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Review: Memory Hierarchy of a Modern Computer System

* Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology
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Review: A Summary on Sources of Cache Misses

+ Compulsory (cold start): first reference to a block
- "Cold” fact of life: not a whole lot you can do about it
- Note: When running “billions” of instruction, Compulsory
Misses are insignificant
+ Capacity:
- Cache cannot contain all blocks access by the program
- Solution: increase cache size
+ Conflict (collision):
- Multiple memory locations mapped to same cache location
- Solutions: increase cache size, or increase associativity

- Two others:
- Coherence (Invalidation): other process (e.g., I70)
updates memory
- Policy: Due to non-optimal replacement policy
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Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
- N direct mapped caches operates in parallel

- Example: Two-way set associative cache
- Cache Index selects a "set” from the cache
- Two tags in the set are compared to input in parallel
- Data is selected based on the tag result

31 8 4 0

| Cache Tag | CacheIndex | Byte Select |
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Block 0 Cache Block 0
| T-r--—--ry-_------- B e I B 1
1 1
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Review: Where does a Block Get Placed in a Cache?

+ Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped: Set associative: Fully associative:

block 12 can go block 12 can go block 12 can go

only into block 4 anywhere in set 0 anywhere

(12 mod 8) (12 mod 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.
Set Set Set Set
01 2 3
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Goals for Today

+ Finish discussion of Caching/TLBs
+ Concept of Paging to Disk

* Page Faults and TLB Faults

* Precise Interrupts

- Page Replacement Policies

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.
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Which block should be replaced on a miss?

* Easy for Direct Mapped: Only one possibility
+ Set Associative or Fully Associative:

- Random

- LRU (Least Recently Used)

2-way 4-way 8-way
Size  LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64KB 19% 20% 15% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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What happens on a write?

* Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

* Write back: The information is written only to the
block in the cache.

- Modified cache block is written to main memory only
when it is replaced
- Question is block clean or dirty?
* Pros and Cons of each?

- WT:

» PRO: read misses cannot result in writes

» CON: Processor held up on writes unless writes buffered
- WB:

» PRO: repeated writes not sent to DRAM

processor not held up on writes

» CON: More complex
Read miss may require writeback of dirty data
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Review: Cache performance
* Miss-oriented Approach to Memory Access:

MemAccess

st x MissRate x MissPenaIty)x CycleTime
ns

CPUtime=1IC X[CPI Execution T

+ Separating out Memory component entirely
- AMAT = Average Memory Access Time

CPUtime = ICx (CPI oo + wx AMAT jx CycleTime
ns
AMAT HitRate x HitTime + MissRate x MissTime

HitTime + MissRate x MissPenalty

Frac,, x(HitTime,, + MissRate, ., x MissPenalty, ., )+
Fracp,, x (HitTimey,,, + MissRate,,,, x MissPenalty,.

« AMAT for Second-Level Cache

AMAT,, = HitTime,, + MissRate,,, x MissPenalty,,
HitTime,, + MissRate,, x AMAT,,,
HitTime,, + MissRate,, x (HitTime,,, + MissRate,, x MissPenalty, )
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Caching Applied to Address Translation
O

TLB Physi
ysical
Cached? Address .
—> Yes > — | Physical
No 0 Memory
1 o
(g

Translate
(MMU)

Data Read or Write
(untranslated)
* Question is one of page locality: does it exist?
- Instruction accesses spend a lot of time on the same
page (since accesses sequential)
- Stack accesses have definite locality of reference
- Data accesses have less page locality, but still some...
+ Can we have a TLB hierarchy?
- Sure: multiple levels at different sizes/speeds
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What Actually Happens on a TLB Miss?

* Hardware traversed page tables:
- On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which
kernel decides what to do afterwards
+ Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal
- Modern operating systems tend to have more TLB faults
since they use translation for many things
- Examples:
» shared segments
» user-level portions of an operating system
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What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses
- Address Space just changed, so TLB entries no
longer valid!
+ Options?
- Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
- Include ProcessID in TLB
» This is an architectural solution: needs hardware
* What if translation tables change?
- For example, to move page from memory to disk or
vice versa...
- Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
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Administrative

+ Exam not graded yet
- Will get solutions up early next week at latest

- Will talk about Problem 3 in section on Friday

* Project 1 reports almost graded
- Hoping to get them to you soon

* Project 2
- Code due Tuesday (10/26)
- Look at the lecture schedule to keep up with due dates!
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Mobile devices are the future
+ Android is the popular operating system from Google

- For Mobile devices
» Phones
» Fbook Readers
i.e. B&N)
» Tablets
- Linux version 2.6.x
- Java virtual machine and
runtime system
- Lots of media extensions
» WebKit for browsing

» Media Libraries
» Cellular Networking

* Mobile Systems are the hottest new software stack

- Ubiquitous Computing
- Worldwide, more than 1 billion new cell phones
purchased/year for last few years
» Compare: worldwide number PCs purchased/year ~ 250M
Lec 14.14
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What TLB organization makes sense?

TLB Cache Memory

* Needs to be really fast
- Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

- Seems to argue for Direct Mapped or Low Associativity

* However, needs to have very few conflicts!
- With TLB, the Miss Time extremely high!
- This argues that cost of Conflict (Miss Penal
higher than slightly increased cost of access
* Thrashing: continuous conflicts between accesses
- What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
- What if use high order bits as index?
» TLB mostly unused for small programs
Kubiatowicz 5162 ©UCB Fall 2010
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TLB organization: include protection

* How big does TLB actually have to be?
- Usually small: 128-512 entries
- Not very big, can support higher associativity
* TLB usually organized as fully-associative cache
- Lookup is by Virtual Address
- Returns Physical Address + other info

+ Example for MIPS R3000:

Valid |Access|AS

Virtual Address | Physical Address | Dirty | Ref
OxFAO00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

* What happens when fully-associative is too slow?
- Put a small (4-16 entry) direct-mapped cache in front
- Called a "TLB Slice”

* When does TLB lookup occur?

- Before cache lookup?
- In parallel with cache lookup?
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Example: R3000 pipeline includes TLB “stages”

MIPS R3000 Pipeline
|Inst Fetch | Dcd/ Reg |ALU | EA | Memory I Write Reg |
|TLB | I-Cache | RF | Operation | | WwB |
| EA.| TLB | D-Cache |

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

IASID || | I | V. Page Number | Offset |
6

T 20 12

0xx User segment (caching based on PT/TLB entry) o A

100 Kernel physical space, cached Comblnat'on
101 Kernel physical space, uncached $egmen'|'s and
11x Kernel virtual space Paglng

Allows context switching among
64 user processes without TLB flush
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Reducing translation time further

* As described, TLB lookup is in serial with cache lookup:
Virtual Address

[ | offset |
|

TLB Lookup

AcCCess
\ Rights

[ | offset |

Physical Address

* Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

- Works because offset available early
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Overlapping TLB & Cache Access
+ Here is how this might work with a 4K cache:
[ assoc l
Iookup

32| TLB '“de" 4K Cache |1K

10 2 [ ——4 bytes—

| page # | disp [od
Hit/ A
Miss
FN Data Hit/

Miss

* What if cache size is incr'eased to 8KB?
- Overlap not complete
- Need to do something else. See €S152/252
* Another option: Virtual Caches
- Tags in cache are virtual addresses
- Translation only happens on cache misses
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Demand Paging

* Modern programs require a lot of physical memory
- Memory per system growing faster than 25%-30%/year
* But they don't use all their memory all of the time

- 90-10 rule: programs spend 90% of their time in 10%
of their code

- Wasteful to require all of user's code to be in memory
+ Solution: use main memory as cache for disk

Processor
Control aching] Tertiary
Second| | Mai Secondary | Storage
oY Level | [Memory| | Storage (Tape)
Datapath | [8 & Cache | [(DRAM)| | (Disk)
GES SRAM
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........... Illusion of Infinite Memory

Y |
\V W
Table .
............ Physical Disk
Virtual Mgnig:: 50068
Memory 512 M
4 GB

- Disk is larger than physical memory =
- In-use virtual memory can be bigger than physical memory
- Combined memory of running processes much larger than
physical memory
» More programs fit into memory, allowing more concurrency
* Principle: Tr'ansgar'em‘ Level of Indirection (page table)
- Supports flexible placement of physical data
» Data could be on disk or somewhere across network
- Variable location of data transparent to user program
» Performance issue, not correctness issue
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Demand Paging is Caching

- Since Demand Paging is Caching, must ask:

- What is block size?
» 1 page

- What is organization of this cache (i.e. direct-mapped,

set-associative, fully-associative)?

» Fully associative: arbitrary virtual—physical mapping

- How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal

- What is page replacement policy? (i.e. LRU, Random...)
» This requires more explanation... (kinda LRU)

- What happens on a miss?
» 6o to lower level to fill miss (i.e. disk)

- What happens on a write? (write-through, write back)
» Definitely write-back. Need dirty bit!
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Review: What is in a PTE?

* What is in a Page Table Entry (or PTE)?
- Pointer to next-level page table or to actual page
- Permission bits: valid, read-only, read-write, write-only
+ Example: Intel x86 architecture PTE:
- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”

Page Frame Number Free B
(Physical Page Number) | 08y |°|*[P[4 §|§ uw|P
31-12 11-9 876543210
P: Present (same as “valid” bit in other architectures)
W: Whriteable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset
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Demand Paging Mechanisms

*+ PTE helps us implement demand paging
- Valid = Page in memory, PTE points at physical page
- Not Valid = Page not in memory: use info in PTE to find
it on disk when necessary
* Suppose user references page with invalid PTE?

- Memory Management Unit (MMU) traps to OS
» Resulting trap is a "Page Fault” . ‘
- What does OS do on a Page Fault?: |
» Choose an old page to replace
» If old page modified ("D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
- TLB for new page will be loaded when thread continued!
- While pulling pages off disk for one process, OS runs
another process from ready queue
» Suspended process sits on wait queue
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Software-Loaded TLB

* MIPS/Nachos TLB is loaded by software
- Hi% TLB hit rate=ok to trap to software to fill the
TLB, even if slower
- Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format
* How can a process run without access to page table?
- Fast path (TLB hit with valid=1):
» Translation to physical page done by hardware
- Slow path (TLB hit with valid=0 or TLB miss)
» Hardware receives a "TLB Fault”
- What does OS do on a TLB Fault?
» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread

» If valid=0, perform “"Page Fault” detailed previously
» Continue thread
+ Everything is transparent to the user process:
- It doesn't know about paging to/from disk
- It doesn't even know about software TLB handling
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Transparent Exceptions

£ 2~ Sy Ty
4+ + + +
User =% % 5 %
S5 34 55 S5
w w w w

|

TLB Faults
Fetch page/
os R

* How to transparently restart faulting instructions?

- Could we just skip it?
» No: need to perform load or store after reconnecting
physical page
* Hardware must help out by saving:
- Faulting instruction and partial state
» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????
- Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

« What if an instruction has side-effects?
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Consider weird things that can happen

- What it an insfruction has side effecis?

- Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)
- Examﬁle 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?
- Example 2: strcpy (r1), (r2)
» Source and destination overlap: can't unwind in principle!
» IBM S/370 and VAX solution: execute twice - once
read-only
* What about "RISC" processors?
- For instance delayed branches?
» Example: bne somewhere
Id r1,(sp)
» Precise exception state consists of two PCs: PC and nPC
- Delayed exceptions:
» Example:  div r1, r2, r3
Id r1, (sp)
» What if takes many cycles to discover divide by zero,
but load has already caused page fault?
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Precise Exceptions

* Precise = state of the machine is preserved as if
program executed up to the offending instruction
- All previous instructions completed
- Offending instruction and all following instructions act as
if they have not even started
- Same system code will work on different implementations
- Difficult in the presence of pipelining, out-of-order
execution, ...
- MIPS takes this position
* Imprecise = system software has to figure out what is
where and put it all back together
+ Performance goals often lead designers to forsake
precise interrupts
- system software developers, user, markets etc. usually
wish they had not done this
* Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts
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Steps in Handling a Page Fault

(=Y pageison
2/ backing store I
i =
\,q____ _—
operating |
system =
A
refarence \“2>
trap
&R
& o
load M 2 &,
a2 _—
&) |
restart page table
instruction I
+ free frame — "
Fr s e
'\?} | '\5/’
reset page | — bring in
table | S missing page
memaory
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Demand Paging Example
* Since Demand Paging like caching, can compute
average access timel ("Effective Access Time")
- EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
- EAT = Hit Time + Miss Rate x Miss Penalty
+ Example:
- Memory access time = 200 nanoseconds
- Average page-fault service time = 8 milliseconds
- Suppose p = Probability of miss, 1-p = Probably of hit
- Then, we can compute EAT as follows:
EAT =200ns + p x 8 ms
= 200ns + p x 8,000,000ns
+ If one access out of 1,000 causes a page fault, then
EAT = 8.2 ps:
- This is a slowdown by a factor of 40!
* What if want slowdown by less than 10%?
- 200ns x 1.1 < EAT = p < 2.5 x 10-¢
- This is about 1 page fault in 400000!
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What Factors Lead to Misses?

+ Compulsory Misses:
- Pages that have never been paged into memory before
- How might we remove these misses?
» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later.
* Capacity Misses:
- Not enough memory. Must somehow increase size.
- Can we do this?
» One option: Increase amount of DRAM (not quick fix!)

» Another option: If multiple processes in memory: adjust
percentage of memory allocated to each one!

+ Conflict Misses:

- Technically, gonflicf misses dq'n"r exist in virtual memory,
since it is a “fully-associative” cache

* Policy Misses:
- Caused when pages were in memory, but kicked out
prematurely because of the replacement policy
- How to fix? Better replacement policy
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Page Replacement Policies

* Why do we care about Replacement Policy?
- Replacement is an issue with any cache
- Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
FIFO (First In, First Out)
- Throw out oldest page. Be fair - let every page live in
memory for same amount of time.
- Bad, because throws out heavily used pages instead of
infrequently used pages
MIN (Minimum):
- Replace page that won't be used for the longest time
- 6reat, but can't really know future...
- Makes good comparison case, however
RANDOM:
- Pick random page for every replacement
- Typical solution for TLB's. Simple hardware

- Pretty unpredictable - makes it hard to make real-time
guarantees
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Replacement Policies (Con't)

* LRU (Least Recently Used):
- Replace page that hasn't been used for the longest time

- Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

- Seems like LRU should be a good approximation to MIN.
* How to implement LRU? Use a list!

Page 7 Page 1 Page 2

Head—|Page 6

Tail (LRU)
- On each use, remove page from list and place at head
- LRU page is at tail
* Problems with this scheme for paging?

- Need to know immediately when each page used so that
can change position in list...

- Many instructions for each hardware access
* In practice, people approximate LRU (more later)
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Example: FIFO

* Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:
-ABCABDADBCEB

* Consider FIFO Page replacement:

Ref:] A| B|C|A | B | D|A|D|B|C|B
Page:
1 | A D (o
2 B A

3 (& B

- FIFO: 7 faults.

- When referencing D, replacing A is bad choice, since
need A again right away
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Example: MIN

* Suppose we have the same reference stream:
-ABCABDADBCEB
+ Consider MIN Page replacement:

Ref:] A| B|C|A| B | D/ A|D|B|C|B
1 A (o
2 B

3 (& D

- MIN: 5 faults

- Where will D be brought in? Look for page not
referenced farthest in future.

+ What will LRU do?
- Same decisions as MIN here, but won't always be truel
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When will LRU perform badly?
+ Consider the following: ABCDABCDABCD
* LRU Performs as follows (same as FIFO here):
Ref:]A | B|C|D|A | B|C|D|A|B|C|D
1 A D c B
2 B A D (4

3 c B A D

- Every reference is a page fault!
* MIN Does much better:
Ref:] A | B|C|D|A | B|C|D|A|B|C|D
1 A B
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Summary

*+ TLB is cache on translations
- Fully associative to reduce conflicts
- Can be overlapped with cache access
+ Demand Paging:
- Treat memory as cache on disk
- Cache miss = get page from disk
* Transparent Level of Indirection
- User program is unaware of activities of OS behind scenes
- Data can be moved without affecting application correctness
- Software-loaded TLB
- Fast Path: handled in hardware (TLB hit with valid=1)
- Slow Path: Trap to software to scan page table
* Precise Exception specifies a single instruction for which:
- All previous instructions have completed (committed state)
- No following instructions nor actual instruction have started
* Replacement policies
- FIFO: Place pages on queue, replace page at end
- MIN: replace page that will be used farthest in future
- LRU: Replace page that hasn't be used for the longest time
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