CS162
Operating Systems and
Systems Programming

Lecture 2

Concurrency:
Processes, Threads, and Address Spaces

August 31st, 2011
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Review: Migration of OS Concepts and
— . Features

1950 1960 1970 1980 1990 2000

MULTICS
mainframes =

no  compilers time \
shared multiuser

distributed

software systems

batch multiprocessor

resident networked

o fault tolerant
monitors

' UNIX

iters -
no compilers.

software

R
! desktop
——

time multiuser
resident ~ shared
monitors

multiprocessor

netwo\rked fault tolerant

clustered
N UN

no  compilers

software interactive multiprocessor
‘\mHH HH_ multiuser

f networked

/ £ N UNIX

compilers no

software
interactive
networked

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.3

Very Brief History of OS

« Several Distinct Phases:
— Hardware Expensive, Humans Cheap
» Eniac, ... Multics
— Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs
— Hardware Really Cheap, Humans Really Expensive
» Ubiquitous devices, Widespread networking

+ Rapid Change in Hardware Leads to changing OS

Ubiquitous Devices

- Situation today is much like the late 60s

—100-1000 people-years

8/31/11

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

— Gradual Migration of Features into Smaller Machines

— Small OS: 100K lines/Large: 10M lines (5M browser!)

— Batch = Multiprogramming = Timeshare = Graphical Ul =

Lec1.2

Implementation Issues

* Policy vs. Mechanism
— Policy: What do you want to do?
— Mechanism: How are you going to do it?
— Should be separated, since policies change
Algorithms used
— Linear, Tree-based, Log Structured, etc...
+ Event models used
— Threads vs. event loops
» Backward compatibility issues
— Very important for Windows 2000/XP/Vista/...
— POSIX tries to help here
+ System generation/configuration
— How to make generic OS fit on specific hardware

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

(How is the OS implemented?)

Lec1.4

Page 1




Goals for Today

+ How do we provide multiprogramming?
+ What are processes?

+ How are they related to threads and address
spaces”?

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, lon Stoica, Doug Tygar, and David Wagner.

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec1.5

Recall (61C): What happens during execution?

Addr 2321
Datat
Data0
Inst237
Inst236
Execution sequence: Inst5
) Inst4
— Fetch Instruction at PC Inst3 = PC
~ Decode Inst2 |+ PC
— Execute (possibly using registers) Insti |+ PC
— Write results to registers/mem Inst0 | pPC
— PC = Next Instruction(PC)
Addr 0
— Repeat
8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec1.7

Page 2

Threads

+ Unit (“thread”) of execution:
— Independent Fetch/Decode/Execute loop
— Unit of scheduling
— Operating in some address space

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.6

Uniprograming vs. Multiprograming

+ Uniprogramming: one thread at a time
— MS/DOS, early Macintosh, Batch processing
— Easier for operating system builder
— Get rid of concurrency (only one thread accessing resources!)
— Does this make sense for personal computers?

* Multiprogramming: more than one thread at a time
— Multics, UNIX/Linux, OS/2, Windows NT — 7, Mac OS X

— Often called “multitasking”, but multitasking has other
meanings (talk about this later)

* ManyCore = Multiprogramming, right?

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.8




Challenges of Multiprograming

+ Each applications wants to own the machine - virtual
machine abstraction

+ Applications compete with each other for resources
— Need to arbitrate access to shared resources > concurrency
— Need to protect applications from each other > protection

+ Applications need to communicate/cooperate with each
other - concurrency

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec1.9

The Basic Problem of Concurrency

+ The basic problem of concurrency involves resources:
— Hardware: single CPU, single DRAM, single I/O devices

— Multiprogramming API: processes think they have exclusive
access to shared resources

+ OS has to coordinate all activity
— Multiple processes, I/O interrupts, ...
— How can it keep all these things straight?
+ Basic Idea: Use Virtual Machine abstraction
— Simple machine abstraction for processes
— Multiplex these abstract machines
+ Dijkstra did this for the “THE system”
— Few thousand lines vs 1 million lines in OS 360 (1K bugs)

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.11

Page 3

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Processes

» Process: unit of resource allocation and execution
— Owns memory (address space)
— Owns file descriptors, file system context, ...

— Encapsulate one or more threads sharing process
resources

+ Why processes?

— Navigate fundamental tradeoff between protection and
efficiency

— Processes provides memory protection while threads
don’t (share a process memory)

— Threads more efficient than processes (later)

+ Application instance consists of one or more processes
Lec 1.10

8/31/11 Anthony

How can we give the illusion of multiple
processors?

SEIE,

Shared Memory

CPU1 CPU2 CPU3 CPU1 CPU2

Time —m»

Assume a single processor. How do we provide the illusion
of multiple processors?

— Multiplex in time!
Each virtual “CPU” needs a structure to hold:

— Program Counter (PC), Stack Pointer (SP)

— Registers (Integer, Floating point, others...?)
How switch from one CPU to the next?

— Save PC, SP, and registers in current state block

— Load PC, SP, and registers from new state block
What triggers switch?

— Timer, voluntaré)/ yield, 1/0, other things

. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec1.12




Properties of this simple multiprogramming
technique
+ All virtual CPUs share same non-CPU resources
—1/0 devices the same
— Memory the same
+ Consequence of sharing:

— Each thread can access the data of every other thread
(good for sharing, bad for protection)

— Threads can share instructions
(good for sharing, bad for protection)

— Can threads overwrite OS functions?
+ This (unprotected) model common in:
— Embedded applications
— Windows 3.1/Early Macintosh (switch only with yield)
— Windows 95—ME? (switch with both yield and timer)

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec1.13

How to protect threads from one
another?

1. Protection of memory
— Every task does not have access to all memory

2. Protection of I/O devices
— Every task does not have access to every device

3. Protection of Access to Processor: preemptive
switching from task to task

— Use of timer
— Must not be possible to disable timer from usercode

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec1.15

Page 4

Modern Technique:
SMT/Hyperthreading

+ Hardware technique

— Exploit natural properties
of superscalar processors
to provide illusion of
multiple processors I ——

— Need to replicate registers,
but higher utilization of
processor resources

+ Can schedule each thread
as if were separate CPU

6) multiprocessor 8) Hyper-

a) superscalar
architecture Threading

architecture

[

Time (CPU cycles)

— But, non-linear speedup! 7+ |
— If have multiprocessor,
should schedule each Thread 0 mThread 1

processor first
+ Original technique called “Simultaneous Multithreading”
— See hitp://www.cs.washington.edu/research/smt/
— Alpha, SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec1.14

Recall: Program’ s Address Space

+ Address space = the set of accessible

addresses + associated states:
— For a 32-bit processor there are 232 = 4

3
®
3

stack

billion addresses

+ What happens when you read or write
to an address?

— Perhaps nothing

. hea
— Perhaps acts like regular memory E

— Perhaps ignores writes data

aoedg ssaippy weibo.id

— Perhaps causes I/O operation

» (Memory-mapped I/0) =

o

— Perhaps causes exception (fault)

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.16




Providing lllusion of Separate Address Space:
Load new Translation Map on Switch

Code
Data Stack 1
Heap Heap 1
Stack ' Code 1
Prog 1 E
Virtual E Data 1
Address Y 3
Space 1 *
/ OS code \
Translation Map 1 OS data
OS heap &
Stacks

8/31/11

Physical Address Space

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Code

Data

Heap

Stack

Prog 2
Virtual
Address
Space 2

Translation Map 2

Lec1.17

Administrivia

» We are using Piazza instead of the newsgroup
— Got to http://www.piazza.com/berkeley/fall2011/cs162
— Make an account and join Berkeley, CS 162
— Please ask questions on Piazza instead of emailing TAs

—Only 1

58 enrolled, please enroll today!

— See a TA after class

+ Don’t know Java well?
— Take CS 9G self-paced Java course

+ PSA: Backup and use RAID!

8/31/11

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Already registered and need an account form?

Lec 1.19

Page 5

Administrivia: Project Signup
+ Waitlist update — final processing Monday 9/5 AM
— Admits after today should e-mail cs162 AT cory for an account form
+ Project Signup: Use “Group/Section Signup” Link
— 4-5 members to a group, everyone must attend the same section
» The sections assigned to you by Telebears are temporary!
— Only submit once per group! Due Monday (9/5) by noon

» Everyone in group must have logged into their cs162-xx accounts once
before you register the group, Select at least 2 potential sections

+ New section assignments: Watch “Group/Section Assignment’ Link
— Attend new sections next week

Section Time Location TA
107 Tu 9:00A-10:00A 320 Soda Patrik
101, 108 Tu 10:00A-11:00P 87 Evans, 320 Soda Patrik, Angela
102, 109 Tu 11:00A-12:00P 87 Evans, 320 Soda Steve, Angela
103 Tu 3:00P-4:00P 85 Evans Karan
104 Tu 4:00P-5:00P 85 Evans Andrew
105 Tu 5:00P-6:00P 85 Evans Andrew
106 Tu 6:00P-7:00P 320 Soda (NEW) Karan
8/31711 Anthony D. Joseph and Ton Stoica CS162 ©UCB Fall 201 Lec1.18
5min Break
8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.20




Traditional UNIX Process

* Process: Operating system abstraction to represent
what is needed to run a single program

— Often called a “HeavyWeight Process”
— Formally: a single, sequential stream of execution in its
own address space
+ Two parts:
— Sequential Program Execution Stream

» Code executed as a single, sequential stream of execution
(i.e., thread)

» Includes State of CPU registers
— Protected Resources:
» Main Memory State (contents of Address Space)
» /O state (i.e. file descriptors)
+ Important: There is no concurrency in a heavyweight
process

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.21

CPU Switch From Process to Process

process Py operating system process Py

interrupt or system call

lexecuting J‘L
T save state into PCB,
. idle
reload state from PCB;

idle interrupt or system call executing

save state into PCB,
idle

reload state from PCB,|
executing l[\

» This is also called a “context switch”
» Code executed in kernel above is overhead
— Overhead sets minimum practical switching time

— Less overhead with SMT/Hyperthreading, but... contention

for resources instead
8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec1.23

Page 6

How do we Multiplex Processes?
« The current state of process held in a process

control block (PCB): process state

— This is a “snapshot” of the execution and

protection environment sl T

— Only one PCB active at a time program counter

+ Give out CPU time to different processes
(Scheduling):

registers

— Only one process “running” at a time —
memory limits

— Give more time to important processes : =
list of open files

+ Give pieces of resources to different
processes (Protection):

e o o
— Controlled access to non-CPU resources
— Sample mechanisms:
» Memory Mapping: Give each process their own Process
address space Control
» Kernel/User duality: Arbitrary multiplexing of 1/0 Block
through system calls
8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.22

Diagram of Process State

admitted

interrupt exit terminated

scheduler dispatch

1/0 or event completion 1/0 or event wait

waiting

+ As a process executes, it changes state
—new: The process is being created
—ready: The process is waiting to run
—running: Instructions are being executed
—waiting: Process waiting for some event to occur
—terminated: The process has finished execution

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.24




Process Scheduling

: ready queue CPU
1/0 queue H 1/0 request }1—

time slice
expired

child fork a
child )
interrupt wait for an
occurs interrupt

+ PCBs move from queue to queue as they change state

— Decisions about which order to remove from queues are
Scheduling decisions

— Many algorithms possible (few weeks from now)

f—|

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec1.25

Process =? Program

main () { main () { Heap
} }
A){ A){ Stack
A
|__main__|
Program Process

+ More to a process than just a program:
— Program is just part of the process state

— | run emacs on lectures.txt, you run it on homework.java —
Same program, different processes

+ Less to a process than a program:
— A program can invoke more than one process

— cc starts up cpp, cc1, cc2, as, and Id
8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec1.27

Page 7

What does it take to create a process?

Must construct new PCB
— Inexpensive

Must set up new page tables for address space
— More expensive

Copy data from parent process? (Unix fork () )

— Semantics of Unix fork () are that the child process gets a
complete copy of the parent memory and I/O state

— Originally very expensive
— Much less expensive with “copy on write”

Copy I/O state (file handles, etc)

— Medium expense
8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.26

Multiple Processes Collaborate on a Task

Proc 1 <:> Proc 2 <:> Proc 3

+ High Creation/memory Overhead
+ (Relatively) High Context-Switch Overhead
* Need Communication mechanism:
— Separate Address Spaces Isolates Processes
— Shared-Memory Mapping
» Accomplished by mapping addresses to common DRAM
» Read and Write through memory
— Message Passing
» send () and receive () messages
» Works across network

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.28




Shared Memory Communication

Code Data 2 | Code |
] Stack 1
Data H ” Data
ea
Heap B Heap
Stack Code 1 Stack
Shared Stack 2 Shared
Data 1 Proa 2
Prog 1 rog
v:::gm Heap 2 Virtual
Address Address
Space 1 Space 2

Shared

« Communication occurs by “simply” reading/writing to
shared address page

— Really low overhead communication

— Introduces complex synchronization problems

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.29

Modern “Lightweight” Process with Threads

+ Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)

— Process still contains a single Address Space
— No protection between threads

+ Multithreading: a single program made up of a number of
different concurrent activities

— Sometimes called multitasking, as in Ada ...

+ Why separate the concept of a thread from that of a process?
— Discuss the “thread” part of a process (concurrency)
— Separate from the “address space” (protection)
— Heavyweight Process = Process with one thread

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.31

Page 8

Inter-process Communication (IPC)

+ Mechanism for processes to communicate and to
synchronize their actions

+ Message system — processes communicate with each
other without resorting to shared variables
+ IPC facility provides two operations:
- send (message) — message size fixed or variable
- receive (message)
+ If Pand Q wish to communicate, they need to:
— establish a communication link between them
— exchange messages via send/receive
+ Implementation of communication link

— physical (e.g., shared memory, hardware bus, syscall/
trap)

— logical (e.g., logical properties)

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.30

Single and Multithreaded Processes

| code H data H files |

| code || data H files |

|reg]sters‘ [ stack | registers ||| registers ||| registers

stack stack stack

thread ——> ; ; ; §<—— thread

single-threaded process multithreaded process

+ Threads encapsulate concurrency: “Active” component

+ Address spaces encapsulate protection: “Passive” part
— Keeps buggy program from trashing the system

+ Why have multiple threads per address space?

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.32




Examples of multithreaded
programs

+ Embedded systems
— Elevators, Planes, Medical systems, Wristwatches
— Single Program, concurrent operations

« Most modern OS kernels

— Internally concurrent because have to deal with concurrent
requests by multiple users

— But no protection needed within kernel

+ Database Servers
— Access to shared data by many concurrent users
— Also background utility processing must be done

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.33

Thread State

« State shared by all threads in process/addr space
— Contents of memory (global variables, heap)
— /O state (file system, network connections, etc)

+ State “private” to each thread
—Kept in TCB = Thread Control Block
— CPU registers (including, program counter)
— Execution stack — what is this?

+ Execution Stack
— Parameters, Temporary variables

— Return PCs are kept while called procedures are executing

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.35

Page 9

Examples of multithreaded
programs (con’t)

+ Network Servers
— Concurrent requests from network
— Again, single program, multiple concurrent operations
— File server, Web server, and airline reservation systems

+ Parallel Programming (More than one physical CPU)
— Split program into multiple threads for parallelism
— This is called Multiprocessing

+ Some multiprocessors are actually uniprogrammed:
— Multiple threads in one address space but one program at a

time
8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.34
Execution Stack Example
A(int tmp) {
if (tmp<2)
B();
printf(tmp);
}
B(){
C();
}
CO{
AQ); + Stack holds temporary results
} « Permits recursive execution
— A(); + Crucial to modern languages
8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.36




Execution Stack Example

8/31/11

. A: tmp=1
A(int tmp) { Stack | ret=exit
if (tmp<2) Pointer l

B();
0 Stack Growth

printf(tmp);
}
B(){

C();
}
CO{

AQ); + Stack holds temporary results
} » Permits recursive execution
AQ1); + Crucial to modern languages

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.37

Execution Stack Example

A(int tmp) {

if (tmp<2)
B();

printf(tmp);

}

B(){
C();

}

CcO{
A(2);

}

A(1);

8/31/11

A: tmp=1
ret=exit
B: ret=A+2
Stack >
Pointer l
Stack Growth

+ Stack holds temporary results
» Permits recursive execution
+ Crucial to modern languages

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.39

Page 10

Execution Stack Example

. A: tmp=1
A(int tmp) { Stack | ret=exit
if (tmp<2) Pointer l
:> B0; Stack Growth
printf(tmp);
}
B() {
C0);
}
cO{
AQ); + Stack holds temporary results
} » Permits recursive execution
AQ1); + Crucial to modern languages
8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.38
Execution Stack Example
A: tmp=1
A(int tmp) { re'tn=2xit
if (tmp<2) B: ret=A+2
B();
printf(tmp); Stack R C: ret=B+1
} Pointer l
BO{ Stack Growth
C0;
}
)} C0{
AQ); + Stack holds temporary results
} » Permits recursive execution
A(T); + Crucial to modern languages

8/31/11

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.40




Execution Stack Example

. A: tmp=1
:> A(int tmp) { reT:gxit

if (tmp<2) B: ret=A+2

B();

printf(tmp); C: ret=B+1
} A: tmp=2
B(){ Stack | ret=C+1

0 Pointer l
} Stack Growth
CO{

AQ); + Stack holds temporary results
} » Permits recursive execution
AQ1); + Crucial to modern languages

8/31/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 1.41

Summary

+ Processes have two parts
— Threads (Concurrency)
— Address Spaces (Protection)
+ Concurrency accomplished by multiplexing CPU Time:
— Unloading current thread (PC, registers)
— Loading new thread (PC, registers)
— Such context switching may be voluntary (yield (), I/O
operations) or involuntary (timer, other interrupts)
+ Protection accomplished restricting access:
— Memory mapping isolates processes from each other
— Dual-mode for isolating 1/0O, other resources
+ Book talks about processes

— When this concerns concurrency, really talking about thread
portion of a process

— When this concerns protection, talking about address space
portion of a process
Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

8/31/11 Lec 1.43

Page 11

Classification

S0
c 9
s 8 o M
w ne an
#threads 2 & y
Per AS:
MS/DOS, early -
One Macintosh Traditional UNIX
Embedded systems Mach, 0S/2, Linux
Man (Geoworks, VxWorks, Windows 9x?2?
L Ok O Win NT to 7, Solaris,
JavaOs, Pilot(PC) HP-UX, OS X

» Real operating systems have either
— One or many address spaces
— One or many threads per address space

+ Did Windows 95/98/ME have real memory protection?
— No: Users could overwrite process tables/System DLLs

8/31/11

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Lec 1.42




