CS162
Operating Systems and
Systems Programming

Lecture 5

Semaphores, Conditional Variables

September 14, 2011
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Goals for Today

« Continue with Synchronization Abstractions
— Monitors and condition variables

» Readers-Writers problem and solution

« Language Support for Synchronization

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Kubiatowicz.

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec5.2

Where are we going with
synchronization?

Programs | Shared Programs

Higher-
level Locks Semaphores Monitors Send/Receive
API

Hardware |Load/Store Disable Ints Test&Set Comp&Swap

+ We are going to implement various higher-level
synchronization primitives using atomic operations

— Everything is pretty painful if only atomic primitives are load
and store

— Need to provide primitives useful at user-level

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.3

Producer-consumer with a bounded buffer

Producer —)m—) Consumer
+ Problem Definition -

— Producer puts things into a shared buffer

— Consumer takes them out

— Need synchronization to coordinate producer/consumer
» Don’t want producer and consumer to have to work in

lockstep, so put a fixed-size buffer between them

— Need to synchronize access to this buffer

— Producer needs to wait if buffer is full

— Consumer needs to wait if buffer is empty

+ Example: Coke machine
— Producer can put limited number of cokes in machine
— Consumer can't take cokes out if machine is empty

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.4

Review: Semaphores El

1
+ Definition: a Semaphore has a non-negative integer value
and supports the following two operations:
— P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1
» Think of this as the wait() operation
—V(): an atomic operation that increments the semaphore by 1,
waking up a waiting P, if any
» This of this as the signal() operation

— P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.5

Full Solution to Bounded Buffer

Semaphore fullSlots = 0; // Initially, no coke

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer (item) {

emptySlots.P(); // Wait until space
mutex.P(); // Wait until slot free
Enqueue (item) ;
mutex.V () ;
fullslots.V(); // Tell consumers there is
// more coke

}

Consumer () {
fullSlots.P(); // Check if there’s a coke
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V () ;
emptySlots.V(); // tell producer need more

return item;

}

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.7

Page 2

Correctness constraints for solution

» Correctness Constraints:

— Consumer must wait for producer to fill slots, if empty
(scheduling constraint)

— Producer must wait for consumer to make room in buffer, if all
full (scheduling constraint)

— Only one thread can manipulate buffer queue at a time (mutual
exclusion)

+ General rule of thumb:
Use a separate semaphore for each constraint

- Semaphore fullSlots; // consumer’s constraint
- Semaphore emptySlots;// producer’s constraint
- Semaphore mutex; // mutual exclusion

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.6

Discussion about Solution

Decrease # of Increase # of
+ Why asymmetry? empty slots occupied slots

— Producer does: emptySTots.P (), fullSlots.V()
— Consumer does: fullSlots.P(), emptySlots.V()
« Is order of P’s important?

Decrease # of Increase # of
occupied slots empty slots

+ Is order of V’s important?

+ What if we have 2 producers or 2 consumers?
— Do we need to change anything?

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.8

Solution for Bounded Buffer using Locks only

int fullSlots = 0; // Initially, no coke
Lock lock = free; // No one using machine

Producer (item) {
lock.Acquire () ;

if (fullSlots == bufSize) {
lock.Release();
return false;} // No room for coke
Enqueue (item) ; // add new coke
fullSlots++;

lock.Release () ;
) return true;
Consumer () {
lock.Acquire () ;
if (fullSlots == 0) {
lock.Release () ;

return null;} // no coke
item = Dequeue(); // get coke
fullSlots—-;

lock.Release();
return item;
91411} Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.9

Motivation for Monitors and Condition
Variables

« Cleaner idea: Use locks for mutual exclusion and condition
variables for scheduling constraints

+ Monitor: a lock and zero or more condition variables for
managing concurrent access to shared data

— Some languages like Java provide this natively
— Most others use actual locks and condition variables

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.11

Page 3

Motivation for Monitors and Condition
Variables

+ Semaphores are a huge step up; just think of trying to do
the bounded buffer with only loads and stores

+ Problem is that semaphores are dual purpose:
— They are used for both mutex and scheduling constraints

— Example: the fact that flipping of P’s in bounded buffer gives
deadlock is not immediately obvious. How do you prove
correctness to someone?

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.10

Monitor with Condition Variables

+ Lock: the lock provides mutual exclusion to shared data
— Always acquire before accessing shared data structure
— Always release after finishing with shared data
— Lock initially free
+ Condition Variable: a queue of threads waiting for something
inside a critical section

— Key idea: make it possible to go to sleep inside critical section by
atomically releasing lock at time we go to sleep
9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.12

Simple Monitor Example
+ Here is an (infinite) synchronized queue

Lock lock;
Queue queue;

AddToQueue (item) {
lock.Acquire();
queue.enqueue (item) ;
lock.Release();

}

// Lock shared data
// Add item
// Release Lock

RemoveFromQueue () {
lock.Acquire () ; // Lock shared data
item = queue.dequeue();// Get next item or null
lock.Release(); // Release Lock
return (item) ; // Might return null

}
* Not very interesting use of “Monitor”
— It only uses a lock with no condition variables
— Cannot put consumer to sleep if no work!
91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.13

Complete Monitor Example (with condition
variable)
» Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue (item) {
lock.Acquire () ; // Get Lock
queue.enqueue (item) ; // Add item
dataready.signal () ; // Signal any waiters
lock.Release () ; // Release Lock

}

RemoveFromQueue () {
lock.Acquire () ; // Get Lock
while (queue.isEmpty()) {
dataready.wait (&lock); // If nothing, sleep
}

item = queue.dequeue();
lock.Release();
return (item) ;

// Get next item
// Release Lock

91411 } Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec5.15

Page 4

Condition Variables

- Condition Variable: a queue of threads waiting for something
inside a critical section

— Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep

— Contrast to semaphores: Can’t wait inside critical section

+ Operations:

-Wait (&lock): Atomically release lock and go to sleep. Re-
acquire lock later, before returning.

- Signal () : Wake up one waiter, if any
- Broadcast () : Wake up all waiters

* Rule: Must hold lock when doing condition variable ops!

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.14

Mesa vs. Hoare monitors

* Need to be careful about precise definition of signal and wait.
Consider a piece of our dequeue code:
while (queue.isEmpty()) {
dataready.wait (&lock); // If nothing, sleep
}

item = queue.dequeue(); // Get next item
— Why didn’t we do this?
if (queue.isEmpty()) {
dataready.wait (&lock); // If nothing, sleep
}

item = queue.dequeue(); // Get next item
+ Answer: depends on the type of scheduling

— Hoare-style
— Mesa-style

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.16

Hoare monitors

+ Signaler gives up lock, CPU to waiter; waiter runs
immediately

+ Waiter gives up lock, processor back to signaler when it exits
critical section or if it waits again

+ Most textbooks

Lock.Acquire()
lock.Acquire ()

lock if (queue.isEmpty()) {
dataready.signal () ; = dataready.wait(&lock) ;

il logy }
lock.Release() ;

lock.Release() ;

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.17

Readers/Writers Problem

+ Motivation: Consider a shared database
— Two classes of users:
» Readers — never modify database
» Writers — read and modify database
— Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.19

Page 5

Mesa monitors

+ Signaler keeps lock and processor

+ Waiter placed on ready queue with no special priority
+ Practically, need to check condition again after wait

» Most real operating systems

Put waiting
thread on
ready queue

Lock.Acquire()

lock.Acquire ()

'while (queue.isEmpty ()) {

dataready.signal(); _- ’e;d dataready.wait(&lock) ;
\!
_ - ’\N’a.\{\“g A4 }
lock.Release() ; "“ed\)\e
sC lock.Release () ;
9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.18

Basic Readers/Writers Solution
« Correctness Constraints:
— Readers can access database when no writers
— Writers can access database when no readers or writers
— Only one thread manipulates state variables at a time
+ Basic structure of a solution:

— Reader ()
Wait until no writers
Access data base
Check out - wake up a waiting writer
—-Writer ()
Wait until no active readers or writers
Access database
Check out - wake up waiting readers or writer
— State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Condition okToWrite = NIL
9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011

Lec 5.20

Code for a Reader

Reader () {

}
91411

// First check self into system
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR-~-7; // No longer waiting

}

AR++; // Now we are active!

lock.release();

// Perform actual read-only access
AccessDatabase (ReadOnly) ;

// Now, check out of system

lock.Acquire();

AR--;

if (AR == 0 && WW > 0)
okToWrite.signal () ;

lock.Release();

// No longer active
// No other active readers
// Wake up one writer

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.21

91411

Announcements

Project 1 will be posted Thursday afternoon.

Find a group or be dropped!

Two new discussion section slots:

— 5-6pm: 320 Soda Hall
— 6-7pm: 320 Soda Hall

We’ll announce by Friday which morning sections will
move slots

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.23

Page 6

Code for a Writer

Writer () {

//

First check self into system

lock.Acquire();

while ((AW + AR) > 0) { // Is it safe to write?
WW++; // No. Active users exist
okToWrite.wait (&lock); // Sleep on cond var
WW--; // No longer waiting

}

AW++; // Now we are active!

lock.release();

//

Perform actual read/write access

AccessDatabase (ReadWrite) ;

// Now, check out of system
lock.Acquire () ;
AW--; // No longer active
if (Ww > 0){ // Give priority to writers
okToWrite.signal () ; // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader
okToRead.broadcast () ; // Wake all readers
}
lock.Release();
}
9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.22
5min Break
9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.24

Simulation of Readers/Writers Solution
+ Use an example to simulate the solution

+ Consider the following sequence of operators:
—-R1, R2, W1, R3

* Initially: AR =0, WR =0, AW =0, WW =0

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.25

Simulation of Readers/Writers Solution

* R1 comes along
+ AR=0,WR=0,AW=0, WW =0

Reader () {

lock.Acquire();

RN ATENSN0N] { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();

AccessDbase (ReadOnly) ;

lock.Acquire();
AR--;
if (AR == 0 && WW > 0)
okToWrite.signal();
) lock.Release();
91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.27

Page 7

Simulation of Readers/Writers Solution

» R1 comes along
« AR=0,WR=0,AW=0,WW=0

B ST T T Ya s —]

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();
AccessDbase (ReadOnly) ;

lock.Acquire();
AR---

if (AR == 0 && WW > 0)
okToWrite.signal () ;
) lock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.26

Simulation of Readers/Writers Solution

* R1 comes along
+ AR=1,WR=0,AW=0,WW=0

Reader ()
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

// Now we are active!
lock.release();

AccessDbase (ReadOnly) ;

lock.Acquire();
AR--;
if (AR == 0 && WW > 0)

okToWrite.signal () ;
N lock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.28

R1 comes along

Simulation of Readers/Writers Solution

*+ AR=1,WR=0,AW=0,WW=0

Reader () {
lock.Acquire();
while ((AW + WW) > 0) {
WR++;
okToRead.wait (&lock) ;
WR--;

91411

}

AccessDbase (ReadOnly) ;

lock.Acquire();
AR--;
if (AR == 0 && WW > 0)
okToWrite.signal () ;
lock.Release();

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011

//
//
//
!/

S T—

Is it safe to read?
No. Writers exist
Sleep on cond var
No longer waiting

Now we are active!

Lec 5.29

R2 comes along

Simulation of Readers/Writers Solution

* AR=1,WR=0,AW=0,WW=0

B v e Ye —

}

91411

while ((AW + WW) > 0) {
WR++;
okToRead.wait (&lock) ;
WR--;

}
AR++;
lock.release();

AccessDbase (ReadOnly) ;

lock.Acquire();
AR--;
if (AR == 0 && WW > 0)

okToWrite.signal();
lock.Release();

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011

Is it safe to read?
No. Writers exist
Sleep on cond var
No longer waiting

Now we are active!

Lec 5.31

Page 8

Simulation of Readers/Writers Solution

» R1 comes along
« AR=1,WR=0,AW=0,WW=0

Reader () {

lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();

lock.Acquire();

AR--;

if (AR == 0 && WW > 0)

okToWrite.signal () ;
lock.Release();

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.30

Simulation of Readers/Writers Solution

* R2 comes along
+ AR=1,WR=0,AW=0,WW=0

Reader () {

lock.Acquire();

SRS { // Is it safe to read?
WR++;] // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

lock.release();

AccessDbase (ReadOnly) ;

lock.Acquire();
AR--;
if (AR == 0 && WW > 0)

okToWrite.signal () ;
lock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.32

Simulation of Readers/Writers Solution

+ R2 comes along
+ AR=2, WR=0,AW=0,WW=0

Reader () {
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}
// Now we are active!
lock.release();

AccessDbase (ReadOnly) ;

if (AR == 0 && WW > 0)
okToWrite.signal () ;
) lock.Release();

lock.Acquire();
A :

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.33

Simulation of Readers/Writers Solution

* R2 comes along
+ AR=2, WR=0,AW=0, WW=0

Reader ()
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting
}
AR++; // Now we are active!
lock.release();
[EccessDbase (ReadonTvi]
lock.Acquire();
AR--;
if (AR == 0 && WW > 0)
; Assume readers take a while to access database
} Situation: Locks released, only AR is non-zero
91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.35

Page 9

Simulation of Readers/Writers Solution
* R2 comes along
« AR=2, WR=0, AW=0,WW =0

Reader () {
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}
bt ereer—m

AccessDbase (ReadOnly) ;

if (AR == 0 && WW > 0)
okToWrite.signal () ;
) lock.Release();

lock.Acquire();
A :

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.34

Simulation of Readers/Writers Solution

+ W1 comes along (R1 and R2 are still accessing dbase)
+ AR=2,WR=0,AW=0, WW=0
Writer

while ((AW + AR) > 0) { Is it safe to write?
WW++; . No. Active users exist
okToerte.walt(&lock);C/ Sleep on cond var

) WW--; / No longer waiting

AW++;
lock.release();

AccessDbase (ReadWrite) ;

lock.Acquire();

AW--;

if (Ww > 0){ .
okToWrite.signal();

} else if (WR > 0)
okToRead.broadcast () ;

ock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.36

Simulation of Readers/Writers Solution

+ W1 comes along (R1 and R2 are still accessing dbase)
+ AR=2, WR=0,AW=0,WW=0
Writer () { .
lock.Acquire();
// Is it safe to write?
No. Active users exist

okToWrite.wait(&lock);é/ Sleep on cond var
WiW=~7; / No longer waiting

W++;
lock.release();
AccessDbase (ReadWrite) ;

iock:Acquire();

it (W > 0){ |
okToWrite.signal () ;

} else if (W
okToRead.broadcast () ;

ock.Release();

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.37

Simulation of Readers/Writers Solution

+ W1 comes along (R1 and R2 are still accessing dbase)
*+ AR=2, WR=0,AW=0, WW =1

Writer () { .
lTock.Acquire () ;

while ((AW + AR) > 0) { M

Is it safe to write?
No. Active users exist
Sleep on cond var

No longer waiting

7

=

v

}
AW++;
lock.release();

AccessDbase (ReadWrite) ;

%ogngcquire();
if (W > 0)(|
okToWrite.signal ()
} else if (WR >
okToRead.broadcast () ;
} ock.Release () ;
W1 cannot start because of readers, so goes to sleep

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.39

Page 10

Simulation of Readers/Writers Solution

+ W1 comes along (R1 and R2 are still accessing dbase)
+ AR=2,WR=0, AW =0, WW =1

Writer() { .
lock.Acquire();

while AW + AR) > 0 // Is it safe to write?
// No. Active users exist
. ;GO Sleep on cond var

WW--; No longer waiting

}

W++;
lock.release();

S

AccessDbase (ReadWrite) ;

iock:Acquire();

if (W > 0){ .
okToWIlte.51gnal(2;

} else if (WR > 0)
okToRead.broadcast () ;

ock.Release();

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.38

Simulation of Readers/Writers Solution

+ R3 comes along (R1, R2 accessing dbase, W1 waiting)
+ AR=2, WR=0,AW=0, WW =1

B v ey —

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();

AccessDbase (ReadOnly) ;

lock.Acquire();
AR--;
if (AR == 0 && WW > 0)

okToWrite.signal () ;
lock.Release();

}

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.40

Simulation of Readers/Writers Solution

* R3 comes along (R1, R2 accessing dbase, W1 waiting)
« AR=2,WR=0,AW=0, WW =1

Reader () {

lock.Acquire();

RSN ATENSN0N] { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();

AccessDbase (ReadOnly) ;

lock.Acquire();

AR--;

if (AR == 0 && WW > 0)
okToWrite.signal () ;

) lock.Release();
91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.41

Simulation of Readers/Writers Solution

* R3 comes along (R1, R2 accessing dbase, W1 waiting)
+ AR=2, WR=1, AW =0, WW =1

Reader ()
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
P; // Sleep on cond var
- // No longer waiting

}

AR++; // Now we are active!
lock.release();

AccessDbase (ReadOnly) ;

lock.Acquire();

AR--;

if (AR == 0 && WW > 0)
okToWrite.signal();

lock.Release();

}

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.43

Page 11

Simulation of Readers/Writers Solution

* R3 comes along (R1, R2 accessing dbase, W1 waiting)
+ AR=2,WR=1,AW=0, WW =1

Reader () {
lock.Acquire();

/ Is it safe to read?
/ No. Writers exist
/ Sleep on cond var
/ No longer waiting

AR++; // Now we are active!
lock.release();

AccessDbase (ReadOnly) ;

lock.Acquire();
AR---

if (AR == 0 && WW > 0)
okToWrite.signal () ;
) lock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.42

Simulation of Readers/Writers Solution

+ R2 finishes (R1 accessing dbase, W1, R3 waiting)
+ AR=2, WR=1,AW =0, WW =1

Reader ()
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++;) // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();

AccessDbase (ReadOnly) ;
if (AR == 0 && WW > 0)

okToWrite.signal () ;
lock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.44

Simulation of Readers/Writers Solution

+ R2 finishes (R1 accessing dbase, W1, R3 waiting)
+ AR=1,WR=1, AW =0, WW =1

Reader () {
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();
AccessDbase (ReadOnly) ;

lock.Acquire () ;

T ==
okToWrite.signal () ;
) lock.Release();

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.45

Simulation of Readers/Writers Solution

+ R2 finishes (R1 accessing dbase, W1, R3 waiting)
+ AR=1,WR=1, AW =0, WW =1

Reader ()
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++;) // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();
AccessDbase (ReadOnly) ;
lock.Acquire();

AR--;
if (AR == 0 && WW _> 0)

}

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.47

Page 12

Simulation of Readers/Writers Solution

+ R2 finishes (R1 accessing dbase, W1, R3 waiting)
+ AR=1,WR=1,AW=0, WW =1

Reader () {
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();
AccessDbase (ReadOnly) ;

lock.Acquire();
AR---

;

rl .S1 H
lock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.46

Simulation of Readers/Writers Solution

+ R1 finishes (W1, R3 waiting)
+ AR=1,WR=1,AW=0, WW =1

Reader ()
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++;) // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();

AccessDbase (ReadOnly) ;

if (AR == 0 && WW > 0)
okToWrite.signal () ;
lock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.48

Simulation of Readers/Writers Solution

+ R1 finishes (W1, R3 waiting)
+ AR=0,WR=1,AW=0, WW =1

Reader () {
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();
AccessDbase (ReadOnly) ;
lock.Acquire () ;

- —

okToWrite.signal () ;
lock.Release();

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.49

Simulation of Readers/Writers Solution

+ R1 finishes (W1, R3 waiting)
+ AR=0,WR=1,AW=0, WW =1

Reader ()
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++;) // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();
AccessDbase (ReadOnly) ;

lock.Acquire();
AR--;

lock.Release();

All reader finished, signal writer — note R3 still waiting
Lec 5.51

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011

Page 13

Simulation of Readers/Writers Solution

+ R1 finishes (W1, R3 waiting)
*+ AR=0,WR=1,AW=0, WW =1

Reader () {
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();
AccessDbase (ReadOnly) ;

lock.Acquire();
AR---

;

rl .S1 H
lock.Release();

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.50

Simulation of Readers/Writers Solution

« W1 gets signal (R3 still waiting)
+ AR=0,WR=1,AW =0, WW =1

Writer () {
lock.Acquire();
while ((AW + AR) > 0) { Is it safe to write?
H No. Active users exist
;c/ Sleep on cond var
/ No longer waiting

Got signa

+;
from R1 k.release();

AccessDbase (ReadWrite) ;

lock.Acquire();

AW--;

if (Ww > 0){ .
okToWrite.signal();

} else if (WR > O
okToRead.broadcast () ;

ock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.52

Simulation of Readers/Writers Solution

+ W1 gets signal (R3 still waiting)
*+ AR=0,WR=1,AW=0,WW=0
Writer ()

lock.gcquire()

while ((AW + AR) > 0) { // IS it safe to write?
WW++; No. Active users exist

i ,/ Sleep on cond var
M // No lponger waiting

AW++;
lock.release();

AccessDbase (ReadWrite) ;

lock Acqulre()

AW-

if (WW > 0) {
okToWrite.signal (

} else if (W 0)
okToRead.broadcast();

ock.Release();

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.53

Simulation of Readers/Writers Solution

+ W1 gets signal (R3 still waiting)
*+ AR=0,WR=1,AW=0,WW=0
Writfr()

k. Acquire();
while ((AW + AR) > 0) { // Is it safe to write?
WW++; // No. Active users exist

okToerte walt(&lock);oo %&F%%Hgé;x351€fgé
}

AW+
lock release();

AccessDbase (ReadWrite) ;

okToWrite. SLgnal(;
} else if (WR = 0
okToRead.broadcast () ;

ock.Release();

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.55

Page 14

Simulation of Readers/Writers Solution

+ W1 gets signal (R3 still waiting)
+ AR=0,WR=1,AW=1, WW=0
Writer() { .
lock.Acquire();
1/ Is it safe to write?

while ((AW + AR) > 0) {
WW++; Active users exist

okToerte walt(&lock),é/ Slé%p on condtyar
No onger walting

ock.release

AccessDbase (ReadWrite) ;

lock.Acquire () ;

A}

if (Ww_> 0){
okToWrite. 51gnal(;

} else if (WR 0)
okToRead.broadcast () ;

ock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.54

Simulation of Readers/Writers Solution

« W1 gets signal (R3 still waiting)
*+ AR=0,WR=1,AW=0, WW =0
Writer () {
lock.Acquire();
it safe to write?

while ((AW + AR) > 0) { Is
WW++; No. Active users exist

okToerte walt(&lock),/o %%e]p on condtyar
[} onger waliting
}

AW+
lock release();

AccessDbase (ReadWrite) ;

lock:Acquire();

} else if (W 0) {’
okToRead. broadcast(

ock.Release();

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.56

Simulation of Readers/Writers Solution

+ W1 gets signal (R3 still waiting)
*+ AR=0,WR=1,AW=0,WW=0
Writer ()

lock.gcquire();
while ((AW + AR) > 0) {
WW++

// Is it safe to write?

;o X No. Active users exist
okToerte.walt(&lock);C/ Sleep on cond var

) WiW=~7; / No longer waiting

AW++;
lock.release();

AccessDbase (ReadWrite) ;
iock:Acquire();
it (W > 0){ |
okToerte.51gnal(i;
! ock.Release();
No waiting writer, signal reader R3
91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011

Lec 5.57

Simulation of Readers/Writers Solution

+ R1 finishes (W1, R3 waiting)
*+ AR=0,WR=0,AW=0,WW=0

Reader ()
lock.Acquire();

while ((AW + WW) > 0)
WRH+;

/
; /
okToRead.waiti&lock ; ?

AR++; // Now we are active!
lock.release();

/ Is it safe to read?
/ No. Writers exist
/ Sleep on cond var
/ No longer waiting

AccessDbase (ReadOnly) ;

lock.Acquire();
AR--;
if (AR == 0 && WW > 0)

okToWrite.signal();
lock.Release();

}

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.59

Page 15

Simulation of Readers/Writers Solution

+ R1 finishes (W1, R3 waiting)
*+ AR=0,WR=1,AW=0,WW=0

Reader () {
lock.Acquire();

while ((AW + WW) > 0) {
WR+

/ Is it safe to read?
? No. Writers exist
/

Sleep on cond var
No longer waiting

Got signa

No e are active!
from W1 ' v v

AccessDbase (ReadOnly) ;

lock.Acquire();
A ;
if (AR == 0 && WW > 0)
okToWrite.signal () ;
lock.Release();

}

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.58

Simulation of Readers/Writers Solution
+ R1 finishes (W1, R3 waiting)
-« AR=0,WR=0,AW =0, WW =0

Reader ()
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++;) // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();
AccessDbase (ReadOnly) ;

lock.Acquire();

AR--;
if (AR == 0 && WW > 0)
}
DONE!
9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.60

Reader () {

}

Read/Writer Questions

// check into system

lock.Acquire();

while ((AW + WW) > 0) |
WR++;
okToRead.wait (&lock) ;
WR--;

}

AR++;

lock.release

// read-onlywhatif we
AccessDbase !
remove this line?

// check ou
lock.Acquire
AR——:

okToWrite.signal () ;
lock.Release();

Writer () {
?? check into system

lock.Acquire();

wh%}e ((AW + AR) > 0) {
++;

okToWrite.wait (&lock);
WW--;

AW++;
lock.release();

// read/write access
AccessDbase (ReadWrite) ;

/ check out of system
ock.Acquire () ;
AW-—7
if (Ww > 0){
okToWrite.signal();
} else if (WR > 0)
okToRead.broadcast () ;

ock.Release () ;

91411 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 5.61
Read/Writer Questions
Reader () Write

9141

{
check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR+

okContinue.wait (&lock) ;
WR--;

}

AR++;

lock.release();

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire();

AR--;

if (AR == 0 && WW > 0)
okContinue.signal () ;

lock.Release();

0
/} chéck into system
lock.Acquire();

while ((AW + AR)
W+

> 0) |

okContinue.wait (&lock) ;
WW-—;

AW++;
lock.release();

// read/write access
AccessDbase (ReadWrite) ;

/ check out of system
ock.Acquire () ;
AW-—;
if (Ww > 0){ .
okContinue.signal();
} else if (WR_ >70) {
okContinue.broadcast () ;

lock.Release();

What if we turn okToWrite and okToRead into okContinue?

Reader () {
// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okToRead.wait (&lock) ;
WR--;

}

AR++;

lock.release();

// read-onl
AccessDbase | What if we turn
signal to

broadcast?

// check ou

lock.Acquir

AR--;

if (AR ==
okToWrite.brdadcast ()

lock.Release();

9/14/11

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011

Read/Writer Questions

Writer () {
?? check into system

lock.Acquire();

wh%}e ((AW + AR) > 0) {

+t;
okToWrite.wait (&lock) ;
WW--;
}
AW++;
lock.release();

// read/write access
AccessDbase (ReadWrite) ;

{/ check out of system

ock.Acquire () ;

AW-—,

if (Ww > 0){
okToWrite.signal (),

} else if (WR > 0)
okToRead.broadcast () ;

ock.Release () ;

Lec 5.62

Reader () {
check into system
lock.Acquire () ;

while ((AW + WW) > 0) {
W. ;
okContinue.wait (&lock);
WR--;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system
lock.Acquire () ;

if (AR == 0 && WW > 0)
okContinue.signal ()
lock.Release();

7

Read/Writer Questions

Writer
?/(%héck into system

lock.Acquire();
while ((AW + AR) > 0) {
WW+

%kCoﬁtinue.wait(&lock);

7

AW++;
lock.release();

// read/write access
AccessDbase (ReadWrite) ;

{/ check out of system
ock.Acquire () ;

AW--;
if (WwWw > 0){ |
okContinue.signal ()

} else if (WR_>70)
okContinue.broadcast () ;

ock.Release();

« R1 arrives
« W1, R2 arrive while R1 reads
« R1 signals R2

9141

Page 16

Reader () {
// check into system
lock.Acquire();

Read/Writer Questions

Writ;; (). {)
check into system
lock.Acquire();

while ((aW + wwW) > 0) { "Pigs ((AW + AR) > 0)
WR++;) okContinue.wait (&lock) ;
okContinue.wait (&lock); WW--;

WR--;
} AW++;
AR++: lock.release();

lock.release();

//

// read/write access

AccessDbase (ReadWrite) ;
read-only access

AccessDbase (ReadOnly) ;

!/

lock.Acquire();
AR--;

// check out of system

lock.Acquire();

AW-—7

if (Ww > 0){ .

okContinue.signal();

} else if (WR >70)
okContinue.broadcast ()

check out of system

(AR == 0 && WW > 0)
okContinue.broadcast ()

lock.Release () i~ lock.Release();
}

91411

Need to change to broadcast!
Why?

Anthony D. Jos{ Lec 5.65

Page 17

Summary

» Monitors: A lock plus one or more condition variables
— Always acquire lock before accessing shared data
— Use condition variables to wait inside critical section
» Three Operations: Wait (), Signal (), and Broadcast ()

+ Readers/Writers
— Readers can access database when no writers
— Writers can access database when no readers
— Only one thread manipulates state variables at a time

» Language support for synchronization:

—Java provides synchronized keyword and one condition-
variable per object (with wait () and notify())

9/14/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011

Lec 5.66

