
CS162
Operating Systems and
Systems Programming

Lecture 26

Protection and Security II,
ManyCore Operating Systems

December 1st, 2010
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 26.212/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Use of Hash Functions
• Several Standard Hash Functions:

– MD5: 128-bit output
– SHA-1: 160-bit output, SHA-256: 256-bit output

• Can we use hashing to securely reduce load on server?
– Yes. Use a series of insecure mirror servers (caches)
– First, ask server for digest of desired file

» Use secure channel with server
– Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Client

Read File X

Here is hx = H(X)

Insecure
Data
Mirror

File X
Read X

File X

Server

Lec 26.312/01/10 Kubiatowicz CS162 ©UCB Fall 2010

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys can be acquired by anyone/used by anyone
– Only person with private key can decrypt message

• What about authentication?
– AliceBob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• Suppose we want X to sign message M?
– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature: [M,H(M)Xprivate]
– Now, anyone can verify that M was signed by X

» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

Bprivate
Aprivate

Review: Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Lec 26.412/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Goals for Today

• Use of Cryptographic Mechanisms
• Distributed Authorization/Remote Storage
• Worms and Viruses
• ManyCore operating systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Also, slides on Taint Tracking adapted from Nickolai Zeldovich

Lec 26.512/01/10 Kubiatowicz CS162 ©UCB Fall 2010

• How do we decide who is authorized
to do actions in the system?

• Access Control Matrix: contains
all permissions in the system
– Resources across top

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a
group of permissions

» E.g. above: User D3 can read F2 or execute F3
– In practice, table would be huge and sparse!

• Two approaches to implementation
– Access Control Lists: store permissions with each object

» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users

and permissions for each group
– Capability List: each process tracks objects has
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has

access to, not each page has list of processes …

Recall: Authorization: Who Can Do What?

Lec 26.612/01/10 Kubiatowicz CS162 ©UCB Fall 2010

How to perform Authorization for Distributed Systems?

• Issues: Are all user names in world unique?
– No! They only have small number of characters

» kubi@mit.edu kubitron@lcs.mit.edu
kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu
and I got very private email intended for someone else…

– Need something better, more unique to identify person
• Suppose want to connect with any server at any time?

– Need an account on every machine! (possibly with
different user name for each account)

– OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)
» People are their public keys

Different
Authorization

Domains

Lec 26.712/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Client 1
Domain 1

Distributed Access Control

• Distributed Access Control List (ACL)
– Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

– ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key: 0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW:Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp,
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp,
Signature (group)

Re
ad

Gr
ou

p

GA
CL

Lec 26.812/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Analysis of Previous Scheme
• Positive Points:

– Identities checked via signatures and public keys
» Client can’t generate request for data unless they have

private key to go with their public identity
» Server won’t use ACLs not properly signed by owner of file

– No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

• Revocation:
– What if someone steals your private key?

» Need to walk through all ACLs with your key and change…!
» This is very expensive

– Better to have unique string identifying you that people
place into ACLs
» Then, ask Certificate Authority to give you a certificate

matching unique string to your current public key
» Client Request: (request + unique ID)Cprivate; give server

certificate if they ask for it.
» Key compromisemust distribute “certificate revocation”,

since can’t wait for previous certificate to expire.
– What if you remove someone from ACL of a given file?

» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

Lec 26.912/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Analysis Continued
• Who signs the data?

– Or: How does client know they are getting valid data?
– Signed by server?

» What if server compromised? Should client trust server?
– Signed by owner of file?

» Better, but now only owner can update file!
» Pretty inconvenient!

– Signed by group of servers that accepted latest update?
» If must have signatures from all servers Safe, but one

bad server can prevent update from happening
» Instead: ask for a threshold number of signatures
» Byzantine agreement can help here

• How do you know that data is up-to-date?
– Valid signature only means data is valid older version
– Freshness attack:

» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server

and prevents payroll from seeing latest version of update
– Hard problem

» Needs to be fixed by invalidating old copies or having a
trusted group of servers (Byzantine Agrement?)

Lec 26.1012/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Administrivia
• Optional Lecture on Monday at normal time and place

– Topics still TBA, but it will be good!
• Final Exam

– Thursday 12/16, 8:00AM-11:00AM, 10 Evans Hall
– All material from the course

» With slightly more focus on second half
– Two sheets of notes, both sides
– Will need dumb calculator

• Should be working on Project 4
– Final Project due on Tuesday 12/7

• I will have office hours next week at normal time
– M/W 2:30-3:30
– Feel free to come by to talk about whatever

• Need to get any regrade requests in by next Friday
– i.e. Projects 1-3
– Will consider Project 4 issues up until final

Lec 26.1112/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Involuntary Installation
• What about software loaded without your consent?

– Macros attached to documents (such as Microsoft Word)
– Active X controls (programs on web sites with potential
access to whole machine)

– Spyware included with normal products
• Active X controls can have access to the local machine

– Install software/Launch programs
• Sony Spyware [Sony XCP] (October 2005)

– About 50 CDs from Sony automatically installed software
when you played them on Windows machines
» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies

and to prevent peer-to-peer sharing
– Side Effects:

» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx; easy for

other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)

– Vendors of virus protection software declare it spyware
» Computer Associates, Symantec, even Microsoft

Lec 26.1212/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Enforcement
• Enforcer checks passwords, ACLs, etc

– Makes sure the only authorized actions take place
– Bugs in enforcerthings for malicious users to exploit

• In UNIX, superuser can do anything
– Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work

– If there is a bug in any one of these programs, you lose!
• Paradox

– Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model

– Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right

• Same argument for Java or C++: What do you make
private vs public?
– Hard to make sure that code is usable but only necessary
modules are public

– Pick something in middle? Get bugs and weak protection!

Lec 26.1312/01/10 Kubiatowicz CS162 ©UCB Fall 2010

State of the World
• State of the World in Security

– Authentication: Encryption
» But almost no one encrypts or has public key identity

– Authorization: Access Control
» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing

– Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole!

• Some types of security problems
– Abuse of privilege

» If the superuser is evil, we’re all in trouble/can’t do anything
» What if sysop in charge of instructional resources went

crazy and deleted everybody’s files (and backups)???
– Imposter: Pretend to be someone else

» Example: in unix, can set up an .rhosts file to allow logins
from one machine to another without retyping password

» Allows “rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted

userinstall .rhosts file granting you access

Lec 26.1412/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Other Security Problems
• Virus:

– A piece of code that attaches itself to a program or file
so it can spread from one computer to another, leaving
infections as it travels

– Most attached to executable files, so don’t get
activated until the file is actually executed

– Once caught, can hide in boot tracks, other files, OS
• Worm:

– Similar to a virus, but capable of traveling on its own
– Takes advantage of file or information transport
features

– Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself

• Trojan Horse:
– Named after huge wooden horse in Greek mythology
given as gift to enemy; contained army inside

– At first glance appears to be useful software but does
damage once installed or run on your computer

Lec 26.1512/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Security Problems: Buffer-overflow Condition
#define BUFFER SIZE 256
int process(int argc, char *argv[])
{
char buffer[BUFFER SIZE];
if (argc < 2)

return -1;
else {

strcpy(buffer,argv[1]);
return 0;

}
} Before attack After attack

• Technique exploited by many network attacks
– Anytime input comes from network request and is not
checked for size

– Allows execution of code with same privileges as running
program – but happens without any action from user!

• How to prevent?
– Don’t code this way! (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don’t execute code in this page”
Lec 26.1612/01/10 Kubiatowicz CS162 ©UCB Fall 2010

The Morris Internet Worm
• Internet worm (Self-reproducing)

– Author Robert Morris, a first-year Cornell grad student
– Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program

Lec 26.1712/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Some other Attacks
• Trojan Horse Example: Fake Login

– Construct a program that looks like normal login program
– Gives “login:” and “password:” prompts

» You type information, it sends password to someone, then
either logs you in or says “Permission Denied” and exits

– In Windows, the “ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “know” that you are
getting official login program

• Salami attack: Slicing things a little at a time
– Steal or corrupt something a little bit at a time
– E.g.: What happens to partial pennies from bank interest?

» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.

» Doesn’t seem like much, but if you are large bank can be
millions of dollars

• Eavesdropping attack
– Tap into network and see everything typed
– Catch passwords, etc
– Lesson: never use unencrypted communication!

Lec 26.1812/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Timing Attacks: Tenex Password Checking

• Tenex – early 70’s, BBN
– Most popular system at universities before UNIX
– Thought to be very secure, gave “red team” all the
source code and documentation (want code to be
publicly available, as in UNIX)

– In 48 hours, they figured out how to get every
password in the system

• Here’s the code for the password check:
for (i = 0; i < 8; i++)
if (userPasswd[i] != realPasswd[i])
go to error

• How many combinations of passwords?
– 2568?
– Wrong!

Lec 26.1912/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Defeating Password Checking

• Tenex used VM, and it interacts badly with the above code
– Key idea: force page faults at inopportune times to break

passwords quickly
• Arrange 1st char in string to be last char in pg, rest on next pg

– Then arrange for pg with 1st char to be in memory, and rest
to be on disk (e.g., ref lots of other pgs, then ref 1st page)

a|aaaaaa
|

page in memory| page on disk
• Time password check to determine if first character is correct!

– If fast, 1st char is wrong
– If slow, 1st char is right, pg fault, one of the others wrong
– So try all first characters, until one is slow
– Repeat with first two characters in memory, rest on disk

• Only 256 * 8 attempts to crack passwords
– Fix is easy, don’t stop until you look at all the characters

Lec 26.2012/01/10 Kubiatowicz CS162 ©UCB Fall 2010

ManyCore Chips: The future is here (for EVERYONE)

• “ManyCore” refers to many processors/chip
– 64? 128? Hard to say exact boundary

• Question: How can ManyCore change our view of OSs?
– ManyCore is a challenge

» Need to be able to take advantage of parallelism
» Must utilize many processors somehow

– ManyCore is an opportunity
» Manufacturers are desperate to figure out how to program
» Willing to change many things: hardware, software, etc.

– Can we improve: security, responsiveness, programmability?

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores
– Two floating point engines /core
– Mesh-like "network-on-a-chip“
– 100 million transistors
– 65nm feature size

Lec 26.2112/01/10 Kubiatowicz CS162 ©UCB Fall 2010

PARLab OS Goals: RAPPidS
• Responsiveness: Meets real-time guarantees

– Good user experience with UI expected
– Illusion of Rapid I/O while still providing guarantees
– Real-Time applications (speech, music, video) will be assumed

• Agility: Can deal with rapidly changing environment
– Programs not completely assembled until runtime
– User may request complex mix of services at moment’s notice
– Resources change rapidly (bandwidth, power, etc)

• Power-Efficiency: Efficient power-performance tradeoffs
– Application-Specific parallel scheduling on Bare Metal

partitions
– Explicitly parallel, power-aware OS service architecture

• Persistence: User experience persists across device failures
– Fully integrated with persistent storage infrastructures
– Customizations not be lost on “reboot”

• Security and Correctness: Must be hard to compromise
– Untrusted and/or buggy components handled gracefully
– Combination of verification and isolation at many levels
– Privacy, Integrity, Authenticity of information asserted

Lec 26.2212/01/10 Kubiatowicz CS162 ©UCB Fall 2010

The Problem with Current OSs
• What is wrong with current Operating Systems?

– They do not allow expression of application requirements
» Minimal Frame Rate, Minimal Memory Bandwidth, Minimal QoS

from system Services, Real Time Constraints, …
» No clean interfaces for reflecting these requirements

– They do not provide guarantees that applications can use
» They do not provide performance isolation
» Resources can be removed or decreased without permission
» Maximum response time to events cannot be characterized

– They do not provide fully custom scheduling
» In a parallel programming environment, ideal scheduling can depend

crucially on the programming model
– They do not provide sufficient Security or Correctness

» Monolithic Kernels get compromised all the time
» Applications cannot express domains of trust within themselves

without using a heavyweight process model
• The advent of ManyCore both:

– Exacerbates the above with greater number of shared resources
– Provides an opportunity to change the fundamental model

Lec 26.2312/01/10 Kubiatowicz CS162 ©UCB Fall 2010

A First Step: Two Level Scheduling

• Split monolithic scheduling into two pieces:
– Course-Grained Resource Allocation and Distribution

» Chunks of resources (CPUs, Memory Bandwidth, QoS to Services)
distributed to application (system) components

» Option to simply turn off unused resources (Important for Power)
– Fine-Grained Application-Specific Scheduling

» Applications are allowed to utilize their resources in any way
they see fit

» Other components of the system cannot interfere with their use
of resources

Monolithic
CPU and Resource

Scheduling
Application Specific

Scheduling

Resource Allocation
And

Distribution

Two-Level Scheduling

Lec 26.2412/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Important New Mechanism: Spatial Partitioning

• Spatial Partition: group of processors acting within
hardware boundary
– Boundaries are “hard”, communication between partitions controlled
– Anything goes within partition

• Each Partition receives a vector of resources
– Some number of dedicated processors
– Some set of dedicated resources (exclusive access)

» Complete access to certain hardware devices
» Dedicated raw storage partition

– Some guaranteed fraction of other resources (QoS guarantee):
» Memory bandwidth, Network bandwidth
» fractional services from other partitions

• Key Idea: Resource Isolation Between Partitions

Lec 26.2512/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Tessellation: The Exploded OS
• Normal Components split

into pieces
– Device drivers

(Security/Reliability)
– Network Services

(Performance)
» TCP/IP stack
» Firewall
» Virus Checking
» Intrusion Detection

– Persistent Storage
(Performance,
Security, Reliability)

– Monitoring services
» Performance counters
» Introspection

– Identity/Environment
services (Security)

» Biometric, GPS,
Possession Tracking

• Applications Given
Larger Partitions
– Freedom to use

resources arbitrarily

Device
Drivers

Video &
Window
Drivers

Firewall
Virus

Intrusion

Monitor
And

Adapt

Persistent
Storage &

File System

HCI/
Voice
Rec

Large Compute-Bound
Application

Real-Time
Application

Iden
tity

Lec 26.2612/01/10 Kubiatowicz CS162 ©UCB Fall 2010

• Use lessons from from Large Distributed Systems
– Like Peer-to-Peer on chip
– OS is a set of independent interacting components
– Shared state across components minimized

• Component-based design:
– All applications designed with pieces from many sources
– Requires composition: Performance, Interfaces, Security

• Spatial Partitioning Advantages:
– Protection of computing resources not required within partition

» High walls between partitions anything goes within partition
» “Bare Metal” access to hardware resources

– Partitions exist simultaneously fast communication between domains
» Applications split into distrusting partitions w/ controlled communication
» Hardware acceleration/tagging for fast secure messaging

OS as Distributed System

Secure
Channel

Balanced
Gang

Individual
Partition

Secure
Channel

Secure
Channel

Device
Drivers

Lec 26.2712/01/10 Kubiatowicz CS162 ©UCB Fall 2010

It’s all about the communication

• We are interested in communication for many reasons:
– Communication represents a security vulnerability
– Quality of Service (QoS) boils down message tracking
– Communication efficiency impacts decomposability

• Shared components complicate resource isolation:
– Need distributed mechanism for tracking and accounting
of resource usage
» E.g.: How do we guarantee that each partition gets a

guaranteed fraction of the service:

Application B

Application A

Shared File Service

Lec 26.2812/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Space-Time Partitioning

• Spatial Partitioning Varies over Time
– Partitioning adapts to needs of the system
– Some partitions persist, others change with time
– Further, Partititions can be Time Multiplexed

» Services (i.e. file system), device drivers, hard realtime partitions
» User-level schedulers may time-multiplex threads within partition

• Global Partitioning Goals:
– Power-performance tradeoffs
– Setup to achieve QoS and/or Responsiveness guarantees
– Isolation of real-time partitions for better guarantees

• Monitoring and Adaptation
– Integration of performance/power/efficiency counters

Time

Space

Lec 26.2912/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Another Look: Two-Level Scheduling
• First Level: Gross partitioning of resources

– Goals: Power Budget, Overall Responsiveness/QoS, Security
– Partitioning of CPUs, Memory, Interrupts, Devices, other

resources
– Constant for sufficient period of time to:

» Amortize cost of global decision making
» Allow time for partition-level scheduling to be effective

– Hard boundaries interference-free use of resources
• Second Level: Application-Specific Scheduling

– Goals: Performance, Real-time Behavior, Responsiveness,
Predictability

– CPU scheduling tuned to specific applications
– Resources distributed in application-specific fashion
– External events (I/O, active messages, etc) deferrable as

appropriate
• Justifications for two-level scheduling?

– Global/cross-app decisions made by 1st level
» E.g. Save power by focusing I/O handling to smaller # of cores

– App-scheduler (2nd level) better tuned to application
» Lower overhead/better match to app than global scheduler
» No global scheduler could handle all applications

Lec 26.3012/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Space-Time Resource Graph

Cell 2
Cell 3

Resources:
4 Proc, 50% time
1GB network BW
25% File Server

Cell 3

Lightweight
Protection Domains

Cell 1

• Space-Time resource graph: the explicit instantiation of
resource assignments
– Directed Arrows Express Parent/Child Spawning Relationship
– All resources have a Space/Time component

» E.g. X Processors/fraction of time, or Y Bytes/Sec
• What does it mean to give resources to a Cell?

– The Cell has a position in the Space-Time resource graph and
– The resources are added to the cell’s resource label
– Resources cannot be taken away except via explicit APIs

Lec 26.3112/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Implementing the Space-Time Graph
• Partition Policy layer (allocation)

– Allocates Resources to Cells
based
on Global policies

– Produces only implementable
space-time resource graphs

– May deny resources to a cell that
requests them (admission control)

• Mapping layer (distribution)
– Makes no decisions
– Time-Slices at a course

granularity
– performs bin-packing like to

implement space-time graph
– In limit of many processors, no

time multiplexing processors,
merely distributing resources

• Partition Mechanism Layer
– Implements hardware partitions

and secure channels
– Device Dependent: Makes use of

more or less hardware support for
QoS and Partitions

Mapping Layer (Resource Distributer)

Partition Policy Layer
(Resource Allocator)
Reflects Global Goals

Space-Time Resource Graph

Partition Mechanism Layer
ParaVirtualized Hardware

To Support Partitions

Lec 26.3212/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Tessellation Architecture

32

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUsPhysical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
Functionality

Configure
HW-supported
Communication

Message
Passing

Configure Partition
Resources enforced by

HW at runtime

Partition
Allocator

Partition
Scheduler

Comm.
Reqs

Sched
Reqs.

Partition
Resizing

Callback API

Res.
Reqs.

Lec 26.3312/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Time-sensitive
Network

Subsystem

Network
Service

(Net Partition)

Input device
(Pinned/TT Partition)

Graphical
Interface

(GUI Partition)

Audio-processing / Synthesis Engine
(Pinned/TT partition)

Output device
(Pinned/TT Partition)

GUI Subsystem

Communication with other
audio-processing nodes

Music program

Preliminary

Example of Music Application

Lec 26.3412/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Conclusion
• Distributed identity

– Use cryptography (Public Key, Signed by PKI)
• Distributed storage example

– Revocation: How to remove permissions from someone?
– Integrity: How to know whether data is valid
– Freshness: How to know whether data is recent

• Buffer-Overrun Attack: exploit bug to execute code
• Space-Time Partitioning: grouping processors & resources behind

hardware boundary
– Focus on Quality of Service
– Two-level scheduling

1) Global Distribution of resources
2) Application-Specific scheduling of resources

– Bare Metal Execution within partition
– Composable performance, security, QoS

• Tessellation Paper:
– Off my “publications” page (near top):

http://www.cs.berkeley.edu/~kubitron/papers

Lec 26.3512/01/10 Kubiatowicz CS162 ©UCB Fall 2010

Good Bye!

•Optional Lecture on Monday

•Let’s thank the TAs!

•Good Bye!
You have been a great class!

