CS162
Operating Systems and
Systems Programming

Lecture 6

Semaphores, Conditional Variables,
Deadlocks

September 19, 2011
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Review: Monitors

. Monitor: a lock and zero or more condition variables for
managing concurrent access to shared data

- Monitor are dual purpose:
— Both mutual exclusion and scheduling constraints

— Use locl_(s for mutu_al exclusion and condition variables for
scheduling constraints

- Lock: provides mutual exclusion to shared data:
— Always acquire before accessing shared data structure
— Always release after finishing with shared data

- Condition Variable: a queue of threads waiting for
something inside a critical section

— Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep

— Contrast to semaphores: Can’t wait inside critical section
9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.2

“Homework’: Read/Writer Question

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okToRead.wait (&lock) ;
WR-—;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire () ;

AR—-;

if (AR 0 && WW > 0)
okToWrite.signal () ;

lock.Release () ;

} 1

Writ?;() {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++; .
%%Toerte.walt(&lock);

AW++;
lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system

lock.Acquire () ;

AW--;

(WWw > 0){ .
okToWrite.signal ()

} else if (WR > 0) {
okToRead.broadcast

’

()

ock.Release () ;

9/19/1

What if we turn okToWrite and okToRead into okContinue?

“Homework’: Read/Writer Question

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okContinue.wait (&lock);
WR—-;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire () ;

AR—-;

if (AR 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

} 1

Writ?;() {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++; .
%%Contlnue.walt(&lock);

AW++;
lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system
lock.Acquire () ;
AW--;
(WWw > 0) { ,
okContinue.signal () ;
} else if (WR >70) {
okContinue.broadcast () ;

iock.Release();

9/19/1

What if we turn okToWrite and okToRead into okContinue?

"Homework" : Read/Writer Question

Read Writer () { ,
eader () A : // check into system
ock.Acguire () ; Lock.Acquire () ;
while ((AW + WW) > 0) { "Pygg, (AW + AR > 0)
WR++; . okContinue.walit (&lock) ;
okContinue.wait (&lock) ; WW—-—;
WR--—; }
} AW++;
AR++; lock.release();
f\f“‘-]f, V‘Q-I QQC‘Q/\ L]
* R1 arrives

1*AR=0,WR=0,AW =0, WW =0

(/7 ClIIEeCk QUL OL oSYoLElll
lock.Acquire () ;

// check out of system ?¥_?ﬁw > 0) {
lock.Acquire(); okContinue.signal () ;
AR-—; } else if (WR_ > "0) {

1f (AR == 0 && WW > 0) okContinue.broadcast () ;

okContinue.signal () ;

lock.Release () ; iock.Release();

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.5

"Homework" : Read/Writer Question

Reader () {

// check into system
lock.Acquire();

fPhile (AW + ww) > 0) K

Writ?f() {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {

WW++,; .
WR++; | . okContinue.walit (&lock) ;
okContinue.wait (&lock) ; WW—-;
WR——; }
} AW++;
AR++; lock.release () ;

lock.release () ;

// read/write access

AccessDbase (ReadWrite) ;
// read-only access

AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire () ;

AWN=—;

1if (WW > 0) { ,
okContinue.signal () ;

} else 1if (WR > "0) {
okContilnue.broadcast () ;

iock.Release();

// check out of system

lock.Acquire();

AR—-;

if (AR == 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

* R1 arrives
oron|l *AR =0, WR=0,AW =0, WW =0

"Homework" : Read/Writer Question

Reader () { Writer () { .

// check into system // check into system

lock.Acquire () ; lock.Acquire();

while ((AW + WW) > 0) { "Rygg LA+ AR > 0)
WR++; . okContinue.wait (&lock) ;
okContinue.wait (&lock) ; WW—-;
WR--; }

} AW++;

BRi+; | lock.release () ;

lock.release () ;

// read/write access

AccessDbase (ReadWrite) ;
// read-only access

AccessDbase (ReadOnly) ;

// check out of system
lock.Acquire () ;

// check out of system BN==

. if (WW > 0
lock.Acquire () ; oﬁContinLé.signal();

AR—-—; } else if (WR >"0) {
1f (AR == 0 && WW > 0) okContinue.broadcast ()

okContinue.signal () ;
lock.Release();g iock.Release();

* R1 arrives
ool *AR =1, WR=0,AW =0, WW =0

"Homework" : Read/Writer Question

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {

Writ?f() {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {

WW++; .
WR++; . okContinue.walit (&lock) ;
okContinue.wait (&lock) ; WW—-;
WR——; }
} AW+ ;

lock.release () ;

+4 :
Eock.release(); |

// read-only access
AccessDbase (ReadOnly) ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system

lock.Acquire () ;

AWN=—;

1if (WW > 0) { ,
okContinue.signal () ;

} else 1if (WR > "0) {
okContilnue.broadcast () ;

iock.Release();

// check out of system

lock.Acquire();

AR—-;

if (AR == 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

* R1 arrives
ool *AR =1, WR=0,AW =0, WW =0

"Homework" : Read/Writer Question

Reader () { Writer () { .

// check into system // check into system

lock.Acquire () ; lock.Acquire () ;

while ((AW + WW) > 0) { Wh:ﬁ%qug(éxW + AR). > 0) A
WRH+; , okContinue.wait (&lock) ;
okContinue.wait (&lock) ; WW—-—;
WR-—; }

} AW++;

AR++; lock.release();

lock.release () ;

// read/write access

AccessDbase (ReadWrite) ;
// read-only access

EccessDbase (Readonly) ;|

// check out of system
lock.Acquire () ;

// check out of system BN==

. if (WW > 0
lock.Acquire () ; oﬁContinLé.signal();

AR—-—; } else if (WR >"0) {
1f (AR == 0 && WW > 0) okContinue.broadcast ()
okContinue.signal () ; i
lock.Release () ; \ ock.Release () ;
}
* R1 arrives

ool *AR =1, WR=0,AW =0, WW =0

"Homework" : Read/Writer Question

Reader () { Write;() { .

// check into system ﬁ check 1nfo System

lock.Acquire () ; ock.Acquire () ; |

while ((AW + WW) > 0) { Whﬁkﬁﬁﬁ(AW + AR) > 0) {
WRt+; | okContinue.wait (&lock) ;
okContinue.wait (&lock); WW—-—;
WR--; }

} AW++;

AR++; lock.release () ;

lock.release () ;

* W1 arrives (R1 in AccessDbase())
*AR=1,WR=0,AW =0, WW =0

Ny

lock.Acquire () ;

// check out of system A==

. if (WW > 0
lock.Acquire () ; oﬁContinLé.signal();

AR==; } else if (WR > 0) {
if (AR == 0 && WW > 0) okContinue.broadcast () ;
okContinue.signal () ; i
lock.Release () ; \ ock.Release() ;
}

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.10

"Homework" : Read/Writer Question

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okContinue.wait (&lock);
WR—-;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire();

AR—-;

if (AR == 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

Writer () {

check 1nto system
lock.Acquire () ;

While ((AW_+ AR)
WW++,; .
%%Contlnue.walt(&lock);

> 0) I

}

AW++;
lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system

lock.Acquire () ;

AWN=—;

1if (WW > 0) { ,
okContinue.signal () ;

} else 1if (WR > "0) {
okContilnue.broadcast () ;

ock.Release () ;

9/19/1

* W1 arrives (R1 in AccessDbase())
*AR=1,WR=0,AW=0, WW=0

"Homework" : Read/Writer Question

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okContinue.wait (&lock);
WR—-;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire();

AR—-;

if (AR == 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

Writer () {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
IWiW++;
OKCOTI1 lnué.wﬁTﬁ(&L6ﬁﬁ%;
WW—-7;

}

AW++;

lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system

lock.Acquire () ;

AW=—;

1if (WW > 0) { ,
okContinue.signal () ;

} else 1if (WR > "0) {
okContilnue.broadcast () ;

ock.Release () ;

9/19/1

« W1 arrives (R1 in AccessDbase())
-AR=1, WR =0, AW =0, WW =1

"Homework" : Read/Writer Question

Reader () { Writer () { .

// check into system // check into system

lock.Acquire () ; lock.Acquire () ;

while ((AW + WW) > 0) { while ((AW + AR) > 0) |
WRA+; Continue.wait (slock)l;
okContinue.wait (&lock); I%%——? —
WR-—; }

} AW++;

AR++; lock.release();

lock.release () ;

// read/write access

AccessDbase (ReadWrite) ;
// read-only access

AccessDbase (ReadOnly) ;

// check out of system
lock.Acquire () ;

// check out of system ?¥_?WW > 0) {

lock.Acquire(); okContinue.signal () ;

AR==; } else if (WR > 0) {

if (AR == 0 && WW > 0) okContinue.broadcast () ;
okContinue.signal () ;

lock.Release () ; ock.Release() ;

}

« W1 arrives (R1 in AccessDbase())
]

oronl *AR =1, WR =0, AW =0, WW =

"Homework" : Read/Writer Question

Read Writer () { ,
eader () A : // check into system
ock.Acguire () ; Lock.Acquire () ;

while ((AW + WW) > 0) { "Pygg, (AW + AR > 0)
WR++; . okContinue.walit (&lock) ;
okContinue.wait (&lock) ; WW—-;
WR--—; }

} AW++;

AR++; lock.release () ;

lock.release () ;

* R2 arrives (R1 in AccessDbase(), W1 waits)
*AR=1, WR =0, AW =0, WW =1

Ny

lock.Acquire () ;

// check out of system BN==

. if (WW > 0
lock.Acquire () ; oﬁContinLé.signal();

AR==; } else if (WR > 0) {

if (AR == 0 && WW > 0) okContinue.broadcast () ;
okContinue.signal () ; i

lock.Release () ; \ ock.Release() ;

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.14

"Homework" : Read/Writer Question

Reader () {
// check into system
lock.Acquire();
vhile ((AW + ww) > 0) K
WR++;
okContinue.wait (&lock);
WR—-—;
}
AR++;
lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire();

AR—-;

if (AR == 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

Writer () {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++; .
okContinue.wait (&lock) ;
WW—-7;

}

AW++;

lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system

lock.Acquire () ;

AWN=—;

1if (WW > 0) { ,
okContinue.signal () ;

} else 1if (WR > "0) {
okContilnue.broadcast () ;

ock.Release () ;

9/19/1

* R2 arrives (R1 in AccessDbase(), W1 waits)
AR=1, WR =0, AW =0, WW =1

"Homework" : Read/Writer Question

Reader () { Writer () { .

// check into system // check into system

lock.Acquire () ; lock.Acquire () ;

while ((AW + WW) > 0) { while ((AW + aR) > 0) f
WRY+; . okCohtinue.wait (&lock) ;
okContlnue.walt (&locCck) ; WW—-—;
WR-—; }

} AW++;

AR++; lock.release();

lock.release () ;

/

// read/write access

AccessDbase (ReadWrite) ;
/ read-only access

AccessDbase (ReadOnly) ;

/
1

// check out of system
lock.Acquire () ;
/ check out of system A==

: if (WW > 0
ock.Acquire () ; oﬁContinLé.signal();

AR==; } else if (WR > 0) {

if (AR == 0 && WW > 0) okContinue.broadcast () ;
okContinue.signal () ;

lock.Release () ; ock.Release() ;

}

9/19/1

* R2 arrives (R1 in AccessDbase(), W1 waits)
cAR=1,WR=1,AW =0, WW =1

"Homework" : Read/Writer Question

Reader () {

// check into system
lock.Acquire();

14

while ((AW + WW) > 0) {
WR++;
OkKContilinue.walt (&Lock)l;
WR——;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire();

AR—-;

if (AR O && WW > 0)
okContinue.signal () ;

lock.Release () ;

Writer () {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++;
okContinue.wait (&lock) ;
WW—-7;

}

AW++;

lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system
lock.Acquire () ;
AW--;
(Ww > 0){
okContinue.signal () ;
} else 1if (WR > "0) {
okContilnue.broadcast () ;

ock.Release () ;

9/19/1

* R2 arrives (R1 in AccessDbase(), W1 waits)
cAR=1,WR=1,AW=0, WW =1

Reader () {

9/19/11

"Homework" : Read/Writer Question

// check into system
lock.Acquire();

while ((AW + WW)
WR++;
okContinue.wait (&lock);
WR—-;

}

AR++;

> 0) |

Writer () {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++;
okContinue.wait (&lock) ;
WW—-7;

}

AW++;

lock.release () ;

* R1 completes (W1 & R2 wait)
g°AR=1,WR=1,AW =0, WW =1

// check out of system

lock.Acquire();

AR—-;

if (AR == 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

[/ ClleCk OUlL OL

lock.Acquire () ;

AW=—;

1if (WW > 0) { ,
okContinue.signal () ;

} else 1if (WR > "0) {
okContilnue.broadcast () ;

iock.Release();

SYS Cem

Lec 6.18

"Homework" : Read/Writer Question

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okContinue.wait (&lock);
WR—-;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

LocK.Acqulre();

AR——,;

if (AR == 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

Writer () {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++; .
okContinue.wait (&lock) ;
WW—-7;

}

AW++;

lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system

lock.Acquire () ;

AWN=—;

1if (WW > 0) { ,
okContinue.signal () ;

} else 1if (WR > "0) {
okContilnue.broadcast () ;

ock.Release () ;

9/19/1

* R1 completes (W1 & R2 wait)
AR=1, WR =1, AW =0, WW =1

"Homework" : Read/Writer Question

Reader () { Writer () { .

// check into system // check into system

lock.Acquire () ; lock.Acquire () ;

while ((AW + WW) > 0) { Wh:ﬁ%qug(éxW + AR). > 0) A
WRH+; , okContinue.wait (&lock) ;
okContinue.wait (&lock) ; WW—-—;
WR-—; }

} AW++;

AR++; lock.release();

lock.release () ;

// read/write access

AccessDbase (ReadWrite) ;
// read-only access

AccessDbase (ReadOnly) ;

// check out of system
lock.Acquire () ;

// check out of system ?¥__WW S 0

&“”k Accpire () oﬁContinbé.signal();

AR—— } else if (WR > 0) {

if (AR == 0 && WW > 0) okContinue.broadcast () ;
okContinue.signal () ;

lock.Release () ; ock.Release() ;

} }

* R1 completes (W1 & R2 wait)
oo *AR =0, WR =1, AW =0, WW =1

"Homework" : Read/Writer Question

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okContinue.wait (&lock);
WR—-;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire();

AR——:

Lf (AR == 0 && WW > Q)]
okContinue.signal () ;

lock.Release () ;

Writer () {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++; .
okContinue.wait (&lock) ;
WW—-7;

}

AW++;

lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system
lock.Acquire () ;
AW--;
(WW > 0) { ,
okContinue.signal () ;
} else 1if (WR > "0) {
okContilnue.broadcast () ;

ock.Release () ;

}

9/19/1

* R1 completes (W1 & R2 wait)
AR=0, WR =1, AW =0, WW =1

"Homework" : Read/Writer Question

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okContinue.wait (&lock);
WR—-;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

signal

// check out of system
lock.Acquire();

A — T
\\if (AR == 0 && WW > 0)
lokContinue.signal (); |
lock.Release ;

) }

Writ?f() {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++;
okContinue.wait (&lock) ;
WW—-7;

}

AW++;

lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system
lock.Acquire () ;
AW--;
(Ww > 0){
okContinue.signal () ;
} else 1if (WR > "0) {
okContilnue.broadcast () ;

ock.Release () ;

* R1 signals; assume signal is delivered to R2 (W1 & R2 wait)
ol]*AR =0, WR =1, AW =0, WW =1

"Homework" : Read/Writer Question

Reader () { Writ?;() {

// check into system check into system
lock.Acquire();y lock.Acquire();

while ((AW + AR) > 0) {

WR++; i okContinue.wait (&lock);
okContinue.walt (&lock)]; WW—-7;
WR=—-=>

} AW++;

AR++; lock.release () ;

* R2 continues (W1 waits)

©
S|[+AR=0, WR =1, AW =0, WW = 1
7] 7/ CIICCK OUC OL Syscem
lock.Acquire () ;
// check out of system ?¥_?ﬁw > 0) {
lock.Acquire(); okContinue.signal () ;
AR--; } else if (WR >0) {
\\if (AR == 0 && WW > 0) okContinue.broadcast () ;
okContinue.signal () ;
lock.Release () ; } ock.Release();

}

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.23

9/

"Homework" : Read/Writer Question

Reader () {

// check into system
lock.Acquire();

while ((AW + WW)
WR++;

> 0)

okContinue.wait (&lock);

WR=—;

}

AR++;
lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire();

AR—-;

if (AR == 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

Writer () {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++; .
okContinue.wait (&lock) ;
WW—-7;

}

AW++;

lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system

lock.Acquire () ;

AWN=—;

1if (WW > 0) { ,
okContinue.signal () ;

} else 1if (WR > "0) {
okContilnue.broadcast () ;

iock.Release();

* R2 continues (W1 waits)

« AR =0, WR =0, AW = 0, WW = 1

"Homework" : Read/Writer Question

Reader () { Writer () { .

// check into system // check into system

lock.Acquire () ; lock.Acquire () ;

vhile ((AW + wWwW) > 0) | Wh%&ﬁﬁﬁ(éw + AR{ > 0) {
WRA+; , okContinue.wait (&lock) ;
okContinue.wait (&lock) ; WW—-—;
WR-—; }

} AW++;

AR++; lock.release();

lock.release () ;

// read/write access

AccessDbase (ReadWrite) ;
// read-only access

AccessDbase (ReadOnly) ;
// check out of system
lock.Acquire () ;

// check out of system A==

. if (WW > 0
lock.Acquire () ; oﬁContinLé.signal();

AR==; } else if (WR > 0) {

if (AR == 0 && WW > 0) okContinue.broadcast () ;
okContinue.signal () ; i

lock.Release () ; ock.Release() ;

* R2 continues (W1 waits)
o1*AR =0, WR =0, AW =0, WW =1

"Homework" : Read/Writer Question

Reader () { Writer () { .

// check into system // check into system

lock.Acquire () ; lock.Acquire () ;

while ((AW + WW) > 0) { while ((AW + aR) > 0) f
WRY+; . okCohtinue.wait (&lock) ;
okContlnue.walt (&locCck) ; WW—-—;
WR-—; }

} AW++;

AR++; lock.release();

lock.release () ;

// read/write access

AccessDbase (ReadWrite) ;
// read-only access

AccessDbase (ReadOnly) ;
// check out of system
lock.Acquire () ;

// check out of system A==

. if (WW > 0
lock.Acquire () ; oﬁContinLé.signal();

AR==; } else if (WR > 0) {

if (AR == 0 && WW > 0) okContinue.broadcast () ;
okContinue.signal () ; i

lock.Release () ; ock.Release() ;

* R2 continues (W1 waits)
+]*AR=0,WR=1,AW =0, WW =1

"Homework" : Read/Writer Question

Reader () { Writer () { .

// check into system // check into system

lock.Acquire () ; lock.Acquire () ;

while ((AW + WW) > 0) { while ((AW + AR) > 0) |
WRA _ okContinue.wait (&§lock) ;
[oxContinue.walt (&LoCK)|; WW—-;
WK==7 }

} AW++;

AR++; lock.release();

lock.release DEADLOCK ”" rite access

jse (ReadWrite) ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system
lock.Acquire () ;

// check out of system BN==

. if (WW > 0
lock.Acquire () ; oﬁContinLé.signal();

AR—-—; } else if (WR >"0) {
1f (AR == 0 && WW > 0) okContinue.broadcast ()

okContinue.signal () ;
lock.Release();g iock.Release();

9/

« R2 and W1 both wait!
cAR=0, WR=1,AW=0, WW =1

Homework: Read/Writer Question

Reader () {

// check into system
lock.Acquire () ;

while ((AW + WW) > 0) {
WR++;
okContinue.wait (&lock) ;
WR-—;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire () ;

AR-—;

if (AR == 0 && WW > 0)
okContinue.broadcast () ;

lock.Release () ;
} S

Writ?r() { .
/ check into system
lock.Acquire () ;
while ((AW + AR) > 0) {
WW++;

okContinue.wait (&lock) ;
WW—-;

AW++;
lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system

lock.Acquire () ;

AW-=—;

if (WW > 0) { ,
okContilnue.signal ()

} else 1f (WR >70) {
okContinue.broadcast () ;

o
14

ock.Release () ;

9/19/11 Anthony D.

Need to change to broadcast!
Does this work?

Lec 6.28

Can we construct Monitors from Semaphores?

» Locking aspect is easy: Just use a mutex

- Can we implement condition variables this way?
Wait () { semaphore.P(); }
Sional () { semaphore.V(); }

« Does this work better?

Wait (Lock lock) {
lock.Release ()
semaphore.P () ;
lock.Acquire ()

}
Signal () { semaphore.V(); }

’

4

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.29

Construction of Monitors from Semaphores

* Problem with previous tr;ﬂzcon)

— P and V are commutative — result is the same no matter what
order they occur

— Condition variables are NOT commutative
 Does this fix the problem?

Wait (Lock lock) {
lock.Release()
semaphore.P () ;
lock.Acquire ()

4

’

}
Signal () {

1f semaphore queue 1s not empty
semaphore.V () ;

}
— Not legal to look at contents of semaphore queue

— There is a race condition — signaler can slip in after lock
release and before waiter executes semaphore.P()

- It is actually possible to do this correctly
— Complex solution for Hoare scheduling in book

— Can you come up with simpler Mesa-scheduled solution?
9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.30

Monitor Conclusion

+ Monitors represent the logic of the program
— Wait if necessary

— Signal when change something so any waiting threads can
proceed

- Basic structure of monitor-based program:

lock
while (need to wait) { }Check and/or update

condvar.wait () ; state variables
} Wait if necessary
unlock (release lock when waiting)

do something so no need to wait

lock

condvar.signal () ; Check anc.i/or' update
state variables

unlock

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.31

C-Language Support for Synchronization

- C language: Pretty straightforward synchronization

— Just make sure you know all the code paths out of a
critical section

int Rtn () {
lock.acquire();

1f (exception) {
lock.release () ;
return errReturnCode;

}

iock.release();
return OK;
}

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.32

C++ Language Support for Synchronization

- Languages with exceptions like C++

— Languages that support exceptions are problematic (easy to
make a non-local exit without releasing lock)

— Consider:

volid Rtn () {
lock.acquire();

DoFoo () ;

lock.release () ;

}
void DoFoo () {

1f (exception) throw errException;

}

— Notice that an exception in DoFoo() will exit without releasing
the lock

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.33

C++ Language Support for Synchronization
« Must catch all exceptions(iﬁ(gr'i?ict | sections

— Catch exceptions, release lock, and re-throw exception:

volid Rtn () {
lock.acquire() ;

try |
DoFoo () ;

} catch (..) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

}

lock.release () ;
}
void DoFoo () {

1f (exception) throw errException;

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.34

Java Language Support for Synchronization

- Java has explicit support for threads and thread
synchronization

- Bank Account example:

class Account {

private int balance;

// object constructor

public Account (1nt initialBalance) {
balance = initialBalance;

}

public synchronized int getBalance() {
return balance;

}

public synchronized void deposit (int amount) {
balance += amount;

}
}

— Every object has an associated lock which gets automatically
acquired and released on entry and exit from a synchronized

method.

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.35

Java Language Support for Synchronization
(con’t)
- Java also has synchronized statements:

synchronized (object) {

}

— Since every Java object has an associated lock, this type of
statement acquires and releases the object’s lock on entry
and exit of the code block

— Works properly even with exceptions:

synchronized (object) {

DoFoo () ;

}
vold DoFoo () {
throw errException;

}

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.36

Java Language Support for Synchronization (2/2)

 |In addition to a lock, every object has a single condition
variable associated with it

— How to wait inside a synchronization method of block:
» vold wait () ;
» void wait (long timeout); // Wait for timeout
» void wait (long timeout, int nanoseconds); //variant

— How to signal in a synchronized method or block:

» void notify () ; // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

— Condition variables can wait for a bounded length of time. This
is useful for handling exception cases:

tl = time.now() ;

while (!ATMRequest()) {
wait (CHECKPERIOD) ;
t2 = time.new () ;
if (t2 - tl > LONG TIME) checkMachine();

}

— Not all Java VMs equivalent!
» Different scheduling policies, not necessarily preemptive!

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.37

Summary: Semaphores and Cond. Variables

- Semaphores: Like integers with restricted interface

— Two operations:
» P () : Wait if zero; decrement when becomes non-zero
» V () : Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

— Use separate semaphore for each constraint

« Monitors: A lock plus one or more condition variables
— Always acquire lock before accessing shared data

— Use condition variables to wait inside critical section
» Three Operations: Wait (), Signal (), and Broadcast ()

- Language support for synchronization:

— Java provides synchronized keyword and one condition-
variable per object (with wait () and notify ())

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.38

Announcements

* Project 1 initial design phase AND Project 1 individual part
due: Tuesday, September 27 @ 11.59pm

- Midterm: Thursday, October 13, 5-6:30pm — 155 Dwinell
Hall

» Discussion sections update: could not get a second 6-7pm
section, so we will maintain second 10-11am section
— We’ve moved some groups consistent with their constraints
» 7 groups move to a better choice
» 2 groups from 1stto 2
» 1 group from 1st to 31

CSUA Hackathon: September 23-24

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.39

5min Break

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.40

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.41

Resources

- Resources — passive entities needed by threads to do their
work .
— CPU time, disk space, memory

- Two types of resources:
— Preemptable — can take it away
» CPU, Embedded security chip
— Non-preemptable — must leave it with the thread
» Disk space, printer, chunk of virtual address space

» Critical section

- Resources may require exclusive access or may be sharable

— Read-only files are typically sharable
— Printers are not sharable during time of printing

* One of the major tasks of an operating system is to manage

resources
9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.42

Starvation vs Deadlock @

« Starvation vs. Deadlock

— Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources constantly
in use by high-priority threads
— Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

— Deadlock = Starvation but not vice versa
» Starvation can end (but doesn’t have t0)

» Deadlock can’t end without external intervention
9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.43

Conditions for Deadlock
- Deadlock not always deterministic — Example 2 mutexes:

Thread A Thread B Deadlock
x.P(); v.P(); A: x.P();
y.P(); x.P<>;<B: y.P();
A: y.P();
y.V(); x.V(); Bl XLEH
x.V(); y-V();

— Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)

« Deadlocks occur with multiple resources
— Means you can’t decompose the problem
— Can’t solve deadlock for each resource independently
- Example: System with 2 disk drives and two threads
— Each thread needs 2 disk drives to function
— Each thread gets one disk and waits for another one

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.44

Bridge Crossing Example

Each segment of road can be viewed as a resource
— Car must own the segment under them
— Must acquire segment that they are moving into

For bridge: must acquire both halves
— Traffic only in one direction at a time

— Problem occurs when two cars in opposite directions on bridge:
each acquires one segment and needs next

If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

— Several cars may have to be backed up
Starvation is possible

— East-going traffic really fast = no one goes west
9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.45

Train Example

- Circular dependency (Deadlock!)

— Each train wants to turn right

— Blocked by other trains

— Similar problem to multiprocessor networks
» Ho do you prevent deadlock?

— (Answer later)

meas) [neses)

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.46

‘..... HEEEEN
W
Il \f
v
- | (“‘:
1

Dining Philosopher Problem

Five chopsticks/Five philosopher (really cheap restaurant)
— Free-for all: Philosopher will grab any one they can
— Need two chopsticks to eat
What if all grab at same time?
— Deadlock!
How to fix deadlock?
— Make one of them give up a chopstick (Hah!)
— Eventually everyone will get chance to eat

How to prevent deadlock?

— (Answer later)
9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.47

Four requirements for Deadlock

Mutual exclusion
— Only one thread at a time can use a resource.
Hold and wait

— Thread holding at least one resource is waiting to acquire
additional resources held by other threads

No preemption
— Resources are released only voluntarily by the thread holding
the resource, after thread is finished with it
Circular wait

— There exists a set{T,, ..., T} of waiting threads
» T, is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T,

» .

» T is waiting for a resource that is held by T,

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.48

Resource-Allocation Graph

- System Model
—Asetof Threads 7,, T,, ..., T,

n

— Resource types R, R,, . . ., R,
CPU cycles, memory space, 1/0 devices

— Each resource type R has W, instances.
— Each thread utilizes a resource as follows:

Symbols

© ©
-]

» Request () / Use() / Release /()
- Resource-Allocation Graph:

— V is partitioned into two types:
» T={Ty, T,, ..., T}, the set threads in the system.

» R={R,, R,, ..., R}, the set of resource types in system

— request edge — directed edge T, — R,
— assignment edge — directed edge R, — T,

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Lec 6.49

Resource Allocation Graph Examples
- Recall:
—request edge — directed edge 7, = R,
— assignment edge — directed edge R, — T,

R, R,

Rs ®
R, R,
Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but

No Deadlock
9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.50

Methods for Handling Deadlocks @

- Allow system to enter deadlock and then recover
— Requires deadlock detection algorithm

— Some technique for forcibly preempting resources and/or
terminating tasks

- Ensure that system will never enter a deadlock
— Need to monitor all lock acquisitions
— Selectively deny those that might lead to deadlock

- Ignore the problem and pretend that deadlocks never
occur in the system

— Used by most operating systems, including UNIX

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.51

Deadlock Detection Algorithm

- Only one of each type of resource = look for loops

« More General Deadlock Detection Algorithm

— Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources]: Current free resources each type

[Requesty]: Current requests from thread X

[Allocy] : Current resources held by thread X
— See if tasks can eventually terminate on their own

[Avail] = [FreeResources]

Add all nodes to UNFINISHED

do |

done = true

Foreach node in UNFINISHED {

if ([Request,. 4.1 <= [Availl) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,.4]

done = false

}
}
} until (done)
— Nodes left in UNFINISHED = deadlocked

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.52

Deadlock Detection Algorithm

Example
[Available] = [0,0] [Available] = [1,0] [Available] = [1,1]
[Request,] = [0,0] [Request+] = [1,0] [Request;;] = [0,1]
[Requesty,] <= [Requestq] <= [Request ;] <=
[Available] [Available] [Available]

R, @ R, @
B [4]
= |G @ | = ©) = .

R, 0 R,

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.53

Techniques for Preventing Deadlock

 |Infinite resources

— Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

— Give illusion of infinite resources (e.g. virtual memory)
— Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

- No Sharing of resources (totally independent threads)
— Not very realistic

- Don’t allow waiting

— How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone lines,
but if blocked get busy signal

— Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.54

Techniques for Preventing Deadlock (con’t)

- Make all threads request everything they’ll need at the
beginning
— Problem: Predicting future is hard, tend to over-estimate
resources
— Example:
» If need 2 chopsticks, request both at same time

» Don’t leave home until we know no one is using any intersection
between here and where you want to go!

» Force all threads to request resources in a particular order
preventing any cyclic use of resources

— Thus, preventing deadlock
— Example (x.P, y.P, z.P,...)
» Make tasks request disk, then memory, then...

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.55

Review: Train Example (Wormhole-Routed
- Circular dependency (Deadlock')
— Each train wants to turn right

— Blocked by other trains
— Similar problem to multiprocessor networks
 Fix? Imagine grid extends in all four directions

— Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south

— Called “dimension ordering” (X then Y)

e Sol{ =2

=]
/ /

zeas) [neses)

nd lon Stoica CSIGZ ©UCB Fall 2011 Lec 6.56

(-l':l_l'l'. ENENE

9/19/11 Anthony D. Jog

Train Example (Wormhole-Routed Network)

» Circular dependency (Deadlock!)
— Each train wants to turn right
— Blocked by other trains
— Similar problem to multiprocessor networks
- Fix? Imagine grid extends in all four directions

— Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south

— Called “dimension ordering” (X then Y)

X

B

9/19/11 Anthony D. Joseph\and lon Stoica CS162 ©UCB Fall 2011 Lec 6.57

Banker’s Algorithm for Preventing
o Deadlock
- Toward right idea:

— State maximum resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) = max
remaining that might be needed by any thread

- Banker’s algorithm (less conservative):

— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting
([Max, 4c]-[Alloc, 4] < [Avail]) for ([Request, 4] < [Avail])
Grant request if result is deadlock free (conservative!)

» Keeps system in a “SAFE” state, i.e. there exists a sequence {T,,
T,, ... T} with T, requesting all remaining resources, finishing, then
T, requesting all remaining resources, etc..

— Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.58

Banker’s Algorithm Example

- Banker’s algorithm with dining philosophers

— “Safe” (won’t cause deadlock) if when try to grab chopstick
either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

— What if k-handed philosophers? Don’t allow if:
» |t’s the last one, no one would have k
» [t's 2" to last, and no one would have k-1
» [t's 3 to last, and no one would have k-2

91191 7 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.59

Summary: Deadlock

- Starvation vs. Deadlock
— Starvation: thread waits indefinitely
— Deadlock: circular waiting for resources

* Four conditions for deadlocks
— Mutual exclusion
» Only one thread at a time can use a resource

— Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

— No preemption
» Resources are released only voluntarily by the threads
— Circular wait
» 3set{T,, ..., T} of threads with a cyclic waiting pattern
« Deadlock preemption

- Deadlock prevention (Banker’s algorithm)

9/19/11 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 6.60

