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Goals for Today

* A couple of requested topics
- Peer-to-Peer Systems
- ManyCore OSes
- Realtime OSs
- Trusted Computing

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

12/06/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 27.2

Peer-to-Peer: Fully equivalent components

+ Peer-to-Peer has many interacting components
- View system as a set of equivalent nodes
» "All nodes are created equal”
- Any structure on system must be self-organizing

» Not based on physical characteristics, location, or
ownership
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Research Community View of Peer-to-Peer

MY PROJECT IS
A WHOLE NEW

P& QADIBP\_j—'

+ Old View:
- A bunch of flakey high-school students stealing music
* New View:
- A philosophy of systems design at extreme scale
- Probabilistic design when it is appropriate
- New techniques aimed at unreliable components
- A rethinking (and recasting) of distributed algorithms

- Use of Physical, Biological, and Game-Theoretic techniques
to achieve guarantees
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Why the hype???
+ File Sharing: Napster (+Gnutella, KaZaa, efc)
- Is this peer-to-peer? Hard to say.
- Suddenly people could contribute to active global network
» High coolness factor
- Served a high-demand niche: online jukebox
* Anonymity/Privacy/Anarchy: FreeNet, Publis, etc
- Libertarian dream of freedom from the man
» (ISPs? Other 3-letter agencies)
- Extremely valid concern of Censorship/Privacy
- In search of copyright violators, RIAA challenging rights to
privacy
+ Computing: The 6rid
- Scavenge numerous free cycles of the world to do work
- Seti@Home most visible version of this
* Management: Businesses
- Businesses have discovered extreme distributed computing
- Does P2P mean "self-configuring” from equivalent resources?
- Bound up in "Autonomic Computing Initiative"?
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The lookup problem

Key="title"
Value=MP3 data... .
! Client
Publisher. Lookup(“ title")
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Centralized lookup (Napster)

Client
Lookup(“title™)

SetlLoc("title”,N4)
Key="title"
Value=MP3 data...

Simple, but O(N) state and a single point of failure
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Flooded queries (Gnutella)

/ N3"§N5 Client

Publisher@ (N
Key="title"
Value=MP3 da

Robust, but worst case O(N) messages per lookup
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Routed queries (Freenet, Chord, etc.)

Publisher@{N,
Key="title"
Value=MP3 dataf

Can be O(log N) messages per lookup (or even O(1))
Potentially complex routing state and maintenance.

12/06/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 27.9

12/06/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 27.10

Chord IDs

* Key identifier = SHA-1(key)

* Node identifier = SHA-1(IP address)
+ Both are uniformly distributed

- Both exist in the same ID space

* How to map key IDs to node IDs?
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Consistent hashing [Karger 97]

Key 5

Circular 160-bit \

N32

Node 105

ID space

K80
A key is stored at its successor: node with next higher ID
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Basic lookup

N120

\ N10O | “Where is key 802"

N105

“N90 has K80" N32

Simple lookup algorithm

Lookup(my-id, key-id)
n = my successor
if my-id < n < key-id

call Lookup(id) on node n // next hop
else
return my successor /I done

K80| N90
* Correctness depends only on successors
\ NGO
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“Finger table” allows log(N)-time lookups Finger i points to successor of n+2i
N120
112
1/4 Yo T ]/4
1/8 1/8
1/16 1/16
1/32 1/32
1/64 1/64
1/12 8
N80 N8O
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Lookup with fingers

Lookup(my-id, key-id)
look in local finger table for

Lookups take O(log(N)) hops

N10
N110 K19
highest node n s.t. my-id < n < key-id ] \Z0
if n exists N99
call Lookup(id) on node n // next hop Lookup(K19)
else
return my successor /I done —
N60
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Joining: linked list insert Join (2)
N25 N25
N36 2. N36 sets its own N36
successor pointer
1. Lookup(36
ookup(36) K30 ‘6
N40 K38 N40 K38
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Join (3)

3. Copy keys 26..36 N36 | K30
from N40 to N36
o
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Join (4)

4. Set N25's successor

pointer

Update finger pointers in the background
Correct successors produce correct lookups
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Failures might cause incorrect lookup

Lookup(90)

N80 doesn't know correct successor, so incorrect lookup
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Solution: successor lists

* Each node knows r immediate successors
- After failure, will know first live successor
- Correct successors guarantee correct lookups
- Guarantee is with some probability

* For many systems, talk about “leaf set”

- The leaf set is a set of nodes around the
“root” node that can handle all of the
data/queries that the root nodes might handle

* When node fails:
- Leaf set can handle queries for dead node
- Leaf set queried to retreat missing data
- Leaf set used to reconstruct new leaf set
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Lookup with Leaf Set

* Assign IDs to nodes  source

- Map hash values to
node with closest ID

* Leaf set is
successors and
predecessors

- All that's needed for
correctness
* Routing table
matches successively
longer prefixes
- Allows efficient
lookups
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Lookup ID
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Administrivia

* Final Exam
- Thursday 12/16, 8:00AM-11:00AM, 10 Evans Hall
- All material from the course
» With slightly more focus on second half
- Two sheets of notes, both sides
- Will need dumb calculator
+ Should be working on Project 4
- Final Code due tomorrow (Tuesday 12/7)
- Final Report due on next day
- MAKE SURE TO FILL OUT YOUR GROUP EVALSH
+ T will have office hours this week at normal time
- M/W 2:30-3:30
- Feel free to come by to talk about whatever
* Need to get any regrade requests in by this Friday
-i.e. Projects 1-3

- Will consider Project 4 issues UP until final
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OceanStore
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* Data service provided by storage federation
+ Cross-administrative domain
* Contractual Quality of Service ("someone to sue”)
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OceanStore:
Everyone's Data, One Big Utility

The data is just out There

* How many files in the OceanStore?
- Assume 1010 people in world
- Say 10,000 files/person (very conservative?)
- So 104 files in OceanStore!

- If 1 gig files (ok, a stretch), get 1 mole of bytes!
(or a Yotta-Byte if you are a computer person)

Truly impressive number of elements...
.. but small relative to physical constants
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Key Observation: Want Automatic Maintenance

+ Can't possibly manage billions of servers by hand!
- System should automatically:
- Adapt to failure
- Exclude malicious elements
- Repair itself
- Incorporate new elements
- System should be secure and private
- Encryption, authentication
- System should preserve data over the long term
(accessible for 1000 years):
- Geographic distribution of information
- New servers added from time to time
- Old servers removed from time to time
- Everything just works
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Example: Secure Object Storage

Client
(w/ TCPA) ==

: Client

(w/ TCPA)
) T
Client g \z[ .
Data h Client
Manager (w/ TCPA)

+ Security: Access and Content controlled by client
- Privacy through data encryption
- Optional use of cryptographic hardware for revocation
- Authenticity through hashing and active integrity

checking

* Flexible self-management and optimization:
- Performance and durability
- Efficient sharing
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OceanStore Assumptions

ﬂ)m‘rusfed Infrastructure: P eer-to-peer
- The OceanStore is comprised of untrusted components
- Individual hardware has finite lifetimes
- All data encrypted within the infrastructure
* Mostly Well-Connected:
- Data producers and consumers are connected to a high-
bandwidth network most of the time
- Exploit multicast for quicker consistency when possible
* Promiscuous Caching:
- Data may be cached anywhere, anytime j

\

g uality-of-Service
* Responsible Party: Q Y

- Some organization (/.e. service provider) guarantees that
your data is consistent and durable

- Not trusted with content of data, merely its integrity
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" ~Peer-to-Peer
for Data Location -
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Peer-to-Peer in OceanStore: DOLR
(Decentralized Object Location and Routing)

@ _O

@)
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Stability under extreme circumstances

Route to Node on PlanetLab

100
90.
80 |
70
60.
sot /T

40 b starts
10 || / 50% more

20 r" ¢ nodes join

20 H 20% of

10 K nodes fail
0

TIEEEEE

% Successful Lookups

Success Rate
#Nodes ———

— — o
0 30 60 9 120 150 180 210 240

Time (minutes)

(May 2003: 1.5 TB over 4 hours)
DOLR Model generalizes to many simultaneous apps
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Object Location with Tapestry DOLR
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Peek at OceanStore

Mechanisms

OceanStore Data Model

* Versioned Objects

- Every update generates a new version

- Can always go back in time (Time Travel)
+ Each Version is Read-Only

- Can have permanent name

- Much easier to repair

* An Object is a signed mapping between permanent
name and latest version

- Write access control/integrity involves managing these

mappings versions
°°° o °° ° //
CometAnalogy ° °, ° updates
0%, %o
o \
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Self-Verifying Objects OceanStore API: Universal Conflict Resolution
AGUID = hash{name+keys} Native Clients [ [ NFS/AFS || HTTP || IMAP/SMTP || NTFS (soon?)
VGUID; VGUID, , , |
] 1. Conflict Resolution
N OceanStore 2. Versioning/Branching
3. Access control
| API 4. Archival Storage
i Indirec|
o - Consistency is form of optimistic concurrency
- Updates contain predicate-action pairs
‘ - Each predicate tried in turn:
AT T';:T“de ERE » If none match, the update is aborted
—— » Otherwise, action of first true predicate is applied
* Role of Responsible Par"l'% (RP):
¥ Heartbeat: {AGUID,VGUID, Timestamp}eq - Updates submitted to RP which chooses total order
. / ¢ * This is powerful enough to synthesize:
Heartbeats + o4 °o° o ~ - ACID database semantics
Read-Only Data® © o . Updates - release consistency (build and use MCS-style locks)
0%, 2o “~ - Extremely loose (weak) consistency
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Two Types of OceanStore Data

* Active Data: “Floating Replicas”
- Per object virtual server
- Interaction with other replicas for consistency
- May appear and disappear like bubbles
* Archival Data: OceanStore's Stable Store
- m-of-n coding: Like hologram

» Data coded into n fragments, any m of which are
sufficient to reconstruct (e.g m=16, n=64)

» Coding overhead is proportional to n+m (e.g 4)
» Other parameter, rate, is 1/overhead
- Fragments are cryptographically self-verifying

+ Most data in the OceanStore is archivall
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The Path of an Inner-Ring

Second-Tier OceanStore Update

‘Servers

Self-Organizing Soft-State Replication

- Simple algorithms for placing replicas on nodes in the
interior

- Intuition: locality properties
of Tapestry help select positions
for replicas

- Tapestry helps associate
parents and children
to build multicast tree

* Preliminary results
encouraging

* Current Investigations:
- 6ame Theory
- Thermodynamics
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Archival Dissemination

of Fragments

.
. R
“Archival es=**7C
Servers

a, .
Archival
Lusn®®*"Servers




Aside: Why erasure coding?
High Durability/overhead ratio!

L L
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- Exploit law of large numbers for durability!
+ 6 month repair, FBLPY:

- Replication: 0.03

- Fragmentation: 10-35
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Extreme Durability?

- Exploiting Infrastructure for Repair
- DOLR permits efficient heartbeat mechanism to notice:
» Servers going away for a while
» Or, going away forever!
- Continuous sweep through data also possible
- Erasure Code provides Flexibility in Timing

* Data transferred from physical medium to physical
medium

- No "tapes decaying in basement”
- Information becomes fully Virtualized

* Thermodynamic Analogy: Use of Energy (supplied by
servers) to Suppress Entropy
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Differing Degrees of Responsibility

* Inner-ring provides quality of service
- Handles of live data and write access control
- Focus utility resources on this vital service
- Compromised servers must be detected quickly
+ Caching service can be provided by anyone
- Data encrypted and self-verifying
- Pay for service “Caching Kiosks"?
* Archival Storage and Repair
- Read-only data: easier to authenticate and repair
- Tradeoff redundancy for responsiveness
* Could be provided by different companies!
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ManyCore
Operating Systems
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ManyCore Chips: The future is here
+ Intel 80-core multicore chip (Feb 2007)

- 80 simple cores
- Two FP-engines / core
- Mesh-like network
- 100 million transistors
- 65nm feature size
Intel Single-Chip Cloud
Computer (August 2010)
- 24 “tiles" with two cores/tile
- 24-router mesh network
- 4 DDR3 memory controllers
- Hardware support for message-passing
* “"ManyCore” refers to many processors/chip
- 64? 128? Hard to say exact boundary
+ How to program these?
- Use 2 CPUs for video/audio
- Use 1 for word processor, 1 for browser
- 76 for virus checking???

Parallelism must be exploited at all levels
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Dual-core SCC Tie

Services Support for Applications
* What systems support do we need for new ManyCore
applications?
- Should we just port parallel Linux or Windows 7 and be done
with it?
- A lot of functionality, hard to experiment with, possibly
fragile, ..
* Clearly, these new applications will contain:

- Explicitly parallel components

» However, parallelism may be “hard won” (not embarrassingly
parallel)

» Must not interfere with this parallelism
- Direct interaction with Internet and “Cloud” services
» Potentially extensive use of remote services
» Serious security/data vulnerability concerns
- Real Time requirements
» Sophisticated multimedia interactions
» Control of/interaction with health-related devices
- Responsiveness Requirements

» Provide a good interactive experience to users
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PARLab OS Goals: RAPP/dS

- Responsiveness: Meets real-time guarantees
- Good user experience with UL expected
- Illusion of Rapid I/0 while still providing guarantees A
- Real-Time applications (speech, music, video) will be asglme
- Agility: Can deal with rapidly changing environment
- Programs not completely assembled until runtime
- User may request complex mix of services at moment's notice
- Resources change rapidly (bandwidth, power, etc)
- Power-Efficiency: Efficient power-performance tradeoffs
- Application-Specific parallel scheduling on Bare Metal partitions
- Explicitly parallel, power-aware OS service architecture
- Persistence: User experience persists across device
failures
- Fully integrated with persistent storage infrastructures
- Customizations not be lost on “reboot”
* Security and Correctness: Must be hard to compromise
- Untrusted and/or buggy components handled gracefully
- Combination of verification and isolation at many levels
- Privacy, Integrity, Authenticity of information asserted
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The Problem with Current OSs

* What is wrong with current Operating Systems?
- They (often?) do not allow expression of application requirements

» Minimal Frame Rate, Minimal Memory Bandwidth, Minimal QoS from
system Services, Real Time Constraints, ..

» No clean interfaces for reflecting these requirements
- They (often?) do not provide guarantees that applications can use
» They do not provide performance isolation
» Resources can be removed or decreased without permission
» Maximum response time to events cannot be characterized
- They (often?) do not provide fully custom scheduling

» In a parallel ﬁrogr‘amming environment, ideal scheduling can depend
crucially on the programming model

- They (often?) do not provide sufficient Security or Correctness
» Monolithic Kernels get compromised all the time

» Applications cannot express domains of trust within themselves without
using a heavyweight process model

* The advent of ManyCore both:
- Exacerbates the above with a greater number of shared resources
- Provides an opportunity to change the fundamental model
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A First Step: Two Level Scheduling

Resource Allocation

And
Distribution
cpumﬁ"gﬂfme Two-Level Scheduling
Scheduling

Application Specific
PP Schedulir‘l)g

+ Split monolithic scheduling into two pieces:
- Course-Grained Resource Allocation and Distribution

» Chunks of resources (CPUs, Memory Bandwidth, QoS to Services)
distributed to application (system) components

» Option to simply turn off unused resources (Important for Power)
- Fine-6rained Application-Specific Scheduling
» Applications are allowed to utilize their resources in any way
they see fit
» Other components cannot interfere with their use of resources
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Important Idea: Spatial Partitioning

- Spatial Partition: group of processors within hardware boundary
- Boundaries are “hard”, communication between partitions
controlled
- Anything goes within partition
Key Idea: Performance and Security Isolation
Each Partition receives a vector of resources
- Some number of dedicated processors
- Some set of dedicated resources (exclusive access)
» Complete access to certain hardware devices
» Dedicated raw storage partition
- Some guaranteed fraction of other resources (QoS guarantee):
» Memory bandwidth, Network bandwidth
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Performance w/ Spatial Partitioning
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Space-Time Partitioning

Y \
() BN
B >
8 S T
S.bace

- Spatial Partitioning Varies over Time
- Partitioning adapts to needs of the system
- Some partitions persist, others change with time
- Further, Partititions can be Time Multiplexed
» Services (i.e. file system), device drivers, hard realtime partitions
» Some user-level schedulers will time-multiplex threads within a
partition
* Controlled Multiplexing, not uncontrolled virtualization
- Multiplexing at coarser grain (100ms?)
- Schedule planned several slices in advance
- Resources gang-scheduled, use of affinity or hardware
partitioning
to avoid cross-partition interference
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Defining the Partitioned Environment

+ Our new abstraction: Cell
- A user-level software component, with guaranteed resources
- Is it a process? Is it a Virtual Private Machine? Neither, Both

- Different from Tgpical Virtual Machine Environment which
duplicates many Systems components in each VM

* Properties of a Cell
- Has full control over resources it owns ("Bare Metal”)

- Contains at least one address space (memory protection domain),
but could contain more than one

- Contains a set of secured channel endpoints to other Cells

- Contains a security context which may protect and decrypt
information

- Interacts with trusted layers of Tessellation (e.g. the "NanoVisor”)
via a heavily Paravirtualized Interface

» 1E_ .gl. Manipulate address mappings without knowing format of page
ables

* When mapped to the hardware, a Cell gets:
- 6ang-schedule hardware thread resources (“Harts")
- Guaranteed fractions of other physical resources
» Physical Pages (DRAM), Cache partitions, memory bandwidth, power
- Guaranteed fractions of system services
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Resource Composition

Device
Drivers

Cho““e\

Real-Tim o0
cels @@
Audio,

- =
ideo) (@® o Channel 'Y )
.. arallel .
Core Application Library File

Service
* Component-based model of computation

- Applications consist of interacting components
- Produces composable: Performance, Interfaces, Security
+ CoResident Cells = fast inter-domain communication
- Could use hardware acceleration for fast secure messaging

- Applications could be split into mutually distrusting partitions
w/ controlled communication (echoes of pKernels)

* Fast Parallel Computation within Cells
- Protection of computing resources not required within partition
» High walls between partitions = anything goes within partition

» Shared Memory/Message Passing/whatever within partition
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It's all about the communication
We are interested in communication for many reasons:
- Communication crosses resource and security boundaries
- Efficiency of communication impacts (de)composability
Shared components complicate resource isolation:
- Need distributed mechanism for tracking and accounting of resources

» E.g.: How guarantee that each partition gets guaranteed fraction of
service?

Application A

Shared File Service

Application B

How does presence of a message impact Cell activation?
- Not at all (regular activation) or immediate change (interrupt-like)
Communication defines Security Model

- Mandatory Access Control Tagging (levels of information
confidentiality)

- Ring-based security (enforce call-gate structure with channels)
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Tessellation: The Exploded OS

Normal Components split
into pieces
- Device drivers
(Security/Reliability)
- Network Services
(Performance)
» TCP/IP stack
» Firewall
» Virus Checking
» Intrusion Detection
- Persistent Storage
Performance,
ecurity, Reliability)
- Monitoring services
» Performance counters
» Introspection
- Identity/Environment
services (Security)
» Biometric, GPS,
Uitra Possession Tracking
& g . . .
Applications Given
Larger Partitions

- Freedom to tés_$ .
resources arbi T_g(r;l% 60

fooeoe
Coane
Iranr
CEE e

r

326
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Tessellation in Server Environment
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Another Look: Two-Level Scheduling

* First Level: Global partitioning of resources
- Goals: Power Budget, Overall Responsiveness/QoS, Security
» Adjust resources to meet system level goals

- Partitioning of CPUs, Memory, Interrupts, Devices, other
resources

- Constant for sufficient period of time to:
» Amortize cost of global decision making
» Allow time for partition-level scheduling to be effective

- Harqr boundaries = interference-free use of resources for
quanta

» Allows AutoTuning of code to work well in partition
- Second Level: Application-Specific Scheduling

- Goals: Performance, Real-time Behavior, Responsiveness,
Predictability

» Fine-grained, rapid switching
- CPU scheduling tuned to specific applications
- Resources distributed in application-specific fashion

- External events (I/0, active messages, etc) deferrable as
appropriate

12/06/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 27.61 12/06/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 27.62
. Implementi e e-Time
Space-Time Resource Graph mplementing the Spac me Graph
+ Partition Policy Service (allocation) Partition Policy L

Resource - Allocates Resources to Cells based ?{hﬂon OA'ﬁY :yer

on Global policies (Resource Alloca or-|)

P Reflects Global Goals

Resources: - Produces only implementable space-

4 Proc, 50% time
16B network BW
25% File Server

Lightweight
Protection Domains

+ Space-Time Resource Graph (STRG)

- the explicit instantiation of resource assignments and relationships
* Leaves of graph hold Cells

- All resources have a Space/Time component

» E.g. X Processors/fraction of time, or Y Bytes/Sec

- Resources cannot be taken away except via explicit APIs

- Resources include fractions of OS services
+ Interior Nodes

- Resource Groups can hold resources to be shared by children

- "Pre-Allocated” resources can be shared as excess until needed

- Some Similarity to Resource Containers
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* Mapping Layer (distribution)

+ Partition Mechanism Layer

time resource graphs

- May deny resources to a cell that
requests them (admission control)

- Makes no decisions
- Time-Slices at a course granularity

(when time-slicing necessary)
- performs bin-packing like operation

to implement space-time graph

- In limit of many processors, no
time multiplexing of processors,
merely distributing of resources

- Implements hardware partitions
and secure channels

- Device Dependent: Makes use of
more or less hardware support for

Partition Mechanism Layer
ParaVirtualized Hardware
To Support Partitions

QoS and Partitions
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Resource Allocation Architecture
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Modeling and Adaptation Policies

\ Frame Colon depth = M, Compressioneatic = 0
Example of Zigzag Trajectories for a 1. W
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Videoconference Application i
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I
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lop point
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< At this point we stop and go ko improve ideo I and pa back o impeove sudio
Adap‘rahon Configuration space for audio 3 Configuration space for video

- Convex optimization
» Relative importance of different Cells expressed via scaling functions ("Urgency”)
- Walk through Configuration space
» Meet minimum QoS properties first, enhancement with excess resources
User-Level Policies
- Declarative language for describing application preferences and adaptive desires
Modeling of Applications
- Static Profiling: may be useful with Cell guarantees
- Multi-variable model building
» Get performance as function of resources
» Or - tangent plane of performance as function of resources
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Discussion
+ How to divide application into Cell?

- Cells probably best for coarser-grained components

» Fine-grained switching between Cells antithetical to stable resource
guarantees

- Division between Application components and shared OS services
natural (obvious?)

» Both for security reasons and for functional reasons
- Division between types of scheduling
» Real-time (both deadline-driven and rate-based), pre-scheduled
» GUI components (responsiveness most important)
» High-throughput (As many resources as can get)
» Stream-based (Parallelism through decomposition into pipeline stages)

* What granularity of Application component is best for Policy
Service?

- Fewer Cells in system leads to simpler optimization problem
* Language-support for Cell model?
- Task-based, not thread based

- Cells groduced by annotating Software Frameworks with QoS
needs:

- Cells produced automatically by just-in-time optimization?
» i.e. Selective Just In Time Specialization or SEJITS
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Scheduling inside a cell

Cell Scheduler can rely on:

- Coarse-grained time quanta allows efficient fine-grained use of
resources

- 6ang-Scheduling of processors within a cell
- No unexpected removal of resources
- Full Control over arrival of events

» Can disable events, poll for events, etc.

Pure environment of a Cell = Autotuning will return same
performance at runtime as during training phase

Application-specific scheduling for performance
- Lithe Scheduler Framework (for constructing schedulers)

» Will be able to handle premptive scheduling/cross-address-space
scheduling

- Systematic mechanism for building composable schedulers
» Parallel libraries with different parallelism models can be easily composed

- Of course; preconstructed thread schedulers/models (Silk,
pthreads..) as libraries for application programmers

Application-specific scheduling for Real-Time
- Label Cell with Time-Based Labels. Examples:
» Run every 1s for 100ms synchronized to + 5ms of a global time base
» Pin a cell to 100% of some set of processors
- Then, maintain own deadline scheduler
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What we might like from Hardware

A good parallel computing platform (Obviously!)
- Good synchronization, communication (Shared memory would be nice)
- Vector, 6PU, SIMD (Can exploit data parallel modes of computation)
- Measurement: performance counters
Partitioning Support
- Caches: Give exclusive chunks of cache to partitions
- High-performance barrier mechanisms partitioned properly
- System Bandwidth
- Power (Ability to put partitions to sleep, wake them up quickly)
QoS Enforcement Mechanisms
- Ability to give restricted fractions of bandwidth (memory, on-chip network)
- Segsuge Interface: Tracking of message rates with source-suppression for
o

- Examples: Globally Synchronized Frames (ISCA 2008, Lee and Asanovic)
Fast messaging support (for channels and possible intra-cell)

- Virtualized endpoints (direct to destination Cell when mapped, into memor
FIFO when nofs, ( PP Y

- User-level construction and disposition of messages

- DMA, user-level notification mechanisms

- Ir%_ls;red Computing Platform (automatic decryption/encryption of channel
ata
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Realtime
Scheduling
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Realtime OS/Embedded Applications

Embedded applications:

- Limited Hardware

- Dedicated to some particular task

- Examples: 50-100 CPUs in modern car!

What does it mean to be “"Realtime”?

- Meeting time-related goals in the real world
» For instance: to show video, need to display X frames/sec

- Hard real-time task:
» one which we must meet its deadline
» otherwise, fatal damage or error will occur.

- Soft real-time task:
» one which we should meet its deadline, but not mandatory.
» We should schedule it even if the deadline

- Firm real time
» Result has no utility outside deadline window, but system can

withstand a few missed results
+ Determinism:
- Sometimes, deterministic behavior is more important than high
performance
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Type of Real-Time Scheduling

+ Dynamic vs. Static

- Dynamic schedule computed at run-time based on
tasks really executing

- Static schedule done at compile time for all
possible tasks

. Pr‘eemfpﬁve permits one task to preempt another
one of lower priority
+ Schedulability:
- NP-hard if there are any resources dependencies
- Options:
» Prove it definitely cannot be scheduled
» Find a schedule if it is easy to do
» Stuck in the middle somewhere
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Scheduling Parameters

+ Assume N CPUs available for execution of a single
task set
- Set of tasks {Ti}
- Periods pi
- Deadline di (completion deadline after task is queued)
- Execution time ci (amount of CPU time to complete)
* Handy values:

- Laxity li = di - ci (amount of slack time before Ti must
begin execution)

- Utilization factor ui = ci/pi(portion of CPU used)

12/06/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 27.73

Static Schedule

*+ Assume non-preemptive system with 5 Restrictions:
1. Tasks {Ti} are periodic, with hard deadlines and

no jitter

Tasks are completely independent

Deadline = period pi = di

Computation time ci is known and constant

Context switching is free (zero cost) INCLUDING
network messages to send context to another
CPU()

O b wN
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Static Schedule

* Consider least common multiple of periods pi

- This considers all possible cases of period
phase differences

- Worst case is time that is product of all
periods; usually not that bad

- If you can figure out (somehow) how to
schedule this, you win

+ Performance

- Optimal if all tasks always run; can get up to
100% utilization

- If it runs once, it will always work

12/06/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 27.75

EDF: Earliest Deadline First

- Assume a preemptive system with dynamic
priorities, and (same 5 restrictions)

* Scheduling policy:
- Always execute the task with the nearest deadline

* Performance
- Optimal for uniprocessor (supports up to 100% of CPU
usage in all situations)
- If you're overloaded, ensures that a lot of tasks don't
complete
» Everyone gets a chance to fail at expense of later tasks
+ Variation: Constant Bandwidth Service (CBS)

- Allows one or more of the EDF-scheduled tasks to be
s?eﬁulgguas “servers” with a guaranteed (minimum) fraction
of the

- When deadline is “up”, simfly go on to next task and refresh
the total fraction of CPU time for later use

» Set new deadline in future and new maximum CPU time
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Least Laxity

+ Assume a preemptive system with dynamic priorities,
and (same 5 restrictions)
* Scheduling policy:
- Always execute the task with the smallest laxity

+ Performance:

- Optimal for uniprocessor (supports up to 100% of CPU usage in
all situations)

» Similar in properties to EDF
- A little more general than EDF for multiprocessors

» Takes into account that slack time is more meaningful than
deadline for tasks of mixed computing sizes

- Probably more graceful degradations
» Laxity measure can dump tasks that are hopeless causes

12/06/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 27.77

EDF/Least Laxity Tradeoffs

* Pro:

- If it works, it can get 100% efficiency (on a
uniprocessor)

- Con:
- It is not always feasible to prove that it will work in all
cases

» And having it work for a while doesn't mean it will
always work

- Requires dynamic prioritization
- The laxity time hack for global priority has limits

» May take too many bits to achieve fine-grain
temporal ordering

» May take too many bits to achieve a long enough
time horizon
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Rate Monotonic

* Assume a preemptive system with static
priorities, and (same 5 restrictions) plus

+ Scheduling policy:

- Highest static priority goes to shortest
period; always execute highest priority

¢ il
u= I = LS NQ2Y -1 ;i =0.7for large N
/ Z! z}} ( ) J or large

* Performance:

- Provides a guarantee for schedulability with
CPU load of ~70%
» Even with arbitrarily selected task periods
» Can do better if you know about periods & offsets

- If all periods are multiple of shortest period,
works for CPU load of 100%
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Trusted Computing
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Trusted Computing

* Problem: Can't trust that software is correct
- Viruses/Worms install themselves into kernel or system
without users knowledge
- Rootkit: software tools to conceal running processes, files
or system data, which helps an intruder maintain access
to a system without the user's knowledge
- How do you know that software won't leak private
information or further compromise user's access?
* A solution: What if there were a secure way to validate
all software running on system?
- Idea: Compute a cryptographic hash of BIOS, Kernel,
crucial programs, efc.
- Then, i‘? hashes don't match, know have problem
* Further extension:
- Secure attestation: ability to prove to a remote party
that local machine is running correct software
- Reason: allow remote user to avoid interacting with
compromised system
* Challenge: How to do this in an unhackable way
- Must have hardware components somewhere
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TCPA: Trusted Computing Platform Alliance

+ Idea: Add a Trusted Platform Module (TPM)
* Founded in 1999: Compaq, HP, IBM, Intel, Microsoft
* Currently more than 200 members
+ Changes to platform

- Extra: Trusted Platform Module (TPM)

- Software changes: BIOS + OS
* Main properties

- Secure bootstrap

- Platform attestation

- Protected storage
* Microsoft version:

- Palladium

- Note quite same: More extensive
hardware/software system
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ATMEL TPM Chip
(Used in IBM equipment)

Trusted Platform Module

Functional Non-volatile Volatile
Units Memory Memory

Random Num Endorsement Key | I RsA Slot-0
2043 Bits key Slo

Storage Root Key
(2048 Bits)

| HMAC |
Dec

Owner Auth
Secret(160 Bits

RSA Key Slot-9

PCR-0
PCR-15
Key Handles

pt

* Cryptographic operations
- Hashing: SHA-1, HMAC
- Random number generator
- Asymmetric key generation: RSA (512, 1024, 2048)
- Asymmetric encryption/ decryption: RSA
- Symmetric encryption/ decryption: DES, 3DES (AES)

* Tamper resistant (hash and key) storage
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TCPA: PCR Reporting Value

| Platform Configuration Register |

extended value present value

measured values
= i
TPM

* Platform Configuration Registers (PCRO-16)

- Reset at boot time to well defined value

- Only thing that software can do is give new

mcacxsur'edg value to TPM
» TPM takes new value, concatenates with old value,
then hashes result together for new PCR

* Measuring involves hashing components of software
+ Integrity reporting: report the value of the PCR

- Challenge-response protocol:

Challenger Trusted Platform Agent

nonce

Sign,p(nonce, PCR, log), Cp i

<
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TCPA: Secure bootstrap
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Implications of TPM Philosophy?
+ Could have great benefifs

- Prevent use of malicious software
- Parts of OceanStore would benefit
* What does “trusted computing” really mean?
- You are forced to trust hardware to be correct!
- Could also mean that user is not trusted to install
their own software
* Many in the security community have talked about
potential abuses
- These are only theoretical, but very possible
- Software fixing
» What if co'mﬁanies prevent user from accessing their
websites with non-Microsoft browser?
» Possible to encrypt data and only decryFT if software

still matches = Could prevent display of .doc files
except on Microsoft versions of software
- Digital Rights Management (DRM):
» Prevent playing of music/video except on accepted
players
» Selling of CDs that only play 3 times?
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Conclusion

* Peer to Peer
- A philosophy of systems design at extreme scale
- Probabilistic design when it is appropriate
- New techniques aimed at unreliable components
- A rethinking (and recasting) of distributed algorithms
+ Space-Time Partitioning: grouping processors &
resources behind hardware boundary
- Two-level scheduling
» Global Distribution of resources
» Application-Specific scheduling of resources
- Cells: Basic Unit of Resource and Security
» User-Level Software Component with Guaranteed Resources
» Secure Channels to other Cells

* Tessellation OS
- Exploded OS: spatially partitioned, interacting services
- Check out: http://parlab.eecs.berkeley.edu

12/06/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 27.87

Conclusion (Con't)

* Realtime OS
- Provide Guaranteed behavior to applications
- Guarantees of:
» Meeting deadlines (time)
» Meeting throughput requirements (rate)
- Tessellation provides better support for Realtime

» By providing resource-isolated Cells, applications get
better chance to meet realtime scheduling guaranees

* Trusted Hardware
- A secure layer of hardware that can:

» Generate proofs about software running on the machine

» Allow secure access to information without revealing keys
to (potentially) compromised layers of software

- Cannonical example: TPM
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