CS162
Operating Systems and
Systems Programming

Final Exam Review

December 12, 2011
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Topics

+ Synchronization
— Primitives, Deadlock

+ Memory management
— Address translation, Caches, TLBs, Demand Paging

+ Distributed Systems
— Naming, Security, Networking

* Filesystems
— Disks, Directories

+ Transactions

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.3

Page 1

Final Exam

* Thursday December 15 8-11 am in 155 Dwinelle
» Two double-sided handwritten pages of notes
+ Closed book

« Comprehensive
— All lectures, discussions, projects, readings, handouts,

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.2

Synchronization Primitives

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.4

Definitions

+ Synchronization: using atomic operations to ensure
cooperation between threads

+ Mutual Exclusion: ensuring that only one thread does a
particular thing at a time

— One thread excludes the other while doing its task

+ Critical Section: piece of code that only one thread can
execute at once
— Critical section is the result of mutual exclusion

— Critical section and mutual exclusion are two ways of
describing the same thing

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.5

Condition Variables

+ Condition Variable: a queue of threads waiting for something
inside a critical section
— Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep

— Contrast to semaphores: Can’t wait inside critical section

+ Operations:

-Wait (&lock): Atomically release lock and go to sleep. Re-
acquire lock later, before returning.

- Signal (): Wake up one waiter, if any
- Broadcast () : Wake up all waiters

* Rule: Must hold lock when doing condition variable ops!

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.7

Page 2

Semaphores él

+ Semaphores are a kind of generalized lock
— First defined by Dijkstra in late 60s
— Main synchronization primitive used in original UNIX
+ Definition: a Semaphore has a non-negative integer value
and supports the following two operations:
— P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1
» Think of this as the wait() operation
—V(): an atomic operation that increments the semaphore by 1,
waking up a waiting P, if any
» This of this as the signal() operation

— Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.6

Mesa vs. Hoare monitors

» Hoare-style (most textbooks):

— Signaler gives lock, CPU to waiter; waiter runs
immediately

— Waiter gives up lock, processor back to signaler when it
exits critical section or if it waits again

* Mesa-style (most real operating systems):
— Signaler keeps lock and processor
— Waiter placed on ready queue with no special priority
— Practically, need to check condition again after wait

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.8

Deadlock

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.9

Banker’s Algorithm for Preventing
Deadlock

* Allocate resources dynamically

— Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

— Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
([Max,qel-[AlloC,o4c] < [Avail]) for ([Request, 4] < [Avail])
Grant request if result is deadlock free (conservative!)

— Keeps system in a “SAFE” state, i.e. there exists a
sequence {T,, T,, ... T} with T, requesting all remaining
resources, finishing, then T, requesting all remaining
resources, efc..

+ Algorithm allows the sum of maximum
resource needs of all current threads to be
greater than total resources

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.11

Page 3

12/12/2011

Four requirements for Deadlock

Mutual exclusion
— Only one thread at a time can use a resource.
Hold and wait

— Thread holding at least one resource is waiting to acquire
additional resources held by other threads

No preemption

— Resources are released only voluntarily by the thread holding
the resource, after thread is finished with it

Circular wait
— There exists a set{T;, ..., T,} of waiting threads
» T, is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T,

» T, is waiting for a resource that is held by T,

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.10

12/12/2011

Memory Multiplexing,
Address Translation

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.12

Important Aspects of Memory Multiplexing

+ Controlled overlap:
— Processes should not collide in physical memory
— Conversely, would like the ability to share memory when desired
(for communication)
* Protection:
— Prevent access to private memory of other processes

» Different pages of memory can be given special behavior (Read
Only, Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves
+ Translation:
— Ability to translate accesses from one address space (virtual) to
a different one (physical)
— When translation exists, processor uses virtual addresses,
physical memory uses physical addresses
— Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.13

Dual-Mode Operation

+ Can an application modify its own translation maps?
— If it could, could get access to all of physical memory
— Has to be restricted somehow

+ To assist with protection, hardware provides at least two
modes (Dual-Mode Operation):

— “Kernel” mode (or “supervisor” or “protected”)
—“User” mode (Normal program mode)

— Mode set with bits in special control register only accessible
in kernel-mode

— User—Kernel: System calls, Traps, or Interrupts

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.15

Page 4

Why Address Translation?

Code \ 5 Code
Data ¥ ;v Stacki Data
Heap > 1>| Hear 1 Heap
Stack P71\ | Code! Stack
Prog 1 F Prog 2
Virtual o et Virtual
Address kY 3 Address
Space 1 N Space 2
[OS code \
Translation Map 1 OS data Translation Map 2
OS heap &
Stacks

Physical Address Space

12/12/2011 Anthony D. Joseph'and lon Stoica CS162 ©UCB Fall 2011

Final Exam Review.14

Addr. Translation: Segmentation vs. Paging

Virtual
Address

Offset Error

Base0| Limit0
Base1| Limit1

Physical
Address

Base3| Limit3
Based4| Limit4
Base5| Limit5
Base6| Limit6
Base7| Limit7

Virtual Address:

!

e #1 A
page #2_| V.RW Physical Address
| page #3 | V.R,W| Check Perm
page #4 |N
page #5 | V,R,W Access
Error

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.16

Review: Address Segmentation

Virtual memory view Physical memory view

1111 1111 K
1111 0000 | Stac H
| 1110 000 | Stack
Seg # | base limit
1100 0000 00 0001 0000 10 0000
01 0101 0000 10 0000
I 10 0111 0000 11000
1 1011 0000 10000
1000 0000 LSRR~
———v 0111 0000
- e
0100 0000
code 0001 0000
0000 0000 0000 0000
seg # offset
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.17

Review: Address Segmentation

Virtual memory view Physical memory view

1111 1111
stack
1110 0000 1110000 | stack
1 Seg # | base limit
1100 0000 00 0001 0000 | 10 0000
01 01010000 | 100000 | NO room to grow!!
t 10 0111 0000 11000 \Buffer overflow error
1 1011 0000 10000 N
1000 0000 heap N h
/»0111 oooo| _N€aP
- T
0100 0000
code
sonle 0001 0000
0Q00 0000 0000 0000 _
seg # offset
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.19

Page 5

Review: Address Segmentation

Virtual memory view Physical memory view

1111 1111
o —
1110 0000 1110 000 | Stack
1 Seg # | base limit
. 00 0001 0000 10 0000
What happens if 01 0101 0000 10 0000
stack grows to
1110 00007 10 0111 0000 11000
1 1011 0000 10000
1000 0000 R
_/> 0111 0000
- 0101 0000
0100 0000
code 0001 0000
0000 0000 0000 0000
seg # offset
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.18

Review: Page Tables

i . Page Table
1 11V;:tual memory view 1111 [11101 Physical memory view
PR ————11110| 11100
1111 0000 OICTIN 11101 null

11100 null
11011| null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100(null
10011 null
10010(10000
10001| 01111
10000{ 01110
01111 null
01110] null
01101 null
01100| null
01011] 01101
01010| 01100
01001] 01011
01000| 01010 : 3
00111 null “——code

00110| null 0001 0000
00101] null

00100| null _ 0000 0000
00011] 00101
00010| 00100
00001| 00011
00000| 00010

110 0000

1100 0000

1000 0000

hean
8

0111 000

0101 000

0100 0000

]
\vivi~)

0000 0000
)
page # offset

12/12/2011 Anthony D. Jc

A

2011 Final Exam Review.20

Review: Page Tables

Page Table
1111 [11101

————11110[11100
11101| null

11100| null
1110 0000 H 11011| null
7/ 11010| null

11001 null
11000| null

What happens if 10111| null

stack grows to :gm nuIIII
nul
1110 0000? 10100] nul
10011 null
| 10010(10000

1000 0000 10001(01111
10000 01110
01111 nun
01110| null
01101| null
01100(null
0100 0000 01011| 01101
01010(01100
01001(01011
01000(01010
00111| null
00110(null
00101 nun
00100 null
00011 00101
00010(00100
00001(00011
00000(00010

Virtual memory view

Physical memory view
1111 1111 v 2

110 0000

0111 000

0101 000

]
Louuce

0001 0000

I2RT 0000 0000

2011 Final Exam Review.21

|
Lo

0000 0000

A

page # offset
12/12/2011 Anthony D. J

Review: Two-Level Page Tables

Virtual memory view Page Tables Physical memory view
1111 1111 (level 2)
—stack— 11{ 11101
1110 0000 i 10| 11100 1110 0000
3 o1] 10111
P Table 00| 10110
1100 0000 age 1abls
(level 1)
111 1| nun
T 110 10 10000
X 101 o] 01111
hean 100 00| 01110
1000 0000 = ort \
—heap |
001 0111 000
000 11 01101
10 01100
o1[o101 0101 000
00| 01010
0100 0000
11 00101
10 00100 code
page2 # o oroont 0001 0000
LuUuc
0006?000 _ 0000 0000
pagel # offset
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.23

Page 6

Review: Page Tables

) . Page Table
Virtual memory view 1111 [11101

111 111 11110 11100

—’/

—stack— - 11o1f 10111
[—"11100| 10110

i 11011 null
& 11010(null
11001 null
1100 0000 11000 null
10111 null
10110(null
10101 null
10100(null
10011(null
| 10010| 10000

1000 0000 10001| 01111
10000(01110
01111 null
01110 null
01101| null
01100| null
0100 0000 01011] 01101
01010| 01100
01001 01011
01000| 01010
00111] null
00110| null
00101| null
00100 null
00011] 00101
00010| 00100
00001 00011
00000| 00010

Physical memory view

1110 0000

-

Allocate new
pages where
room!

o
4 coae

0001 0000
0000 0000

pry
Loue

0000 Q000

A

page # offset
12/12/2011 Anthony D. Jc

2011 Final Exam Review.22

Review: Two-Level Page Tables

Virtual memory view Page Tables Physical memory view
(level 2)
stack 1] 1101
10[11100 1110 0000
H o1] 10111
Page Table oof 10110
(level 1)
M) @ null
T 110 nunt
101 null 01111
1001 0000 w— nul olome
011 f nul 1000 0000
010 ®
001| null
000|_® 11{ 01101
10 01100
o1] oto11
11| 00101
10| 00100 e
01| 00011
code 00| 00010 0001 0000
B2 0000 0000

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.24

Review: Segmentation & Page Tables

Physical memory

Virtual memory view Page Tables view
1111 1111 (level 2)
stack 11| 11101
1110 0000 10[11100 1110
1 o1 10111
00| 10110
1100 0000
Seg | base limit 1] null
I # 10 1;)/03?/
o1] o11
heap 00 0000 0000 4| | 00| 01510
1000 0000 01__ | 0000 1000 4 o111
10 1110 2000 3 i 1101
10 o100
- 1 1110 3000 41 | o1] ondat 0101
00] 010
0100 0000
11] 00101
10| 00100 o
01| 00011 e 0001
code 00| 00010
0000 0000 _ 0000
lseg # offset
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.25

Review: Inverted Page Table

Virtual memory view Physical memory view

1111 1111
btdb:’\
1110 0000
1110 0000 | Inverted Table
¥ .
hash(virt. page #) =
1100 0000 physical page #
11111] 11101
11101] 10111
\11100 10110
1000 0000 \10010 to000 | ————
10001| 01111
0000 01110 | —— ~___| 0111 000
01011| 01101
o1010| 01100
10000(01010
0100 0000 o0o11| 00101
ooo10| 00100
oooo1| 00011 %
joo00o] 00010 § code
== / 0001 0000
0000 0000 _ 0000 0000
Y
page # offset
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.27

Review: Segmentation & Page Tables

Physical memory

Virtual memory view Page Tables view
111 1111 (level 2)
stack 11| 11101
1110 0000 10(11100 1110
1 o1 10111
00| 10110
1100 0000
Seg | base limit
#
1001 0000 heap | |20 {00000000 4
1000 0000 01 | 00001000 —7] 102(:(1)
‘ 10 1110 2000 3
11 | 11103000 4 0101
0100 0000
11100101
10 00100 o
01| ooot11 LOUE 0001
code 00| 00010
0900 0000 _ 0000

lseg # offset
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.26

Address Translation Comparison

Advantages
Segmentation | Fast context
switching: Segment
mapping maintained

Disadvantages
External fragmentation

Inverted Table

by CPU
Page Tables |No external Large size: Table size
(single-level | fragmentation ~ virtual memory
page) eInternal fragmentation
Page Tables& |+No external *Multiple memory
Segmentation | fragmentation references per page
Two-level *Table size ~ memory |access
page tables |used by program *Internal fragmentation

Hash function more
complex

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.28

Caches, TLBs

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.29

Review: Sources of Cache Misses

« Compulsory (cold start): first reference to a block
— “Cold” fact of life: not a whole lot you can do about it

— Note: When running “billions” of instruction, Compulsory Misses
are insignificant

» Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size
+ Conflict (collision):
— Multiple memory locations mapped to same cache location
— Solutions: increase cache size, or increase associativity
» Two others:

— Coherence (Invalidation): other process (e.g., I/O) updates
memory

— Policy: Due to non-optimal replacement policy

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.30

Direct Mapped Cache

+ Cache index selects a cache block

+ “Byte select” selects byte within cache block
— Example: Block Size=32B blocks

+ Cache tag fully identifies the cached data

+ Data with same “cache index” shares the same cache entry
— Conflict misses

31 8 4 0
I Cache Tag l Cache Index I Byte Select |
Ex: 0x01
| R Cache Tag - _ _ Valid Bif - CacheData |______ .
Byte31| °° |Bytel |Byte 0 [I
1 [Byte 63] _** | By 33| Byte 32|

it .
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 I-}—llnal Exam Review.31

fp——

12/12/2011 Anthony [Hi 1
it |_

Set Associative Cache

+ N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel

+ Example: Two-way set associative cache
— Two tags in the set are compared to input in parallel
— Data is selected based on the tag result

31 8 4 0
I Cache Tag l Cache Index I Byte Select
A
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

Final Exam Review.32

—l Cache Block

Fully Associative Cache
+ Fully Associative: Every block can hold any line
— Address does not include a cache index
— Compare Cache Tags of all Cache Entries in Parallel
+ Example: Block Size=32B blocks
— We need N 27-bit comparators
— Still have byte select to choose from within block

31 4 0
| Cache Tag (27 bits long) | Byte Select |
Ex: 0x01
Cache Tag Valid Bit Cache Data
—— O Byte31] ** |Bytel | Byte 0
—— Byte 63| ** | Byte 33| Byte 32
.@.
- O—]
. O—]

Final Exam Review.33

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Review: Caching Applied to Address Translation

+ Problem: address translation expensive (especially multi-level)
+ Solution: cache address translation (TLB)
— Instruction accesses spend a lot of time on the same page (since
accesses sequential)
— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...

P TLB
Vil
Cached?
Yes —> Ms» Physical
o Z Memory
QR
c? Qg&
&
Translate
(MMU)

Data Read or Write

(untranslated)

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.35

12/12/2011

Page 9

Where does a Block Get Placed in a

Cache?
* Example: Block 12 placed in 8 block cache
32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Fully associative:
block 12 can go

Set associative:
block 12 can go

Direct mapped:
block 12 (01100)

can go only into anywhere in set 0 anywhere
block 4 (12 mod 8) (12 mod 4)
Block 01234567 Block 01234567 Block 01234567

no. no. no.
SetSet Set Set
01 2 3

12/12/2011 Anth D. Joseph and lon Stoica CSWG% UCB Fall 2Q11 Fifal Exam Review.34
tag ' index ad _index _tag

TLB organization

* How big does TLB actually have to be?
—Usually small: 128-512 entries
—Not very big, can support higher associativity

+ TLB usually organized as fully-associative cache
—Lookup is by Virtual Address
—Returns Physical Address

» What happens when fully-associative is too slow?
—Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”

* When does TLB lookup occur?
—Before cache lookup?
—In parallel with cache lookup?

Final Exam Review.36

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Reducing translation time further

+ As described, TLB lookup is in serial with cache lookup:

Virtual Address
4—10—»

V page no. offset

TLB Lookup

V Rights PA

offset |

|P page no. |

Physical Address
+ Machines with TLBs go one step further: they overlap TLB
lookup with cache access.
— Works because offset available early
Final Exam Review.37

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Putting Everything Together

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.39

Page 10

Overlapping TLB & Cache Access

+ Here is how this might work with a 4K cache:

assoc
lookup ind
32 |TLB —’]%' 4K Cache 1K
20 10 2 —— 4 bytes—— \
[page# [disp [og]
Hit/
Miss
PA PA Data Hit/
Miss

+ What if cache size is increased to 8KB?

— Overlap not complete

— Need to do something else. See CS152/252
+ Another option: Virtual Caches

— Tags in cache are virtual addresses

— Translation only happens on cache misses

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.38

Page Tables & Address Translation Physica

Virtual Address: Memory:
Offset
PageTablePir Physic ress:
Offset
Page Table
(18t level)
Page Table
(2nd level)

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.40

Translation Look-aside Buffer

Physical
Virtual Address: Memory:
Offset
[e— —
Physic re
Offset
S
TLB:

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

12/12/2011

Final Exam Review.41

Demand Paging

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.43

Page 11

Caching
Physical
Memory:
Physic re
Offset
|taq |index Ibyie |
lcache:
=
l |
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.42

Demand Paging

» Modern programs require a lot of physical memory
— Memory per system growing faster than 25%-30%/year
+ But they don’t use all their memory all of the time

- 90(-110 rule: programs spend 90% of their time in 10% of their
code

— Wasteful to require all of user’s code to be in memory
Solution: use main memory as cache for disk

Processor
Control Tertiary
J Second | [Main d Storage
5 3 ILevel Memory| Storage (Tape)
Datapath Z 0 Cache ||(DRAM)| [Disk)
= SRAM;

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.44

Demand Paging Mechanisms

+ PTE helps us implement demand paging
— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on
disk when necessary
+ Suppose user references page with invalid PTE?
— Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”
— What does OS do on a Page Fault?: |
» Choose an old page to replace
» If old page modified (“D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
— TLB for new page will be loaded when thread continued!
— While pulling pages off disk for one process, OS runs another
process from ready queue
» Suspended process sits on wait queue
Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

12/12/2011 Final Exam Review.45

Page Replacement Policies

+ FIFO (First In, First Out)
— Throw out oldest page. Be fair — let every page live in memory
for same amount of time.
— Bad, because throws out heavily used pages instead of
infrequently used pages

* MIN (Minimum):
— Replace page that won't be used for the longest time
— Great, but can't really know future...
— Makes good comparison case, however

+ LRU (Least Recently Used):
— Replace page that hasn'’t been used for the longest time

— Programs have locality, so if something not used for a while,
unlikely to be used in the near future.

— Seems like LRU should be a good approximation to MIN.

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.47

Page 12

Steps in Handling a Page Fault

page is on
backing store]
operating
system @
refe:éwce trap
load M [i
restart page table
instruction
free frame
reset page bring in
table missing page
physical
memory

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.46

Example: FIFO

» Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:
-ABCABDADBCB
» Consider FIFO Page replacement:

Ref:]A (B [C |[A |B |D |A |D |[B [C (B
Page:
1 A D C
2 B A
3 C B
— FIFO: 7 faults.

— When referencing D, replacing A is bad choice, since need A
again right away

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.48

Example: MIN

« Suppose we have the same reference stream:
-ABCABDADBCB
+ Consider MIN Page replacement:

Ref:]A |[B |[C |[A |[B |[D |[A |[D |[B |C |B
Page:
1 A (]
2 B
3 C D
— MIN: 5 faults

— Look for page not referenced farthest in future.
+ What will LRU do?
— Same decisions as MIN here, but won’t always be true!

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.49

Adding Memory Doesn’t Always Help Fault Rate

+ Does adding memory reduce number of page faults?
—Yes for LRU and MIN
— Not necessarily for FIFO! (Belady’s anomaly)

Page:]A (B |[C |[D (A |B |[E (A |B |C |D |E

1 A D E
2 B A Cc
3 C B D
Page:]A (B |[C |[D (A |B |[E (A |B |C |D |E

w(N|=
W
>
m

Cc B
4 D C
+ After adding memory:
— With FIFO, contents can be completely different
— In contrast, with LRU or MIN, contents of memory with X pages

are a subset of contents with X+1 Page
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Final Exam Review.51

Page 13

When will LRU perform badly?
+ Consider the following: ABCDABCDABCD
+ LRU Performs as follows (same as FIFO here):
Ref:]A |[B |[C (D |[A |[B |[C |[D |[A |[B [C |D
Page:
1 A D c B
2 B A D c

3 (] B A D

— Every reference is a page fault!
* MIN Does much better:
Ref:]A |B (C |D |A |B |[C |D |A |[B |C |D

Page:
1 A B
2 B C
12 3 Anthony D. c D P

Implementing LRU & Second Chance

+ Perfect:
— Timestamp page on each reference
— Keep list of pages ordered by time of reference
— Too expensive to implement in reality for many reasons

+ Second Chance Algorithm:
— Approximate LRU
» Replace an old page, not the oldest page
— FIFO with “use” (reference) bit

* Details
— A “use” bit per physical page
— On page fault check page at head of queue
» If use bit=1 > clear bit, and move page at tail (give the page
second chance!)
» If use bit=0 > replace page
— Moving pages to tail still complex

Final Exam Review.52

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Clock Algorithm

+ Clock Algorithm: more efficient implementation of second
chance algorithm
— Arrange physical pages in circle with single clock hand
* Details:
— On page fault:
» Advance clock hand (not real time)
» Check use bit: 1—used recently; clear and leave it alone
0—selected candidate for replacement
— Will always find a page or loop forever?

What if hand moving slowly?
— Good sign or bad sign?
» Not many page faults and/or find page quickly
What if hand is moving quickly?
— Lots of page faults and/or lots of reference bits set

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.53

Second Chance lllustration

+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives

first loaded
page

last loaded
page

B u:0[¢<—Au:l D u:0| Cu:0

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

12/12/2011 Final Exam Review.55

Page 14

Second Chance lllustration

+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives

first loaded
page

last loaded
page

B u:0 Au:l D u:0 Cu:0

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

12/12/2011 Final Exam Review.54

Second Chance lllustration

+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives

first loaded
page

last loaded
page

A u:l D u:0| Cu:0[<—>Fu:0

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

12/12/2011 Final Exam Review.56

Second Chance lllustration

+ Max page table size 4

12/12/2011

—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
—Access page D
—Page E arrives

first loaded last loaded
page page
Au:l D u:1<—{C u:0[<—>[F u:0

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Final Exam Review.57

Second Chance lllustration

+ Max page table size 4

12/12/2011

—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
—Access page D
—Page E arrives

first loaded
page

last loaded
page

Cu:0[<—>

F u:0

[€—>

A u:0

Pu:o

Anthony D. Joseph and lon Stoica CS162 ©

UCB Fall 2011 Final Exam Review.59

Page 15

Second Chance lllustration

+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
—Access page D
—Page E arrives

first loaded
page

last loaded
page

D u:l<—|Cu:0 Fu:0[<—Au:0

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

12/12/2011 Final Exam Review.58

Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.60

Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives

— Access page A B u:
0
I Au:
0
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.61

Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives

—Access page A B u:
. 0
—Page D arrives I
Au
1
Du
0
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.62

Clock Replacement lllustration
+ Max page table size 4
+ Invariant: point at oldest page

—Page B arrives
—Page A arrives

— Access page A Bu:
. 0
—Page D arrives T
—Page C arrives Cu: Au
0 1
Du
0
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.63

Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives

—Access page A Oulgb
—Page D arrives T
—Page C arrives g u: %? u
—Page F arrives

Du:

0

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.64

Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives
—Access page A F u:0
—Page D arrives /[\
—Page C arrives

. 0 0
—Page F arrives J,
—Access page D Du:

. 0
—Page E arrives
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.65
Thrashing
thrashing

CPU utilization

degree of multiprogramming
+ If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:

— low CPU utilization

— operating system spends most of its time swapping to disk
+ Thrashing = a process is busy swapping pages in and out
+ Questions:

— How do we detect Thrashing?

— What is best response to Thrashing?

12/12/2011

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.67

Page 17

Nt Chance version of Clock Algorithm

+ N chance algorithm: Give page N chances
— OS keeps counter per page: # sweeps
— On page fault, OS checks use bit:
» 1=>clear use and also clear counter (used in last sweep)
» O=vincrement counter; if count=N, replace page
— Means that clock hand has to sweep by N times without page
being used before page is replaced
» How do we pick N?
— Why pick large N? Better approx to LRU
» If N ~ 1K, really good approximation
— Why pick small N? More efficient
» Otherwise might have to look a long way to find free page
+ What about dirty pages?
— Takes extra overhead to replace a dirty page, so give dirty
pages an extra chance before replacing?
— Common approach:
» Clean pages, use N=1

» Dirty pages, use N=2 (and write back to disk when N=1)

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.66

Locality In A Memory-Reference Pattern

e —— — A ————

* Program Memory Access " ——
Patterns have temporal and o
spatial locality i

— Group of Pages accessed T
along a given time slice
called the “Working Set” T o

— Working Set defines -
minimum number of pages
needed for process to
behave well

* Not enough memory for
Working Set=Thrashing

— Better to swap out process?

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.68

Working-Set Model

page reference table
...26157777516234128344434344413234443444...
A | A |
t, t
WS(t,) = {1.2,5.6,7} WS(t,) = (3,4}

+ A = working-set window = fixed number of page references
— Example: 10,000 instructions

+ WS; (working set of Process P) = total set of pages

referenced in the most recent A (varies in time)

—if A too small will not encompass entire locality
—if A too large will encompass several localities
—if A = o = will encompass entire program

+ D =ZIWS| = total demand frames

+ if D> memory = Thrashing
— Policy: if D> memory, then suspend/swap out processes
— This can improve overall system behavior by a lot!

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.69

Example: Accessing Amazon

result

DNS
Servers || Datacenter
=l f User \
Ca
e ot create } Account
request 2=
il -

N\

Product

» ‘//'1 DB
N N

Load
balancer

_

+ Complex interaction of multiple components in multiple
administrative domains

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.71

Page 18

Distributed Systems

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.70

Universal Resource Locator (URL)

protocol://host-name:port/directory-path/resource
+ This is what you enter in the browser!

http://www.amazon.com/ v C

+ Example:
https://www.amazon.com = https://www.amazon.com:443/index.html
—protocol = https
—host-name = www.amazon.com
» Name of an Amazon’s web server

—port =443 (default HTTPS port)
» Use HTTP over Secure Socket Layer/Transport Layer Security

“wn

—directory-path =
» Path relative to web directory at server (e.g., public_html)
—resource = index.html (default file)
» Contains HTML home page of Amazon
12/12/2011

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.72

Domain Name Service (DNS) Resolution

» Resolve www.amazon.com to the IP address of an
Amazon HTTPS server

DNS

S Datacenter
L 4

f User \
create I Account

result ‘//‘.L\ DB

page i _ Product

> e X | DB

L

Load
balancer

K Ad Server /

12/12/2011 call 2011 Final Exam Review.73

DNS Resolution

» Resolve www.amazon.com to the IP address of an
Amazon HTTP server

» How does client know DNS server

— Client configured with the address of the local DNS
server

http:/ /www.amazon.com/ v

E DNS request: www.amazon.com » DNS
- server
DNS response:72.21.211.176
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.74

Domain Name System (DNS)

+ Properties of DNS
— Hierarchical name space divided into zones
— Zones distributed over collection of DNS servers

+ Hierarchy of DNS servers
— Root (hardwired into other servers)
— Top-level domain (TLD) servers
— Authoritative DNS servers

+ Performing the translations
— Local DNS servers
— Resolver software

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.75

Distributed Hierarchical Database

amed root

/MKWNK
@™

generic domains country domains

@ Top-Level Domains (TLDs) @
CHS S
() ()

cory.eecs.berkeley.edu usr.cam.ac.uk

vl

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.76

Example

root DNS server
Host at
my .eecs .berkeley.edu
wants IP address for
WWW.amazon.com

TLD DNS server

local DNS server
cronus.cs.berkeley.edu

(128.32.38.21) \
‘ 8

cuThorlTuTlve DNS server
dns.amazon.com

.((D

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

requesting host
my.eecs.berkeley.edu
(128.32.38.143)

www.amazon.com
(72.21.211.176)

12/12/2011 Final Exam Review.77

Symmetric Keys
+ Sender and receiver use the same key for encryption

and decryption
+ Examples: AES128, DES, 3DES

Plaintext (m) m

Internet

Encrypt with
secret key

Decrypt with
secret key

Ciphertext

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.79

Page 20

How do You Secure your Credit Card?

« Use a secure protocol, e.g., HTTPS

» Need to ensure three properties:
— Confidentiality: an adversary cannot snoop the traffic
— Authentication: make sure you indeed talk with Amazon
— Integrity: an adversary cannot modify the message
» Used for improving authentication performance

+ Cryptography based solution:

— General premise: there is a key, possession of which
allows decoding, but without which decoding is infeasible

» Thus, key must be kept secret and not guessable

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.78

Public Key / Asymmetric Encryption

+ Sender uses receiver’s public key
— Advertised to everyone
Receiver uses complementary private key
— Must be kept secret
+ Example: RSA

Plaintext Plaintext

Internet

Encrypt with
public key

Decrypt with
private key

Ciphertext

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.80

Symmetric vs. Asymmetric
Cryptography

+ Symmetric cryptography
+Low overhead, fast
— Need a secret channel to distribute key

+ Asymmetric cryptography
+No need for secret channel; public key known by
everyone
+Provable secure
— Slow, large keys (e.g., 1024 bytes)

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.81

Operation of Hashing for Integrity

plajntext (m) corrupted msg M

NO
digest’
% Internet
digest

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.83

Page 21

Integrity
+ Basic building block for integrity: hashing

— Associate hash with byte-stream, receiver verifies match

» Assures data hasn’t been modified, either accidentally - or
maliciously

+ Approach:
- Sender computes a digest of message m, i.e., H(m)
» H() is a publicly known hash function
- Send digest (d = H(m)) to receiver in a secure way, e.g.,
» Using another physical channel
» Using encryption (e.g., Asymmetric Key)

- Upon receiving m and d, receiver re-computes H(m) to see
whether result agrees with d

- Examples: MB5, SHA1

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.82

Digital Certificates

* How do you know Kyjice pup is indeed Alice’s public key?
» Main idea: trusted authority signing binding between Alice and
its private key

{Alice, Knjice puot _ _ - \/f . Certificate
= = rification feriSign - Authority

@ - E)f?\\r:e) \dentity ver

A”CE, KAlice,pub

‘l‘ Digital certificate
I

E({A"CG, KAlice,pub}! KVerisign,priva\te)

AR

D(E({Alicex KAIice_pub}v KVerisign_private): KVerisign_public) ={A|ice| KA|ice7pub}

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.84

12/12/2011

+ Server picks protocols to use
« Server sends over its

+ (all of this is in the clear)

HTTPS Connection (SSL/TLS)

Browser (client) connects via Browser Amazon
TCP to Amazon’s HTTPS ‘
server

Client sends over list of
crypto protocols it supports
for this session

certificate

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.85

12/12/2011

Validating Amazon’s ldentity

How does the browser authenticate certificate signatory?

— Certificates of few certificate authorities (e.g., Verisign) are
hardwired into the browser

If it can’t find the cert, then warns the user that site has not
been verified

— And may ask whether to continue

— Note, can still proceed, just without authentication
Browser uses public key in signatory’s cert to decrypt
signature

— Compares with its own SHA1 hash of Amazon’s cert

Assuming signature matches, now have high confidence
it’s indeed Amazon ...

— ... assuming signatory is trustworthy

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.87

Page 22

Inside the Server’s Certificate

» Name associated with cert (e.g., Amazon)
+ Amazon’s RSA public key
» A bunch of auxiliary info (physical address, type of cert,
expiration time)
» Name of certificate’s signatory (who signed it)
+ A public-key signature of a hash (SHA1) of all this
— Constructed using the signatory’ s private RSA key, i.e.,
— Cert = E(Hgpa1 (KAgupicy WWW.amazon.com, ...), KSpate)
» KA,,pic: Amazon’ s public key
» KSpvatet Signatory (certificate authority) public key

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.86

Certificate Validation

* You (browser) want to make sure that KA, is indeed
the public key of www.amazon.com

Certificate

E(Hgpar (KAgupic: WWW.amazon.com, ...), KSpiyate),
www.amazon.com, KA,,c, KSp i, ---

E(Huos(--), KSpupic)

(recall, KS,, hardwired) Hups(---)

y Y

Hgna1 (KAp i, WWW.amazon.com,)l | Hsra1 (KApusic; WWW.amazon.com, ...

Validation failed

Validation successful
Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

12/12/2011 Final Exam Review.88

HTTPS Connection (SSL/TLS), con’t

Browser Amazon
* Browser constructs a random cert
session (symmetric) key K ere’ s ™ ‘
+ Browser encrypts K using _1xBof datd ‘
Amazon’s public ke
p Yy E(k, K ‘
* Browser sends E(K, KA,) Pubic)

to server

+ Browser displays a

+ All subsequent
communication encrypted w/
symmetric cipher (e.g.,
AES128) using key K

- E.g., client can authenticate
using a password

12/12/2011

|
e

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

LK
W
\

Final Exam Review.89

Transport Layer

* DNS server runs at a specific port number, i.e., 53
— Most popular DNS server: BIND (Berkeley Internet

Name Domain)

— Assume client (browser) port number 1234

9

[
o BIND
(port 53)

Firefox
(port 1234)
Internet
Transport
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Final Exam Review.91

DNS Req| 1234] 53]| Transport

Page 23

How Does a Client
Communicate with Servers?

+ A: Via transport protocol (e.g., UDP, TCP, ...)

+ Transport protocol in a nutshell:
— Allow two application end-points to communicate
» Each application identified by a port number on the machine it runs

— Multiplexes/demultiplexes packets from/to different processes
using port numbers

— Can provide reliability, flow control, congestion control

+ Two main transport protocols in the Internet

— User datagram protocol (UDP): just provide multiplexing/
demultiplexing, no reliability

— Transport Control Protocol (TCP): provide reliability, flow
control, congestion control

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.90

How do UDP packets Get to
Destination?

» A: Via network layer, i.e., Internet Protocol (IP)

» Implements datagram packet switching
— Enable two end-hosts to exchange packets
» Each end-host is identified by an IP address
» Each packets contains destination IP address
» Independently routes each packet to its destination

— Best effort service
» No deliver guarantees
» No in-order delivery guarantees

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.92

Network (IP) Layer (cont’d)

« Assume DNS server runs on machine 128.15.11.12
— Client configured with DNS server IP address

+ Client runs on machine 16.25.31.10 128.15.11.12
16.25.31.10
:
[DNS Req] 1234] 53] Transport
Transport | [DNs Red] 1234] 53] [ONS Red] 1234] 53[16.25.31.100128.15.11.12) | Network

[
Network |[DNs Req] 1234 53[16.25.31.10128.15.11.12]

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.93

IP Packet Routing

+ Each packet is individually routed

Router 6

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.94

IP Packet Routing

» Each packet is individually routed

Router 1

[BT - - Router 4

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.95

Packet Forwarding

+ Packets are first stored before being forwarded
— Why?

incoming links Router outgoing links

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.96

Packet Forwarding Timing

« The queue has Q bits when packet arrives = packet
has to wait for the queue to drain before being
transmitted

Capacity = R bps

| Propagation delay = T sec
P bits

Queueing delay = Q/R

I
P/R

time

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.97

Packet Forwarding Timing

D Receiver

Sender D

Router1 Router 2
- = = = o= =
propagation
) o . B }delay between
ransmission [===ttt TTTT - }Host 1 and
time of Packet 1 { Packet 1 Node 1 processing
at Host 1] delay of
Packet 1 at
Packet 1 e
Packet 1
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.99

Page 25

Packet Forwarding Timing

Receiver

Router1 Router 2
ER=ESE ==}
propagation
_______________ _ _delay between
= Packet 1 - }Host 1 and
& Node 1

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.98

Packet Forwarding Timing

D Receiver

Sender D
=y

—=-

Router 1 Router 2

—— ——
ER= E=

propagation
_ _ delay between
~}Host 1 and
Node 1

transmission
{ Packet 1

time of Packet 1
at Host 1

processing
delay of

, - Packet 1 at
>~ Node 2

Packet 2
Packet 1

Packet 3
Packet 2

Packet 1
Packet 3

e Packet 2

Packet 3
— "]

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.100

Packet Forwarding Timing: Packets
of Different Lengths

Q10 Mbps 5 Mbps 4»° 100 Mbps® 10 Mbps D

Receiver

Sender

.
\’\

S
\

\\
\

Final Exam Review.101

\

time
12/12/2011

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Datalink Layer

+ Enable nodes (e.g., hosts, routers) connected by same link to
exchange packets (frames) with each other
— Every node/interface has a datalink layer address (e.g., 6 bytes)
— Network layer picks the next router for the packet towards
destination based on its destination IP address

Datalink address: 333

[DNS Red[1234 53[16.25.31.10[128.15.11.12
1

DNS Req| 1234| 53[16.25.31.10[128.15.11.12]

Datalink address: 222

DNS Req| 1234] 53[16.25.31.10128.15.11.12]
[]

DNS Req| 1234| 53|16.25.31.10[128.15.11.12

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.103

12/12/2011

Page 26

Datalink Layer

» Enable nodes (e.g., hosts, routers) connected by same link to
exchange packets (frames) with each other

— Every node/interface has a datalink layer address (e.g., 6 bytes)

— No need to route packets, as each node on same link receives
packets from everyone else on that link (e.g., WiFi, Ethernet)

IP address: 16.25.31.10
Datalink address: 111

“

Datalink address: 222

Network

DNS Req| 1234] 53[16.25.31.10[128.15.11.12)
4

Firefox
(port 1234)
Transport
]
Network mmﬂmw

DNS Req| 1234| 5316.25.31.10|128.15.11.12]

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Final Exam Review.102

12/12/2011

Physical Layer

» Move bits of information between two systems
connected by a physical link

+ Specifies how bits are represented (encoded), such as
voltage level, bit duration, etc

+ Examples: coaxial cable, optical fiber links;
transmitters, receivers

12/12/2011 Final Exam Review.104

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

The Internet Hourglass

Applicatign HTTP| [DNS] [NTP]

Transport

Network Waist

Datalink || | |SONET]

————— ~— 1

Physical |CopperH Fiber ‘ ‘ Radio ‘ The Hourglass Model

There is just one network-layer protocol, IP
The “narrow waist” facilitates interoperability

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.105

Implications of Hourglass & Layering
Single Internet-layer module (IP):

+ Allows arbitrary networks to interoperate

— Any network technology that supports IP can exchange
packets

+ Allows applications to function on all networks

— Applications that can run on IP can use any network
technology

+ Supports simultaneous innovations above and below IP
— But changing IP itself, i.e., IPv6, very involved

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.106

HTTP (HyperText Transport Protocol)

DNS
Servers || Datacenter
> User\
Pl /
e i create } Account
result

1. DB

K Ad Server j

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.107

HTTP Request

+ After resolving DNS request for www.amazon.com to
72.21.211.176 client sends an http GET request to the
web server

+ Web server returns HTML file for home page

e I Web Server
m /" |GET /index.ntml mTTR/1.1] d,'
‘ A
— N 72.21.211.176
HTTP/1.1 200 OK) (port 80)

Date: Mon, 23 May 2005 22:38:34 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Content-Length: 540

Content-Type: text/html; charset=UTF-8
<html>

</html>

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.108

HTTP Request

« After resolving DNS request for www.amazon.com
client sends an http GET request to the web server

+ Web server returns HTML file for home page
+ Client renders the page
— Need to GET other resources referred in the page Web Server
|
[}
72.21.211.176
(port 80)

‘GET /index.html HTTP/l.l‘

-

Viore O

‘Hat/Linux)
11:55 GMT

@ Orange Savings Account™

No Fees.
No Minimums.

Kindle

Kindle 3G

Final Exam Review.109

TCP Open Connection: 3-Way
Handshaking

+ Goal: agree on a set of parameters: the start
sequence number for each side
— Starting sequence numbers are random

Client (initiator) Server

Active connect() listen()
Open SYN

P SeqNum = x Passive

10 Open
acce
Sequm =y and Ack =X+ 2 P
SYN and ACK, Sed
AC
K Ack=y .4
allocate
buffer space
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.111

Page 28

HTTP over TCP

* HTTP runs over TCP not UDP
- Why?

« TCP: stream oriented protocol

— Sender sends a stream of bytes, not packets (e.g., no
need to tell TCP how much you send)

— Receiver reads a stream of bytes

+ Provides reliability, flow control, congestion control

— Flow control: avoid the sender from overwhelming the
receiver

— Congestion control: avoid the sender from
overwhelming the network

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.110

TCP Flow Control & Reliability

+ Sliding window protocol at byte (not packet) level

— Receiver tells sender how many more bytes it can receive
without overflowing its buffer (i.e., AdvertisedWindow)

+ Reliability

— The ack(nowledgement) contains sequence number N of
next byte the receiver expects, i.e., receiver has received
all bytes in sequence up to and including N-1

— Go-back-N: TCP Tahoe, Reno, New Reno
— Selective acknowledgement: TCP Sack

+ We didn’t learn about congestion control (two lectures in
eel122)

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.112

Sliding Window
window = set of adjacent sequence numbers
+ The size of the set is the window size
+ Assume window size is n

- Let A be the last ack’ d packet of sender without gap; then window
of sender = {A+1, A+2, ..., A+n}

+ Sender can send packets in its window

+ Let B be the last received packet without gap by receiver, then
window of receiver = {B+1,..., B+n}

» Receiver can accept out of sequence, if in window
12/12/2011

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.113

GBN Example w/o Errors

Sender Window ‘Window size = 3 packets ‘ Receiver Window

{1y 1
1,2y 2 ‘ 0
{1, 2, 3} 3 - {}
{2,3,4 4 It
{3,4,5} 5
{4,5,6} 6 '
Time
Sender Receiver

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.115

Page 29

Go-Back-n (GBN)

+ Transmit up to n unacknowledged packets

+ If timeout for ACK(K), retransmit k, k+1, ...

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Final Exam Review.114

GBN Example with Errors

‘ Window size = 3 packets ‘

Timeout
Packet 4

oo i W=

()76 1N

Sender

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

{
{
{

{5}
{5.6}

{

Receiver

4is
missing

Final Exam Review.116

Observations

+ With sliding windows, it is possible to fully utilize a
link, provided the window size is large enough.
Throughput is ~ (n/RTT)

— Stop & Waitis like n=1.

+ Sender has to buffer all unacknowledged packets,
because they may require retransmission

Filesystems
+ Receiver may be able to accept out-of-order packets,
but only up to its buffer limits
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.117 12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.118
- - - - - - TraCk
HTTP Server File /0 Review: Magnetic Disk Characteristic/ sector
+ Cylinder: all the tracks under the
head at a given point on all surface Head[¢
+ Read/write data is a three-stage 5 Cylinder
_ process: N ~Platter
+ Web server returns HTML file for home page — Seek time: position the head/arm over the proper track (into
P
Web Server proper cylinder) . .
— Rotational latency: wait for the desired sector
- ‘GET /index.html HTTB/1.1 ’ ‘ to rotate upder the read/write head.
M | — Transfer time: transfer a block of bits (sector)
- 7531.211.176 _ under the read-wrlte_ heac_i _
HTTP/1.1 200 OK + Disk Latency = Queuing Time + Controller time +
(port 80) . . h .
Date: Mon, 23 May 2005 22:38:34 GMT Seek Time + Rotation Time + Xfer Time
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux) - °
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT 1] Software °2 e %
Content-Length: 540 'g —— Queue = s Media Time l—
Content-Type: text/html; charset=UTF-8 o (Device Driver) =] (Seek+Rot+Xfer) %
<html> - O o
* Highest Bandwidth:
</html> .
— transfer large group of blocks sequentially from one track
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.119 12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.120

Page 30

Building a File System

+ File System: OS layer that transforms block interface
of disks into Files, Directories, etc.

* File System Components
— Disk Management: collecting disk blocks into files
—Naming: Interface to find files by name, not by blocks
— Protection: Layers to keep data secure
— Reliability/Durability

* How do users access files?
— Sequential Access: bytes read in order (most file accesses)
—Random Access: read/write element out of middle of array

+ Goals:
—Maximize sequential performance
—Easy random access to file

— Easy management of file (growth, truncation, etc)
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.121

Example of Multilevel Indexed Files

+ Sample file in multilevel mode
indexed format:
— How many accesses for
block #23? (assume file
header accessed on open)?

» Two: One for indirect block, d
one for data direct blocks T

— How about block #5? -
» One: One for data

— Block #3407
» Three: double indirect block,

owners (2)

timestamps (3)

size block count

single indirect —

double indirect_|

triple indirect

indirect block, and data
« UNIX 4.1 Pros and cons

— Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy
— Cons: Lots of seeks
Very large files must read many indirect blocks (four
1/0’s per block!)
Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

12/12/2011 Final Exam Review.123

Page 31

Multilevel Indexed Files (1

+ Multilevel Indexed Files: e
(from UNIX 4.1 BSD)

— Key idea: efficient for small

files, but still allow big files

owners (2)

timestamps (3)

size block count

direct blocks 77

single indirect —|

double indirect_|

triple indirect

« File hdr contains 13 pointers
— Fixed size table, pointers not all equivalent
— This header is called an “inode” in UNIX
+ File Header format:
— First 10 pointers are to data blocks
— Ptr 11 points to “indirect block” containing 256 block ptrs

— Pointer 12 points to “doubly indirect block” containing 256
indirect block ptrs for total of 64K blocks

— Pointer 13 points to a triply indirect block (16M blocks)

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.122

File Allocation for Cray-1 DEMOS

ase size d S > rg P
‘\ 5
] ﬂ- Basic Segmentation Structure:
26 Each segment contiguous on disk
o
file header 39

+ DEMOS: File system structure similar to segmentation
— |dea: reduce disk seeks by
» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation
— Cray-1 had 12ns cycle time, so CPU:disk speed ratio about the
same as today (a few million instructions per seek)
+ Header: table of base & size (10 “block group” pointers)
— Each block chunk is a contiguous group of disk blocks
— Sequential reads within a block chunk can proceed at high speed
— similar to continuous allocation
» How do you find an available block group?

— Use freelist bitmap to find block of 0’s.

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.124

Large File Version of DEMOS

ase size ——» J‘Sl‘-ﬂ-‘g-'- P
N N 133
134}
\ 4
136
157
file header indirect 39
block group

+ What if need much bigger files?
— If need more than 10 groups, set flag in header: BIGFILE
» Each table entry now points to an indirect block group
— Suppose 1000 blocks in a block group = 80GB max file
» Assuming 8KB blocks, 8byte entries=
(10 ptrsx1024 groups/ptrx1000 blocks/group)*8K =80GB
+ Discussion of DEMOS scheme
— Pros: Fast sequential access, Free areas merge simply
Easy to find free block groups (when disk not full)
— Cons: Disk full = No long runs of blocks (fragmentation),
so high overhead allocation/access
— Full disk = worst of 4.1BSD (lots of seeks) with worst of
continuous allocation (lots of recompaction needed)

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.125
Transactions
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.127

Page 32

Directory Structure

oot | avi | tc | jim

‘book‘ mail |unhex‘ hyp |

/

e

L 1

‘ text ‘ mail ‘coum‘ book‘

EE

» Not really a hierarchy!
— Many systems allow directory structure to be organized as an
acyclic graph or even a (potentially) cyclic graph
— Hard Links: different names for the same file
» Multiple directory entries point at the same file
— Soft Links: “shortcut” pointers to other files
» Implemented by storing the logical name of actual file
+ Name Resolution: The process of converting a logical name
into a physical resource (like a file)
— Traverse succession of directories until reach target file

— Global file system: May be spread across the network
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.126

Concurrent Execution & Transactions

» Concurrent execution essential for good performance

- Disk slow, so need to keep the CPU busy by working on
several user programs concurrently

+ DBMS only concerned about what data is read/written from/
to the database

— Not concerned about other operations performed by program
on data

» Transaction — DBMS’s abstract view of a user program,
i.e., a sequence of reads and writes.

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.128

Transaction - Example

BEGIN; --BEGIN TRANSACTION

UPDATE accounts SET balance = balance -
100.00 WHERE name = 'Alice';

UPDATE branches SET balance = balance -
100.00 WHERE name = (SELECT branch name
FROM accounts WHERE name = 'Alice');

UPDATE accounts SET balance = balance +
100.00 WHERE name = 'Bob';

UPDATE branches SET balance = balance +
100.00 WHERE name = (SELECT branch_ name
FROM accounts WHERE name = 'Bob');

COMMIT; --COMMIT WORK

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.129

Transaction Scheduling

- Serial schedule: A schedule that does not interleave
the operations of different transactions

— Transactions run serially (one at a time)

+ Equivalent schedules: For any database state, the
effect (on the database) and output of executing the
first schedule is identical to the effect of executing the
second schedule

+ Serializable schedule: A schedule that is equivalent
to some serial execution of the transactions

— Intuitively: with a serializable schedule you only see
things that could happen in situations where you were
running transactions one-at-a-time.

12/12/2011

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.131

Page 33

The ACID properties of Transactions

+ Atomicity: all actions in the transaction happen, or
none happen

+ Consistency: if each transaction is consistent, and the
DB starts consistent, it ends up consistent

+ Isolation: execution of one transaction is isolated from
that of all others

+ Durability: if a transaction commits, its effects persist
12/12/2011

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.130

Conflict Serializable Schedules

+ Two operations conflict if they
— Belong to different transactions
— Are on the same data
— At least one of them is a write.

+ Two schedules are conflict equivalent iff:
— Involve same operations of same transactions
— Every pair of conflicting operations is ordered the same way

+ Schedule S is conflict serializable if S is conflict equivalent to
some serial schedule

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.132

Conflict Equivalence — Intuition

+ If you can transform an interleaved schedule by
swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

+ Example:

T1:R(RA),W(A), R(B) ,W(B)

T2: R(A),W(A), R(B) ,W(B)
T1:R(A),W(A), R(B), W(B)

T2: R(A), W(A), R(B),W(B)

4
T1:R(A),W(R),R(B), W (B)
T2: R(A) ,W(A), R(B) ,W(B)

Final Exam Review.133

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Conflict Equivalence - Intuition (cont’d)

+ If you can transform an interleaved schedule by
swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

+ |s this schedule serializable?

T1:R(A),
T2: R(A),W(R),

W (A)

Final Exam Review.135

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Page 34

Conflict Equivalence — Intuition (cont’d)

+ If you can transform an interleaved schedule by
swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

+ Example:

T1:R(A),W(A),R(B), W(B)

T2: R(A),W(A), R(B),W(B)
U

T1:R(A),W(A),R(B), W(B)

T2: R(A), W(A),R(B),W(B)
{

T1:R(A),W(A),R(B),W(B)

T2: R(A)/ W(A)/R(B)/W(B)

Final Exam Review.134

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Dependency Graph

» Dependency graph:
— Transactions represented as nodes
— Edge from Ti to Tj:
» an operation of Ti conflicts with an operation of Tj
» Ti appears earlier than Tj in the schedule

+ Theorem: Schedule is conflict serializable if and only if
its dependency graph is acyclic

Final Exam Review.136

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Example

« Conflict serializable schedule:

T1:R(A),W(A),
T2: R(A)/W(A)I

AB
@ @ Dependency graph
* No cycle!

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.137

Notes on Conflict Serializability

+ Conflict Serializability doesn’t allow all schedules that
you would consider correct

— This is because it is strictly syntactic - it doesn’t consider
the meanings of the operations or the data

- In practice, Conflict Serializability is what gets used,
because it can be done efficiently
— Note: in order to allow more concurrency, some special

cases do get implemented, such as for travel
reservations, ...

+ Two-phase locking (2PL) is how we implement it

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.139

Page 35

Example

« Conflict that is not serializable:

T1:R(A),W(A), R(B) ,W(B)
T2: R(A),W(A),R(B),W(B)
A
@ /(TZ Dependency graph
B

+ Cycle: The output of T1 depends on T2, and vice-
versa
Final Exam Review.138

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Locks
+ “Locks” to control access to data

+ Two types of locks:

— shared (S) lock — multiple concurrent transactions
allowed to operate on data

— exclusive (X) lock — only one transaction can operate
on data at a time

S X
Lock
Compatibility |S |/ |-
Matrix

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.140

Two-Phase Locking (2PL)

1) Each transaction must obtain:
- S (shared) or X (exclusive) lock on data before reading,
- X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks.

Thus, each transaction has a “growing phase” followed by a

“shrinking phase” ' iLock Point!
47~ | ki
= | Growing , Shrinking
T3 Phase 1 Phase
g2 ! -
[5} 1
St 1 —
o AN
0!
18 5 7 9 11 13]15 17 19 Time

1
12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 20111

Final Exam Review.141

Deadlock Prevention

+ Assign priorities based on timestamps. Assume Ti
wants a lock that Tj holds. Two policies are possible:

- Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti aborts
- Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits

« If a transaction re-starts, make sure it gets its original
timestamp

— Why?

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.143

Page 36

Two-Phase Locking (2PL)

+ 2PL guarantees conflict serializability

- Doesn’t allow dependency cycles; Why?

- Answer: a cyclic dependency cycle leads to deadlock

- Edge from Ti to Tj means that Ti acquires lock first and
Tj needs to wait

- Edge from Ti to Tj means that Ti acquires lock first and
Tj needs to wait

- Thus, both T1 and Tj wait for each other > deadlock

- Schedule of conflicting transactions is conflict
equivalent to a serial schedule ordered by “lock point”

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.142

Example

» T1 transfers $50 from account A to account B

’Tl:Read(A) ,A:=A-50,Write (A),Read (B),B:=B+50,Write (B)

» T2 outputs the total of accounts A and B

]TzzRead (A) ,Read (B) , PRINT (A+B)

« Initially, A = $1000 and B = $2000

+ What are the possible output values?

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.144

Is this a 2PL Schedule?

Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Unlock(A) <granted>
Read(A)
Unlock(A)
Lock_S(B) <granted>

Lock_X(B)
Read(B)

<granted> Unlock(B)

PRINT(A+B)

Read(B)

B:=B +50

Write(B)

Unlock(B)

No, and it is not serializable

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.145

Cascading Aborts

+ Example: T1 aborts
— Note: this is a 2PL schedule

T1:R(A),W(A),
T2: R(A) ,W(A)

+ Rollback of T1 requires rollback of T2, since T2 reads
a value written by T1

+ Solution: Strict Two-phase Locking (Strict 2PL):
same as 2PL except

— All locks held by a transaction are released only when
the transaction completes

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.147

Page 37

Is this a 2PL Schedule?

Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Unlock(A) <granted>
Read(A)
Lock_S(B)

Read(B)

B:=B +50

Write(B)

Unlock(B) <granted>
Unlock(A)
Read(B)
Unlock(B)
PRINT(A+B)

Yes, so it is serializable

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.146

Strict 2PL (cont’d)

+ Alllocks held by a transaction are released only when
the transaction completes

- In effect, “shrinking phase” is delayed until:
a) Transaction has committed (commit log record on
disk), or

b) Decision has been made to abort the transaction
(then locks can be released after rollback).

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.148

Is this a Strict 2PL schedule?

Lock_X(A) <granted>

Is this a Strict 2PL schedule?

Read(A)

Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Unlock(A) ¥ <granted>
Read(A)
Lock_S(B)

Read(B)

B:=B +50

Write(B)

Unlock(B) vy <granted>
Unlock(A)
Read(B)
Unlock(B)
PRINT(A+B)

12/12/2011 anthony NO: Cascading Abort Possible . exam Review.149

Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Read(B)

B:=B +50

Write(B)

Unlock(A)

Unlock(B) <granted>
Read(A)
Lock_S(B) <granted>
Read(B)
PRINT(A+B)
Unlock(A)
Unlock(B)

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Final Exam Review.150

12/12/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Final Exam Review.151

