they have

private key to go with their public identity
» Server won’t use ACLs not properly signed by owner of file

– No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

• Revocation:
– What if someone steals your private key?

» Need to walk through all ACLs with your key and change…!
» This is very expensive

– Better to have unique string identifying you that people
place into ACLs
» Then, ask Certificate Authority to give you a certificate

matching unique string to your current public key
» Client Request: (request + unique ID)Cprivate; give server

certificate if they ask for it.
» Key compromisemust distribute “certificate revocation”,

since can’t wait for previous certificate to expire.
– What if you remove someone from ACL of a given file?

» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

Lec 26.912/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Analysis Continued
• Who signs the data?

– Or: How does client know they are getting valid data?
– Signed by server?

» What if server compromised? Should client trust server?
– Signed by owner of file?

» Better, but now only owner can update file!
» Pretty inconvenient!

– Signed by group of servers that accepted latest update?
» If must have signatures from all servers  Safe, but one

bad server can prevent update from happening
» Instead: ask for a threshold number of signatures
» Byzantine agreement can help here

• How do you know that data is up-to-date?
– Valid signature only means data is valid older version
– Freshness attack:

» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server

and prevents payroll from seeing latest version of update
– Hard problem

» Needs to be fixed by invalidating old copies or having a
trusted group of servers (Byzantine Agrement?)

Lec 26.1012/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Administrivia
• Final Exam

– Thursday 12/17, 8:00AM-11:00AM, 105 Stanley Hall
– All material from the course

» With slightly more focus on second half, but you are
still responsible for all the material

– Two sheets of notes, both sides
– Will need dumb calculator

• Should be working on Project 4
– Final Project due on Monday 12/7

• I will have office hours next week at normal time
– M/W 2:30-3:30
– Feel free to come by to talk about whatever

• Need to get any regrade requests in by next Friday
– i.e. Projects 1-3
– Will consider Project 4 issues up until final (not sure
yet when grades will be out)

Lec 26.1112/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Involuntary Installation
• What about software loaded without your consent?

– Macros attached to documents (such as Microsoft Word)
– Active X controls (programs on web sites with potential
access to whole machine)

– Spyware included with normal products
• Active X controls can have access to the local machine

– Install software/Launch programs
• Sony Spyware [Sony XCP] (October 2005)

– About 50 CDs from Sony automatically installed software
when you played them on Windows machines
» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies

and to prevent peer-to-peer sharing
– Side Effects:

» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx; easy for

other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)

– Vendors of virus protection software declare it spyware
» Computer Associates, Symantec, even Microsoft

Lec 26.1212/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Enforcement
• Enforcer checks passwords, ACLs, etc

– Makes sure the only authorized actions take place
– Bugs in enforcerthings for malicious users to exploit

• In UNIX, superuser can do anything
– Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work

– If there is a bug in any one of these programs, you lose!
• Paradox

– Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model

– Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right

• Same argument for Java or C++: What do you make
private vs public?
– Hard to make sure that code is usable but only necessary
modules are public

– Pick something in middle? Get bugs and weak protection!

Lec 26.1312/02/09 Kubiatowicz CS162 ©UCB Fall 2009

State of the World
• State of the World in Security

– Authentication: Encryption
» But almost no one encrypts or has public key identity

– Authorization: Access Control
» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing

– Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole!

• Some types of security problems
– Abuse of privilege

» If the superuser is evil, we’re all in trouble/can’t do anything
» What if sysop in charge of instructional resources went

crazy and deleted everybody’s files (and backups)???
– Imposter: Pretend to be someone else

» Example: in unix, can set up an .rhosts file to allow logins
from one machine to another without retyping password

» Allows “rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted

userinstall .rhosts file granting you access
Lec 26.1412/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Other Security Problems
• Virus:

– A piece of code that attaches itself to a program or file
so it can spread from one computer to another, leaving
infections as it travels

– Most attached to executable files, so don’t get
activated until the file is actually executed

– Once caught, can hide in boot tracks, other files, OS
• Worm:

– Similar to a virus, but capable of traveling on its own
– Takes advantage of file or information transport
features

– Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself

• Trojan Horse:
– Named after huge wooden horse in Greek mythology
given as gift to enemy; contained army inside

– At first glance appears to be useful software but does
damage once installed or run on your computer

Lec 26.1512/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Security Problems: Buffer-overflow Condition
#define BUFFER SIZE 256
int process(int argc, char *argv[])
{
char buffer[BUFFER SIZE];
if (argc < 2)

return -1;
else {

strcpy(buffer,argv[1]);
return 0;

}
} Before attack After attack

• Technique exploited by many network attacks
– Anytime input comes from network request and is not
checked for size

– Allows execution of code with same privileges as running
program – but happens without any action from user!

• How to prevent?
– Don’t code this way! (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don’t execute code in this page”
Lec 26.1612/02/09 Kubiatowicz CS162 ©UCB Fall 2009

The Morris Internet Worm
• Internet worm (Self-reproducing)

– Author Robert Morris, a first-year Cornell grad student
– Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program

Lec 26.1712/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Some other Attacks
• Trojan Horse Example: Fake Login

– Construct a program that looks like normal login program
– Gives “login:” and “password:” prompts

» You type information, it sends password to someone, then
either logs you in or says “Permission Denied” and exits

– In Windows, the “ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “know” that you are
getting official login program

• Salami attack: Slicing things a little at a time
– Steal or corrupt something a little bit at a time
– E.g.: What happens to partial pennies from bank interest?

» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.

» Doesn’t seem like much, but if you are large bank can be
millions of dollars

• Eavesdropping attack
– Tap into network and see everything typed
– Catch passwords, etc
– Lesson: never use unencrypted communication!

Lec 26.1812/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Timing Attacks: Tenex Password Checking

• Tenex – early 70’s, BBN
– Most popular system at universities before UNIX
– Thought to be very secure, gave “red team” all the
source code and documentation (want code to be
publicly available, as in UNIX)

– In 48 hours, they figured out how to get every
password in the system

• Here’s the code for the password check:
for (i = 0; i < 8; i++)
if (userPasswd[i] != realPasswd[i])
go to error

• How many combinations of passwords?
– 2568?
– Wrong!

Lec 26.1912/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Defeating Password Checking

• Tenex used VM, and it interacts badly with the above code
– Key idea: force page faults at inopportune times to break

passwords quickly
• Arrange 1st char in string to be last char in pg, rest on next pg

– Then arrange for pg with 1st char to be in memory, and rest
to be on disk (e.g., ref lots of other pgs, then ref 1st page)

a|aaaaaa
|

page in memory| page on disk
• Time password check to determine if first character is correct!

– If fast, 1st char is wrong
– If slow, 1st char is right, pg fault, one of the others wrong
– So try all first characters, until one is slow
– Repeat with first two characters in memory, rest on disk

• Only 256 * 8 attempts to crack passwords
– Fix is easy, don’t stop until you look at all the characters

Lec 26.2012/02/09 Kubiatowicz CS162 ©UCB Fall 2009

ManyCore Chips: The future is here (for EVERYONE)

• “ManyCore” refers to many processors/chip
– 64? 128? Hard to say exact boundary

• Question: How can ManyCore change our view of OSs?
– ManyCore is a challenge

» Need to be able to take advantage of parallelism
» Must utilize many processors somehow

– ManyCore is an opportunity
» Manufacturers are desperate to figure out how to program
» Willing to change many things: hardware, software, etc.

– Can we improve: security, responsiveness, programmability?

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores
– Two floating point engines /core
– Mesh-like "network-on-a-chip“
– 100 million transistors
– 65nm feature size

Lec 26.2112/02/09 Kubiatowicz CS162 ©UCB Fall 2009

PARLab OS Goals: RAPPidS
• Responsiveness: Meets real-time guarantees

– Good user experience with UI expected
– Illusion of Rapid I/O while still providing guarantees
– Real-Time applications (speech, music, video) will be assumed

• Agility: Can deal with rapidly changing environment
– Programs not completely assembled until runtime
– User may request complex mix of services at moment’s notice
– Resources change rapidly (bandwidth, power, etc)

• Power-Efficiency: Efficient power-performance tradeoffs
– Application-Specific parallel scheduling on Bare Metal

partitions
– Explicitly parallel, power-aware OS service architecture

• Persistence: User experience persists across device failures
– Fully integrated with persistent storage infrastructures
– Customizations not be lost on “reboot”

• Security and Correctness: Must be hard to compromise
– Untrusted and/or buggy components handled gracefully
– Combination of verification and isolation at many levels
– Privacy, Integrity, Authenticity of information asserted

Lec 26.2212/02/09 Kubiatowicz CS162 ©UCB Fall 2009

The Problem with Current OSs
• What is wrong with current Operating Systems?

– They do not allow expression of application requirements
» Minimal Frame Rate, Minimal Memory Bandwidth, Minimal QoS

from system Services, Real Time Constraints, …
» No clean interfaces for reflecting these requirements

– They do not provide guarantees that applications can use
» They do not provide performance isolation
» Resources can be removed or decreased without permission
» Maximum response time to events cannot be characterized

– They do not provide fully custom scheduling
» In a parallel programming environment, ideal scheduling can depend

crucially on the programming model
– They do not provide sufficient Security or Correctness

» Monolithic Kernels get compromised all the time
» Applications cannot express domains of trust within themselves

without using a heavyweight process model
• The advent of ManyCore both:

– Exacerbates the above with greater number of shared resources
– Provides an opportunity to change the fundamental model

Lec 26.2312/02/09 Kubiatowicz CS162 ©UCB Fall 2009

A First Step: Two Level Scheduling

• Split monolithic scheduling into two pieces:
– Course-Grained Resource Allocation and Distribution

» Chunks of resources (CPUs, Memory Bandwidth, QoS to Services)
distributed to application (system) components

» Option to simply turn off unused resources (Important for Power)
– Fine-Grained Application-Specific Scheduling

» Applications are allowed to utilize their resources in any way
they see fit

» Other components of the system cannot interfere with their use
of resources

MonolithicMonolithic
CPU and ResourceCPU and Resource

SchedulingScheduling
Application SpecificApplication Specific

SchedulingScheduling

Resource AllocationResource Allocation
AndAnd

DistributionDistribution

TwoTwo--Level SchedulingLevel Scheduling

Lec 26.2412/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Important New Mechanism: Spatial Partitioning

• Spatial Partition: group of processors acting within
hardware boundary
– Boundaries are “hard”, communication between partitions controlled
– Anything goes within partition

• Each Partition receives a vector of resources
– Some number of dedicated processors
– Some set of dedicated resources (exclusive access)

» Complete access to certain hardware devices
» Dedicated raw storage partition

– Some guaranteed fraction of other resources (QoS guarantee):
» Memory bandwidth, Network bandwidth
» fractional services from other partitions

• Key Idea: Resource Isolation Between Partitions

Lec 26.2512/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Tessellation: The Exploded OS
• Normal Components split

into pieces
– Device drivers

(Security/Reliability)
– Network Services

(Performance)
» TCP/IP stack
» Firewall
» Virus Checking
» Intrusion Detection

– Persistent Storage
(Performance,
Security, Reliability)

– Monitoring services
» Performance counters
» Introspection

– Identity/Environment
services (Security)

» Biometric, GPS,
Possession Tracking

• Applications Given
Larger Partitions
– Freedom to use

resources arbitrarily

DeviceDevice
DriversDrivers

Video &Video &
WindowWindow
DriversDrivers

FirewallFirewall
VirusVirus

IntrusionIntrusion

MonitorMonitor
AndAnd

AdaptAdapt

PersistentPersistent
Storage &Storage &

File SystemFile System

HCI/HCI/
VoiceVoice
RecRec

Large ComputeLarge Compute--BoundBound
ApplicationApplication

RealReal--TimeTime
ApplicationApplication

Iden
tity

Iden
tity

Lec 26.2612/02/09 Kubiatowicz CS162 ©UCB Fall 2009

• Use lessons from from Large Distributed Systems
– Like Peer-to-Peer on chip
– OS is a set of independent interacting components
– Shared state across components minimized

• Component-based design:
– All applications designed with pieces from many sources
– Requires composition: Performance, Interfaces, Security

• Spatial Partitioning Advantages:
– Protection of computing resources not required within partition

» High walls between partitions  anything goes within partition
» “Bare Metal” access to hardware resources

– Partitions exist simultaneously  fast communication between domains
» Applications split into distrusting partitions w/ controlled communication
» Hardware acceleration/tagging for fast secure messaging

OS as Distributed System

SecureSecure
ChannelChannel

BalancedBalanced
GangGang

IndividualIndividual
PartitionPartition

Secure
SecureChannel

Channel

SecureSecure

Channel
ChannelSecureSecure

ChannelChannel

SecureSecure
ChannelChannel

DeviceDevice
DriversDrivers

Lec 26.2712/02/09 Kubiatowicz CS162 ©UCB Fall 2009

It’s all about the communication

• We are interested in communication for many reasons:
– Communication represents a security vulnerability
– Quality of Service (QoS) boils down message tracking
– Communication efficiency impacts decomposability

• Shared components complicate resource isolation:
– Need distributed mechanism for tracking and accounting
of resource usage
» E.g.: How do we guarantee that each partition gets a

guaranteed fraction of the service:

Secure
SecureChannel

Channel

Secure
Secure

Channel

Channel
Application B

Application A

Shared File Service

Lec 26.2812/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Space-Time Partitioning

• Spatial Partitioning Varies over Time
– Partitioning adapts to needs of the system
– Some partitions persist, others change with time
– Further, Partititions can be Time Multiplexed

» Services (i.e. file system), device drivers, hard realtime partitions
» User-level schedulers may time-multiplex threads within partition

• Global Partitioning Goals:
– Power-performance tradeoffs
– Setup to achieve QoS and/or Responsiveness guarantees
– Isolation of real-time partitions for better guarantees

• Monitoring and Adaptation
– Integration of performance/power/efficiency counters

TimeTime

Space
Space

Space
Space

Lec 26.2912/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Another Look: Two-Level Scheduling
• First Level: Gross partitioning of resources

– Goals: Power Budget, Overall Responsiveness/QoS, Security
– Partitioning of CPUs, Memory, Interrupts, Devices, other

resources
– Constant for sufficient period of time to:

» Amortize cost of global decision making
» Allow time for partition-level scheduling to be effective

– Hard boundaries  interference-free use of resources
• Second Level: Application-Specific Scheduling

– Goals: Performance, Real-time Behavior, Responsiveness,
Predictability

– CPU scheduling tuned to specific applications
– Resources distributed in application-specific fashion
– External events (I/O, active messages, etc) deferrable as

appropriate
• Justifications for two-level scheduling?

– Global/cross-app decisions made by 1st level
» E.g. Save power by focusing I/O handling to smaller # of cores

– App-scheduler (2nd level) better tuned to application
» Lower overhead/better match to app than global scheduler
» No global scheduler could handle all applications

Lec 26.3012/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Space-Time Resource Graph

Cell 2Cell 2
Cell 3Cell 3

Resources:Resources:
4 Proc, 50% time4 Proc, 50% time
1GB network BW1GB network BW
25% File Server25% File Server

Cell 3Cell 3

LightweightLightweight
Protection DomainsProtection Domains

Parent/child
Parent/childSpawning
Spawningrelationship

relationship

Cell 1Cell 1

• Space-Time resource graph: the explicit instantiation of
resource assignments
– Directed Arrows Express Parent/Child Spawning Relationship
– All resources have a Space/Time component

» E.g. X Processors/fraction of time, or Y Bytes/Sec
• What does it mean to give resources to a Cell?

– The Cell has a position in the Space-Time resource graph and
– The resources are added to the cell’s resource label
– Resources cannot be taken away except via explicit APIs

Lec 26.3112/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Implementing the Space-Time Graph
• Partition Policy layer (allocation)

– Allocates Resources to Cells
based
on Global policies

– Produces only implementable
space-time resource graphs

– May deny resources to a cell that
requests them (admission control)

• Mapping layer (distribution)
– Makes no decisions
– Time-Slices at a course

granularity
– performs bin-packing like to

implement space-time graph
– In limit of many processors, no

time multiplexing processors,
merely distributing resources

• Partition Mechanism Layer
– Implements hardware partitions

and secure channels
– Device Dependent: Makes use of

more or less hardware support for
QoS and Partitions

Mapping Layer (Resource Distributer)Mapping Layer (Resource Distributer)

Partition Policy LayerPartition Policy Layer
(Resource Allocator)(Resource Allocator)
Reflects Global GoalsReflects Global Goals

SpaceSpace--Time Resource GraphTime Resource Graph

Partition Mechanism LayerPartition Mechanism Layer
ParaVirtualizedParaVirtualized HardwareHardware

To Support PartitionsTo Support Partitions

TimeTime
Space
Space

Space
Space

Lec 26.3212/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Tessellation Architecture

32

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUsPhysical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
Functionality

Configure
HW-supported
Communication

Message
Passing

Configure Partition
Resources enforced by

HW at runtime

Partition
Allocator

Partition
Scheduler

Comm.
Reqs

Sched
Reqs.

Partition
Resizing

Callback API

Res.
Reqs.

Lec 26.3312/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Time-sensitive
Network

Subsystem

Time-sensitive
Network

Subsystem

Network
Service

(Net Partition)

Network
Service

(Net Partition)

Input device
(Pinned/TT Partition)

Input device
(Pinned/TT Partition)

Graphical
Interface

(GUI Partition)

Graphical
Interface

(GUI Partition)

Audio-processing / Synthesis Engine
(Pinned/TT partition)

Audio-processing / Synthesis Engine
(Pinned/TT partition)

Output device
(Pinned/TT Partition)

Output device
(Pinned/TT Partition)

GUI SubsystemGUI Subsystem

Communication with other
audio-processing nodes

Music program

Preliminary

Example of Music Application

Lec 26.3412/02/09 Kubiatowicz CS162 ©UCB Fall 2009

Conclusion
• Distributed identity

– Use cryptography (Public Key, Signed by PKI)
• Distributed storage example

– Revocation: How to remove permissions from someone?
– Integrity: How to know whether data is valid
– Freshness: How to know whether data is recent

• Buffer-Overrun Attack: exploit bug to execute code
• Space-Time Partitioning: grouping processors & resources behind

hardware boundary
– Focus on Quality of Service
– Two-level scheduling

1) Global Distribution of resources
2) Application-Specific scheduling of resources

– Bare Metal Execution within partition
– Composable performance, security, QoS

• Tessellation Paper:
– Off my “publications” page (near top):

http://www.cs.berkeley.edu/~kubitron/papers

