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Review: Memory Hierarchy of a Modern Computer System

• Take advantage of the principle of locality to:
– Present as much memory as in the cheapest technology
– Provide access at speed offered by the fastest technology

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

1s 10,000,000s  
(10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary
Storage
(Tape)

10,000,000,000s  
(10s sec)

Ts

Lec 14.310/20/10 Kubiatowicz CS162 ©UCB Fall 2010

• Compulsory (cold start): first reference to a block
– “Cold” fact of life: not a whole lot you can do about it
– Note: When running “billions” of instruction, Compulsory 
Misses are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped to same cache location
– Solutions: increase cache size, or increase associativity

• Two others:
– Coherence (Invalidation): other process (e.g., I/O) 
updates memory 

– Policy: Due to non-optimal replacement policy

Review: A Summary on Sources of Cache Misses
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Review: Set Associative Cache
• N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block
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• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go 
only into block 4 
(12 mod 8)

Set associative:
block 12 can go 
anywhere in set 0 
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go 
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Review: Where does a Block Get Placed in a Cache?
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Goals for Today

• Finish discussion of Caching/TLBs
• Concept of Paging to Disk
• Page Faults and TLB Faults
• Precise Interrupts
• Page Replacement Policies

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.
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• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

2-way        4-way          8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Which block should be replaced on a miss?
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• Write through: The information is written to both the 
block in the cache and to the block in the lower-level 
memory

• Write back: The information is written only to the 
block in the cache. 
– Modified cache block is written to main memory only 
when it is replaced

– Question is block clean or dirty?
• Pros and Cons of each?

– WT: 
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB: 
» PRO: repeated writes not sent to DRAM

processor not held up on writes
» CON: More complex

Read miss may require writeback of dirty data

What happens on a write?



Lec 14.910/20/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Cache performance
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• Miss-oriented Approach to Memory Access:

• Separating out Memory component entirely
– AMAT = Average Memory Access Time

• AMAT for Second-Level Cache
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Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same 
page (since accesses sequential)

– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?
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What Actually Happens on a TLB Miss?
• Hardware traversed page tables:

– On TLB miss, hardware in MMU looks at current page 
table to fill TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which 

kernel decides what to do afterwards
• Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults 
since they use translation for many things

– Examples: 
» shared segments
» user-level portions of an operating system
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What happens on a Context Switch?

• Need to do something, since TLBs map virtual 
addresses to physical addresses
– Address Space just changed, so TLB entries no 
longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or 
vice versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
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Administrative

• Exam not graded yet
– Will get solutions up early next week at latest
– Will talk about Problem 3 in section on Friday

• Project 1 reports almost graded
– Hoping to get them to you soon

• Project 2 
– Code due Tuesday (10/26)
– Look at the lecture schedule to keep up with due dates!
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Mobile devices are the future
• Android is the popular operating system from Google

– For Mobile devices
» Phones
» Ebook Readers 

(i.e. B&N)
» Tablets

– Linux version 2.6.x
– Java virtual machine and 
runtime system

– Lots of media extensions
» WebKit for browsing
» Media Libraries
» Cellular Networking

• Mobile Systems are the hottest new software stack
– Ubiquitous Computing
– Worldwide, more than 1 billion new cell phones 
purchased/year for last few years
» Compare: worldwide number PCs purchased/year ~ 250M
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What TLB organization makes sense?

• Needs to be really fast
– Critical path of memory access 

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
– This argues that cost of Conflict (Miss Penalty) is much 
higher than slightly increased cost of access (Hit Time)

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory
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TLB organization: include protection
• How big does TLB actually have to be?

– Usually small: 128-512 entries
– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• Example for MIPS R3000:

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• When does TLB lookup occur?
– Before cache lookup?
– In parallel with cache lookup?

0xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

Virtual Address   Physical Address   Dirty   Ref   Valid   Access ASID
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Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU  /  E.A Memory Write Reg
TLB I-Cache          RF        Operation                                WB

E.A.    TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip,  fully associative, software TLB fault handler

Combination
Segments and 

Paging!
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• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap 
TLB lookup with cache access.
– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address
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• Here is how this might work with a 4K cache: 

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else.  See CS152/252 

• Another option: Virtual Caches
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2
00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access
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Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10% 
of their code

– Wasteful to require all of user’s code to be in memory
• Solution: use main memory as cache for disk
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Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory 
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than 
physical memory
» More programs fit into memory, allowing more concurrency 

• Principle: Transparent Level of Indirection (page table) 
– Supports flexible placement of physical data

» Data could be on disk or somewhere across network
– Variable location of data transparent to user program

» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB



Virtual
Memory
4 GB
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Demand Paging is Caching

• Since Demand Paging is Caching, must ask:
– What is block size?

» 1 page
– What is organization of this cache (i.e. direct-mapped, 
set-associative, fully-associative)?
» Fully associative: arbitrary virtualphysical mapping

– How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal

– What is page replacement policy? (i.e. LRU, Random…)
» This requires more explanation… (kinda LRU)

– What happens on a miss?
» Go to lower level to fill miss (i.e. disk)

– What happens on a write? (write-through, write back)
» Definitely write-back.  Need dirty bit!
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Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures) 
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=14MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD
PW

T U W P

01234567811-931-12
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• PTE helps us implement demand paging
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find 
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace 
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs 
another process from ready queue
» Suspended process sits on wait queue

Demand Paging Mechanisms
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Software-Loaded TLB
• MIPS/Nachos TLB is loaded by software

– High TLB hit rateok to trap to software to fill the 
TLB, even if slower

– Simpler hardware and added flexibility: software can 
maintain translation tables in whatever convenient format

• How can a process run without access to page table?
– Fast path (TLB hit with valid=1):

» Translation to physical page done by hardware
– Slow path (TLB hit with valid=0 or TLB miss)

» Hardware receives a “TLB Fault”
– What does OS do on a TLB Fault? 

» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “Page Fault” detailed previously
» Continue thread

• Everything is transparent to the user process:
– It doesn’t know about paging to/from disk
– It doesn’t even know about software TLB handling
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Transparent Exceptions

• How to transparently restart faulting instructions?
– Could we just skip it? 

» No: need to perform load or store after reconnecting 
physical page

• Hardware must help out by saving:
– Faulting instruction and partial state 

» Need to know which instruction caused fault 
» Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

• What if an instruction has side-effects?

Load TLB

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 2

Fa
ul
ti
ng

In
st

 2

Fetch page/
Load TLB

User

OS

TLB Faults
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Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once 

read-only
• What about “RISC” processors?

– For instance delayed branches?
» Example: bne somewhereld r1,(sp)
» Precise exception state consists of two PCs: PC and nPC

– Delayed exceptions:
» Example: div r1, r2, r3ld r1, (sp)
» What if takes many cycles to discover divide by zero, 

but load has already caused page fault?
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Precise Exceptions
• Precise  state of the machine is preserved as if 

program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as 
if they have not even started

– Same system code will work on different implementations 
– Difficult in the presence of pipelining, out-of-order 
execution, ...

– MIPS takes this position
• Imprecise  system software has to figure out what is 

where and put it all back together
• Performance goals often lead designers to forsake 

precise interrupts
– system software developers, user, markets etc. usually 
wish they had not done this

• Modern techniques for out-of-order execution and 
branch prediction help implement precise interrupts
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Steps in Handling a Page Fault
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Demand Paging Example
• Since Demand Paging like caching, can compute 

average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then 
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT  p < 2.5 x 10-6

– This is about 1 page fault in 400000!

Lec 14.3110/20/10 Kubiatowicz CS162 ©UCB Fall 2010

What Factors Lead to Misses?
• Compulsory Misses: 

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow!  More later.

• Capacity Misses:
– Not enough memory. Must somehow increase size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option:  If multiple processes in memory: adjust 

percentage of memory allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, 
since it is a “fully-associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out 
prematurely because of the replacement policy

– How to fix? Better replacement policy
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Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page.  Be fair – let every page live in 
memory for same amount of time.

– Bad, because throws out heavily used pages instead of 
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time 
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s.  Simple hardware
– Pretty unpredictable – makes it hard to make real-time 
guarantees
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Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a 
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that 
can change position in list… 

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)
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• Suppose we have 3 page frames, 4 virtual pages, and 
following reference stream: 
– A B C A B D A D B C B

• Consider FIFO Page replacement:

– FIFO: 7 faults. 
– When referencing D, replacing A is bad choice, since 
need A again right away

Example: FIFO

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:
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• Suppose we have the same reference stream: 
– A B C A B D A D B C B

• Consider MIN Page replacement:

– MIN: 5 faults 
– Where will D be brought in? Look for page not 
referenced farthest in future.

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Lec 14.3610/20/10 Kubiatowicz CS162 ©UCB Fall 2010

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

B

C

DC

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:



Lec 14.3710/20/10 Kubiatowicz CS162 ©UCB Fall 2010

Summary
• TLB is cache on translations

– Fully associative to reduce conflicts 
– Can be overlapped with cache access

• Demand Paging:
– Treat memory as cache on disk
– Cache miss  get page from disk

• Transparent Level of Indirection
– User program is unaware of activities of OS behind scenes
– Data can be moved without affecting application correctness

• Software-loaded TLB
– Fast Path: handled in hardware (TLB hit with valid=1)
– Slow Path: Trap to software to scan page table

• Precise Exception specifies a single instruction for which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have started 

• Replacement policies
– FIFO: Place pages on queue, replace page at end
– MIN: replace page that will be used farthest in future
– LRU: Replace page that hasn’t be used for the longest time


