
CS162  
Operating Systems and 
Systems Programming 

Lecture 6  

Semaphores, Conditional Variables,
Deadlocks"

September 19, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 6.2!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Review: Monitors"
•  Monitor: a lock and zero or more condition variables for

managing concurrent access to shared data!

•  Monitor are dual purpose:!
– Both mutual exclusion and scheduling constraints!
– Use locks for mutual exclusion and condition variables for

scheduling constraints!

•  Lock: provides mutual exclusion to shared data:!
– Always acquire before accessing shared data structure!
– Always release after finishing with shared data!

•  Condition Variable: a queue of threads waiting for
something inside a critical section!

– Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep!

– Contrast to semaphores: Canʼt wait inside critical section!

Lec 6.3!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

“Homework”: Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okToRead.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okToWrite.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}!

What if we turn okToWrite and okToRead into okContinue?!

Lec 6.4!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

“Homework”: Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

What if we turn okToWrite and okToRead into okContinue?!

Lec 6.5!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R1 arrives!
•  AR = 0, WR = 0, AW = 0, WW = 0!

Lec 6.6!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R1 arrives!
•  AR = 0, WR = 0, AW = 0, WW = 0!

Lec 6.7!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R1 arrives!
•  AR = 1, WR = 0, AW = 0, WW = 0!

Lec 6.8!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R1 arrives!
•  AR = 1, WR = 0, AW = 0, WW = 0!

Lec 6.9!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R1 arrives!
•  AR = 1, WR = 0, AW = 0, WW = 0!

Lec 6.10!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  W1 arrives (R1 in AccessDbase())!
•  AR = 1, WR = 0, AW = 0, WW = 0!

Lec 6.11!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  W1 arrives (R1 in AccessDbase())!
•  AR = 1, WR = 0, AW = 0, WW = 0!

Lec 6.12!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  W1 arrives (R1 in AccessDbase())!
•  AR = 1, WR = 0, AW = 0, WW = 1!

Lec 6.13!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  W1 arrives (R1 in AccessDbase())!
•  AR = 1, WR = 0, AW = 0, WW = 1!

Lec 6.14!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R2 arrives (R1 in AccessDbase(), W1 waits)!
•  AR = 1, WR = 0, AW = 0, WW = 1!

Lec 6.15!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R2 arrives (R1 in AccessDbase(), W1 waits)!
•  AR = 1, WR = 0, AW = 0, WW = 1!

Lec 6.16!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R2 arrives (R1 in AccessDbase(), W1 waits)!
•  AR = 1, WR = 1, AW = 0, WW = 1!

Lec 6.17!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R2 arrives (R1 in AccessDbase(), W1 waits)!
•  AR = 1, WR = 1, AW = 0, WW = 1!

Lec 6.18!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R1 completes (W1 & R2 wait)!
•  AR = 1, WR = 1, AW = 0, WW = 1!

Lec 6.19!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R1 completes (W1 & R2 wait)!
•  AR = 1, WR = 1, AW = 0, WW = 1!

Lec 6.20!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R1 completes (W1 & R2 wait)!
•  AR = 0, WR = 1, AW = 0, WW = 1!

Lec 6.21!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R1 completes (W1 & R2 wait)!
•  AR = 0, WR = 1, AW = 0, WW = 1!

Lec 6.22!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R1 signals; assume signal is delivered to R2 (W1 & R2 wait)!
•  AR = 0, WR = 1, AW = 0, WW = 1!

si
gn

al
!

Lec 6.23!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

si
gn

al
! •  R2 continues (W1 waits)!

•  AR = 0, WR = 1, AW = 0, WW = 1!

Lec 6.24!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R2 continues (W1 waits)!
•  AR = 0, WR = 0, AW = 0, WW = 1!

Lec 6.25!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R2 continues (W1 waits)!
•  AR = 0, WR = 0, AW = 0, WW = 1!

Lec 6.26!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R2 continues (W1 waits)!
•  AR = 0, WR = 1, AW = 0, WW = 1!

Lec 6.27!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

"Homework": Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

•  R2 and W1 both wait! "
•  AR = 0, WR = 1, AW = 0, WW = 1!

DEADLOCK !!!!"

Lec 6.28!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Homework: Read/Writer Question"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.broadcast();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}!

Need to change to broadcast!!
Does this work?!

Lec 6.29!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Can we construct Monitors from Semaphores?"
•  Locking aspect is easy: Just use a mutex!
•  Can we implement condition variables this way?!

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }
– Doesnʼt work: Wait() may sleep with lock held!

•  Does this work better?!
 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have history:!
» What if thread signals and no one is waiting? NO-OP!
» What if thread later waits? Thread Waits!
» What if thread Vʼs and no one is waiting? Increment!
» What if thread later does P? Decrement and continue

Lec 6.30!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Construction of Monitors from Semaphores
(conʼt)"•  Problem with previous try:!

– P and V are commutative – result is the same no matter what
order they occur!

– Condition variables are NOT commutative!
•  Does this fix the problem?!

!Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() {
 if semaphore queue is not empty
 semaphore.V();
}

– Not legal to look at contents of semaphore queue!
– There is a race condition – signaler can slip in after lock

release and before waiter executes semaphore.P()!
•  It is actually possible to do this correctly!

– Complex solution for Hoare scheduling in book!
– Can you come up with simpler Mesa-scheduled solution?!

Lec 6.31!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Monitor Conclusion"
•  Monitors represent the logic of the program!

– Wait if necessary!
– Signal when change something so any waiting threads can

proceed!
•  Basic structure of monitor-based program:!

 lock
while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables
Wait if necessary
(release lock when waiting)

Check and/or update
state variables

Lec 6.32!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

C-Language Support for Synchronization"
•  C language: Pretty straightforward synchronization!

– Just make sure you know all the code paths out of a
critical section!

 int Rtn() {
 lock.acquire();
 …
 if (exception) {
 lock.release();
 return errReturnCode;
 }
 …
 lock.release();
 return OK;
}

Lec 6.33!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

C++ Language Support for Synchronization"
•  Languages with exceptions like C++!

– Languages that support exceptions are problematic (easy to
make a non-local exit without releasing lock)!

– Consider:!
! !void Rtn() {
 lock.acquire();
 …
 DoFoo();
 …
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

– Notice that an exception in DoFoo() will exit without releasing
the lock!

Lec 6.34!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

C++ Language Support for Synchronization
(conʼt)"•  Must catch all exceptions in critical sections!

– Catch exceptions, release lock, and re-throw exception: 
!void Rtn() {
 lock.acquire();
 try {
 …
 DoFoo();
 …
 } catch (…) { // catch exception
 lock.release(); // release lock
 throw; // re-throw the exception
 }
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

Lec 6.35!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Java Language Support for Synchronization"
•  Java has explicit support for threads and thread

synchronization!
•  Bank Account example: 

!class Account {
 private int balance;
 // object constructor
 public Account (int initialBalance) {
 balance = initialBalance;
 }
 public synchronized int getBalance() {
 return balance;
 }
 public synchronized void deposit(int amount) {
 balance += amount;
 }
 }

– Every object has an associated lock which gets automatically
acquired and released on entry and exit from a synchronized
method.!

Lec 6.36!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Java Language Support for Synchronization
(conʼt)"

•  Java also has synchronized statements:!
! !synchronized (object) {

 …
 }

– Since every Java object has an associated lock, this type of
statement acquires and releases the objectʼs lock on entry
and exit of the code block!

– Works properly even with exceptions: !
 synchronized (object) {

 …
 DoFoo();
 …
 }
 void DoFoo() {
 throw errException;
 }

 !

Lec 6.37!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Java Language Support for Synchronization (2/2)"
•  In addition to a lock, every object has a single condition

variable associated with it!
– How to wait inside a synchronization method of block:!

»  void wait();
»  void wait(long timeout); // Wait for timeout
»  void wait(long timeout, int nanoseconds); //variant

– How to signal in a synchronized method or block:!
»  void notify(); // wakes up oldest waiter
»  void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of time. This
is useful for handling exception cases:!

 t1 = time.now();
 while (!ATMRequest()) {
 wait (CHECKPERIOD);
 t2 = time.new();
 if (t2 – t1 > LONG_TIME) checkMachine();
 }

– Not all Java VMs equivalent! !
» Different scheduling policies, not necessarily preemptive!!

Lec 6.38!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Summary: Semaphores and Cond. Variables"
•  Semaphores: Like integers with restricted interface!

– Two operations:!
» P(): Wait if zero; decrement when becomes non-zero!
» V(): Increment and wake a sleeping task (if exists)!
» Can initialize value to any non-negative value!

– Use separate semaphore for each constraint!

•  Monitors: A lock plus one or more condition variables!
– Always acquire lock before accessing shared data!
– Use condition variables to wait inside critical section!

»  Three Operations: Wait(), Signal(), and Broadcast()

•  Language support for synchronization:!
– Java provides synchronized keyword and one condition-

variable per object (with wait() and notify())!

Lec 6.39!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Announcements"
•  Project 1 initial design phase AND Project 1 individual part

due: Tuesday, September 27 @ 11.59pm!

•  Midterm: Thursday, October 13, 5-6:30pm – 155 Dwinell
Hall!

•  Discussion sections update: could not get a second 6-7pm
section, so we will maintain second 10-11am section!

– Weʼve moved some groups consistent with their constraints!
»  7 groups move to a better choice!
»  2 groups from 1st to 2nd!
»  1 group from 1st to 3rd !

•  CSUA Hackathon: September 23-24!

Lec 6.40!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

5min Break"

Lec 6.41!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Lec 6.42!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

•  Resources – passive entities needed by threads to do their
work!

– CPU time, disk space, memory!
•  Two types of resources:!

– Preemptable – can take it away!
» CPU, Embedded security chip!

– Non-preemptable – must leave it with the thread!
» Disk space, printer, chunk of virtual address space!
» Critical section !

•  Resources may require exclusive access or may be sharable!
– Read-only files are typically sharable!
– Printers are not sharable during time of printing!

•  One of the major tasks of an operating system is to manage
resources!

Resources"

Lec 6.43!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Starvation vs Deadlock"
•  Starvation vs. Deadlock!

– Starvation: thread waits indefinitely!
»  Example, low-priority thread waiting for resources constantly

in use by high-priority threads!
– Deadlock: circular waiting for resources!

»  Thread A owns Res 1 and is waiting for Res 2  
Thread B owns Res 2 and is waiting for Res 1!

– Deadlock ⇒ Starvation but not vice versa!
»  Starvation can end (but doesnʼt have to)!
» Deadlock canʼt end without external intervention!

Res 2 Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 6.44!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Conditions for Deadlock"
•  Deadlock not always deterministic – Example 2 mutexes:!
! !Thread A Thread B
 x.P(); y.P();
 y.P(); x.P();
 … …
 y.V(); x.V();
 x.V(); y.V();

– Deadlock wonʼt always happen with this code!
» Have to have exactly the right timing (“wrong” timing?)!

•  Deadlocks occur with multiple resources!
– Means you canʼt decompose the problem!
– Canʼt solve deadlock for each resource independently!

•  Example: System with 2 disk drives and two threads!
– Each thread needs 2 disk drives to function!
– Each thread gets one disk and waits for another one!

A: x.P();
B: y.P();
A: y.P();
B: x.P();
...

Deadlock!

Lec 6.45!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Bridge Crossing Example"

•  Each segment of road can be viewed as a resource!
– Car must own the segment under them!
– Must acquire segment that they are moving into!

•  For bridge: must acquire both halves !
– Traffic only in one direction at a time !
– Problem occurs when two cars in opposite directions on bridge:

each acquires one segment and needs next!
•  If a deadlock occurs, it can be resolved if one car backs up

(preempt resources and rollback)!
– Several cars may have to be backed up !

•  Starvation is possible!
– East-going traffic really fast ⇒ no one goes west!

Lec 6.46!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Train Example"
•  Circular dependency (Deadlock!)!

– Each train wants to turn right!
– Blocked by other trains!
– Similar problem to multiprocessor networks!

•  Ho do you prevent deadlock? !
–  (Answer later)!

Lec 6.47!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Dining Philosopher Problem"

•  Five chopsticks/Five philosopher (really cheap restaurant)!
– Free-for all: Philosopher will grab any one they can!
– Need two chopsticks to eat!

•  What if all grab at same time?!
– Deadlock!!

•  How to fix deadlock?!
– Make one of them give up a chopstick (Hah!)!
– Eventually everyone will get chance to eat!

•  How to prevent deadlock?!
–  (Answer later)!

Lec 6.48!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Four requirements for Deadlock"
•  Mutual exclusion!

– Only one thread at a time can use a resource.!
•  Hold and wait!

– Thread holding at least one resource is waiting to acquire
additional resources held by other threads!

•  No preemption!
– Resources are released only voluntarily by the thread holding

the resource, after thread is finished with it!
•  Circular wait!

– There exists a set {T1, …, Tn} of waiting threads!
»  T1 is waiting for a resource that is held by T2!
»  T2 is waiting for a resource that is held by T3!
» …!
»  Tn is waiting for a resource that is held by T1!

Lec 6.49!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Symbols
Resource-Allocation Graph"

•  System Model ! ! ! !!
– A set of Threads T1, T2, . . ., Tn!
– Resource types R1, R2, . . ., Rm!

!CPU cycles, memory space, I/O devices!
– Each resource type Ri has Wi instances.!
– Each thread utilizes a resource as follows:!

» Request() / Use() / Release()
•  Resource-Allocation Graph:!

– V is partitioned into two types:!
»  T = {T1, T2, …, Tn}, the set threads in the system.!
» R = {R1, R2, …, Rm}, the set of resource types in system!

–  request edge – directed edge T1 → Rj!
– assignment edge – directed edge Rj → Ti!

R1
R2

T1 T2

Lec 6.50!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Resource Allocation Graph Examples"

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

•  Recall:!
–  request edge – directed edge T1 → Rj!
– assignment edge – directed edge Rj → Ti!

Lec 6.51!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Methods for Handling Deadlocks"

•  Allow system to enter deadlock and then recover!
– Requires deadlock detection algorithm!
– Some technique for forcibly preempting resources and/or

terminating tasks!
•  Ensure that system will never enter a deadlock!

– Need to monitor all lock acquisitions!
– Selectively deny those that might lead to deadlock!

•  Ignore the problem and pretend that deadlocks never
occur in the system!

– Used by most operating systems, including UNIX!

Lec 6.52!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm"
•  Only one of each type of resource ⇒ look for loops!
•  More General Deadlock Detection Algorithm!

– Let [X] represent an m-ary vector of non-negative  
integers (quantities of resources of each type):!
![FreeResources]: !Current free resources each type  
[RequestX]: !Current requests from thread X 
![AllocX]: Current resources held by thread X!

– See if tasks can eventually terminate on their own!
! ![Avail] = [FreeResources]

 Add all nodes to UNFINISHED
 do {

 done = true
 Foreach node in UNFINISHED {
 if ([Requestnode] <= [Avail]) {
 remove node from UNFINISHED
 [Avail] = [Avail] + [Allocnode]
 done = false
 }
 }
 } until(done) ! !!

– Nodes left in UNFINISHED ⇒ deadlocked!

Lec 6.53!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Deadlock Detection Algorithm
Example "

T1

T2

T3

R2

R1

T4

[Available] = [0,0]
[RequestT2] = [0,0]
[RequestT2] <=
 [Available]

T1

T2

T3

R2

R1

T4

[Available] = [1,0]
[RequestT1] = [1,0]
[RequestT1] <=
 [Available]

T1

T2

T3

R2

R1

T4

[Available] = [1,1]
[RequestT3] = [0,1]
[RequestT3] <=
 [Available]

…

Lec 6.54!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Techniques for Preventing Deadlock"
•  Infinite resources!

–  Include enough resources so that no one ever runs out of
resources. Doesnʼt have to be infinite, just large!

– Give illusion of infinite resources (e.g. virtual memory)!
– Examples:!

»  Bay bridge with 12,000 lanes. Never wait!!
»  Infinite disk space (not realistic yet?)!

•  No Sharing of resources (totally independent threads)!
– Not very realistic!

•  Donʼt allow waiting !
– How the phone company avoids deadlock!

» Call to your Mom in Toledo, works its way through the phone lines,
but if blocked get busy signal !

– Technique used in Ethernet/some multiprocessor nets!
»  Everyone speaks at once. On collision, back off and retry!

Lec 6.55!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Techniques for Preventing Deadlock (conʼt)"
•  Make all threads request everything theyʼll need at the

beginning!
– Problem: Predicting future is hard, tend to over-estimate

resources!
– Example:!

»  If need 2 chopsticks, request both at same time!
» Donʼt leave home until we know no one is using any intersection

between here and where you want to go!!

•  Force all threads to request resources in a particular order
preventing any cyclic use of resources!

– Thus, preventing deadlock!
– Example (x.P, y.P, z.P,…)!

» Make tasks request disk, then memory, then…!

Lec 6.56!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Review: Train Example (Wormhole-Routed
Network)"

•  Circular dependency (Deadlock!)!
– Each train wants to turn right!
– Blocked by other trains!
– Similar problem to multiprocessor networks!

•  Fix? Imagine grid extends in all four directions!
– Force ordering of channels (tracks)!

»  Protocol: Always go east-west first, then north-south!
– Called “dimension ordering” (X then Y)!

Lec 6.57!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Train Example (Wormhole-Routed Network)"
•  Circular dependency (Deadlock!)!

– Each train wants to turn right!
– Blocked by other trains!
– Similar problem to multiprocessor networks!

•  Fix? Imagine grid extends in all four directions!
– Force ordering of channels (tracks)!

»  Protocol: Always go east-west first, then north-south!
– Called “dimension ordering” (X then Y)!

A

B

Lec 6.58!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

•  Toward right idea: !
– State maximum resource needs in advance!
– Allow particular thread to proceed if:!

!(available resources - #requested) ≥ max  
remaining that might be needed by any thread!

•  Bankerʼs algorithm (less conservative):!
– Allocate resources dynamically!

»  Evaluate each request and grant if some  
ordering of threads is still deadlock free afterward !

»  Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting  
 ([Maxnode]-[Allocnode] ≤ [Avail]) for ([Requestnode] ≤ [Avail]) 
Grant request if result is deadlock free (conservative!)!

»  Keeps system in a “SAFE” state, i.e. there exists a sequence {T1,
T2, … Tn} with T1 requesting all remaining resources, finishing, then
T2 requesting all remaining resources, etc..!

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources!

Bankerʼs Algorithm for Preventing
Deadlock"

Lec 6.59!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Bankerʼs Algorithm Example"

•  Bankerʼs algorithm with dining philosophers!
–  “Safe” (wonʼt cause deadlock) if when try to grab chopstick

either:!
» Not last chopstick!
»  Is last chopstick but someone will have  

two afterwards!
– What if k-handed philosophers? Donʼt allow if:!

»  Itʼs the last one, no one would have k!
»  Itʼs 2nd to last, and no one would have k-1!
»  Itʼs 3rd to last, and no one would have k-2!
» …!

Lec 6.60!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Summary: Deadlock"
•  Starvation vs. Deadlock!

– Starvation: thread waits indefinitely!
– Deadlock: circular waiting for resources!

•  Four conditions for deadlocks!
– Mutual exclusion!

» Only one thread at a time can use a resource!
– Hold and wait!

»  Thread holding at least one resource is waiting to acquire
additional resources held by other threads!

– No preemption!
» Resources are released only voluntarily by the threads!

– Circular wait!
»  ∃ set {T1, …, Tn} of threads with a cyclic waiting pattern!

•  Deadlock preemption!
•  Deadlock prevention (Bankerʼs algorithm)!

