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Four requirements for Deadlock"
•  Mutual exclusion!

– Only one thread at a time can use a resource.!
•  Hold and wait!

– Thread holding at least one resource is waiting to acquire 
additional resources held by other threads!

•  No preemption!
– Resources are released only voluntarily by the thread holding 

the resource, after thread is finished with it!
•  Circular wait!

– There exists a set {T1, …, Tn} of waiting threads!
»  T1 is waiting for a resource that is held by T2!
»  T2 is waiting for a resource that is held by T3!
» …!
»  Tn is waiting for a resource that is held by T1!
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Techniques for Preventing Deadlock"
•  Infinite resources!

–  Include enough resources so that no one ever runs out of 
resources. Doesnʼt have to be infinite, just large!

– Give illusion of infinite resources (e.g. virtual memory)!
– Examples:!

»  Bay bridge with 12,000 lanes.  Never wait!!
»  Infinite disk space (not realistic yet?)!

•  No Sharing of resources (totally independent threads)!
– Not very realistic!

•  Donʼt allow waiting !
– How the phone company avoids deadlock!

» Call to your Mom in Toledo, works its way through the phone lines, 
but if blocked get busy signal !

– Technique used in Ethernet/some multiprocessor nets!
»  Everyone speaks at once.  On collision, back off and retry!
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Techniques for Preventing Deadlock (conʼt)"
•  Make all threads request everything theyʼll need at the 

beginning!
– Problem: Predicting future is hard, tend to over-estimate 

resources!
– Example:!

»  If need 2 chopsticks, request both at same time!
» Donʼt leave home until we know no one is using any intersection 

between here and where you want to go!!

•  Force all threads to request resources in a particular order 
preventing any cyclic use of resources!

– Thus, preventing deadlock!
– Example (x.P, y.P, z.P,…)!

» Make tasks request disk, then memory, then…!
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Review: Train Example (Wormhole-Routed 
Network)"

•  Circular dependency (Deadlock!)!
– Each train wants to turn right!
– Blocked by other trains!
– Similar problem to multiprocessor networks!

•  Fix? Imagine grid extends in all four directions!
– Force ordering of channels (tracks)!

»  Protocol: Always go east-west first, then north-south!
– Called “dimension ordering” (X then Y)!

Disallowed 

By Rule 
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Train Example (Wormhole-Routed Network)"
•  Circular dependency (Deadlock!)!

– Each train wants to turn right!
– Blocked by other trains!
– Similar problem to multiprocessor networks!

•  Fix? Imagine grid extends in all four directions!
– Force ordering of channels (tracks)!

»  Protocol: Always go east-west first, then north-south!
– Called “dimension ordering” (X then Y)!

A 

B 
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•  Toward right idea: !
– State maximum resource needs in advance!
– Allow particular thread to proceed if:!

!(available resources - #requested) ≥ max  
remaining that might be needed by any thread!

•  Bankerʼs algorithm (less conservative):!
– Allocate resources dynamically!

»  Evaluate each request and grant if some  
ordering of threads is still deadlock free afterward !

»  Technique: pretend each request is granted, then run deadlock 
detection algorithm, substituting  
 ([Maxnode]-[Allocnode] ≤ [Avail]) for ([Requestnode] ≤ [Avail]) 
Grant request if result is deadlock free (conservative!)!

»  Keeps system in a “SAFE” state, i.e. there exists a sequence {T1, 
T2, … Tn} with T1 requesting all remaining resources, finishing, then 
T2 requesting all remaining resources, etc..!

– Algorithm allows the sum of maximum resource needs of all 
current threads to be greater than total resources!

Bankerʼs Algorithm for Preventing 
Deadlock"
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Bankerʼs Algorithm Example"

•  Bankerʼs algorithm with dining philosophers!
–  “Safe” (wonʼt cause deadlock) if when try to grab chopstick 

either:!
» Not last chopstick!
»  Is last chopstick but someone will have  

two afterwards!
– What if k-handed philosophers? Donʼt allow if:!

»  Itʼs the last one, no one would have k!
»  Itʼs 2nd to last, and no one would have k-1!
»  Itʼs 3rd to last, and no one would have k-2!
» …!
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Summary: Deadlock"
•  Starvation vs. Deadlock!

– Starvation: thread waits indefinitely!
– Deadlock: circular waiting for resources!

•  Four conditions for deadlocks!
– Mutual exclusion!

» Only one thread at a time can use a resource!
– Hold and wait!

»  Thread holding at least one resource is waiting to acquire 
additional resources held by other threads!

– No preemption!
» Resources are released only voluntarily by the threads!

– Circular wait!
»  ∃ set {T1, …, Tn} of threads with a cyclic waiting pattern!

•  Deadlock preemption!
•  Deadlock prevention (Bankerʼs algorithm)!
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Goals for Today"
•  Tips for Programming in a Project Team!
•  The Software Process!

Note: Some slides and/or pictures in the following are adapted from slides 
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D. 
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric 
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.!
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The Role of Software Engineering"
•  Developing software efficiently!

» Minimize time!
» Minimize dollars!
» Minimize …!

•  First, weʼll go through some tips for working in a team!
–  [poll]!

•  Then, weʼll talk about more formal processes!
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Tips for Programming in a Project 
Team"

•  Big projects require more than one 
person (or long, long, long time)!

– Big OS: thousands of person-years!!
•  Itʼs very hard to make software  

project teams work correctly!
– Doesnʼt seem to be as true of big 

construction projects!
»  Empire state building finished in one 

year: staging iron production thousands 
of miles away!

» Or the Hoover dam: built towns to hold 
workers!

“You just have  
to get your  
synchronization right!” 
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Big Projects"
•  What is a big project?!

– Time/work estimation is hard!
– Programmers are eternal optimistics  

(it will only take two days)!!
»  This is why we bug you about  

starting the project early!

•  Can a project be efficiently partitioned?!
– Partitionable task decreases in time as 

you add people!
– But, if you require communication:!

»  Time reaches a minimum bound!
» With complex interactions, time increases!!

– Mythical person-month problem:!
»  You estimate how long a project will take!
»  Starts to fall behind, so you add more people!
»  Project takes even more time!!
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Techniques for Partitioning Tasks"
•  Functional!

– Person A implements threads, Person B implements 
semaphores, Person C implements locks…!

– Problem: Lots of communication across APIs!
»  If B changes the API, A may need to make changes!
»  Story: Large airline company spent $200 million on a new 

scheduling and booking system. Two teams “working together.” 
After two years, went to merge software. Failed! Interfaces had 
changed (documented, but no one noticed). Result: would cost 
another $200 million to fix. !

•  Task!
– Person A designs, Person B writes code, Person C tests!
– May be difficult to find right balance, but can focus on each 

personʼs strengths (Theory vs systems hacker)!
– Since Debugging is hard, Microsoft has two testers for each 

programmer!
•  Most CS162 project teams are functional, but people have 

had success with task-based divisions [poll]!
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Communication"
•  More people mean more communication!

– Changes have to be propagated to more people!
– Think about person writing code for most  

fundamental component of system: everyone depends  
on them!!

•  Miscommunication is common!
–  “Index starts at 0?  I thought you said 1!”!

•  Who makes decisions? [poll]!
–  Individual decisions are fast but trouble!
– Group decisions take time!
– Centralized decisions require a big picture view (someone who 

can be the “system architect”)!
•  Often designating someone as the system architect can be a 

good thing!
– Better not be clueless!
– Better have good people skills!
– Better let other people do work !
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Coordination"
•  More people ⇒ no one can make all meetings!!

– They miss decisions and associated discussion!
– Example from earlier class: one person missed  

meetings and did something group had rejected!
– Why do we limit groups to 5 people? !

»  You would never be able to schedule meetings otherwise!
– Why do we require 4 people minimum?!

»  You need to experience groups to get ready for real world!
•  People have different work styles!

– Some people work in the morning, some at night!
– How do you decide when to meet or work together?!

•  What about project slippage?!
–  It will happen, guaranteed!!
– Ex: everyone busy but not talking.  One person way behind.  

No one knew until very end – too late!!
•  Hard to add people to existing group!

– Members have already figured out how to work together!
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How to Make it Work?"
•  People are human.  Get over it.!

– People will make mistakes, miss meetings, miss deadlines, etc.  
You need to live with it and adapt!

–  It is better to anticipate problems than clean up afterwards. !
•  Document, document, document!

– Why Document?!
»  Expose decisions and communicate to others!
»  Easier to spot mistakes early!
»  Easier to estimate progress!

– What to document?!
»  Everything (but donʼt overwhelm people or no one will read)!

– Standardize!!
» One programming format: variable naming conventions, tab 

indents,etc.!
» Comments (Requires, effects, modifies)—javadoc?!
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Suggested Documents for You to 
Maintain"

•  Project objectives: goals, constraints, and priorities!
•  Specifications: the manual plus performance specs!

– This should be the first document generated and the last 
one finished!

•  Meeting notes!
– Document all decisions!
– You can often cut & paste for the design documents!

•  Schedule: What is your anticipated timing?!
– This document is critical!!

•  Organizational Chart!
– Who is responsible for what task?!
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Use Software Tools"

•  Source revision control software (CVS, SVN, git)!
– Easy to go back and see history!
– Figure out where and why a bug got introduced!
– Communicates changes to everyone (use RCSʼs features)!

•  Use an Integrated Development Environment!
– Structured development model!

•  Use automated testing tools!
– Write scripts for non-interactive software!
– Use “expect” for interactive software!
– Microsoft rebuilt Vista, W7 kernels every night with the dayʼs 

changes. Everyone ran/tested the latest software!
•  Use E-mail and instant messaging consistently to leave a 

history trail!
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Integrated Development 
Environments"

•  Structured Compile-Edit-Debug environment!
– Organizes top-level projects, folders, and  

files in a hierarchical structure!
– Makes it easy to find uses of variables, procedures, …!
– Formats code for easier interaction!
–  Interacts with version control infrastructure!

•  Projects consist of:!
– Files, interdependencies, configurations, version control 

information, etc.!
– May also manage non-project information:!

» Global preferences, windows layout, search and navigation 
history, local change history (like version control, but local 
changes only)!

•  Different IDEs support different languages!
– MS Visual Studio (C/C++/C#/.NET), IBM Eclipse (Java)!
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Test Continuously"
•  Integration tests all the time, not at 11pm 

on due date!!
– Write dummy stubs with simple functionality!

»  Letʼs people test continuously, but more work!
– Schedule periodic integration tests!

» Get everyone in the same room, check out code, build, and test.!
» Donʼt wait until it is too late!!

•  Testing types:!
– Unit tests: white-/black-box check each module in isolation 

(use JUnit?)!
– Daemons: subject code to exceptional cases !
– Random testing: Subject code to random timing changes!

•  Test early, test later, test again!
– Tendency is to test once and forget; what if something 

changes in some other part of the code?!
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Software Engineering Layers"

•  Process: framework of the required tasks!
– e.g., waterfall, extreme programming!

•  Methods: technical “how to”!
– e.g., design review, code review, testing, etc.!

•  Tools: automate processes and methods!

Process"

Methods"

Tools"

Lec 7.23!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Software Process"
•  Most projects follow recognized stages!

– From inception to completion!

•  These steps are a “software process”!
– Arrived at by trial and (lots of) error!
!

•  Process = how things are done!
–  In contrast to what is done!

•  Ideal Project (to me)!
– Core functionality is reasonably attainable!
– But extra features are cool and can be implemented as 

time permits!
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Administrivia"
•  Proj 1 individual part and group design due Tue 9/27 11:59P!

•  Section changes posted to Piazza!

•  CSUA Hackathon Sept 23-24!
– The goal: code something cool! !
– What: 18 hour coding marathon in teams - great prizes like 

iPad2ʼs!!
– When: Sept 23-24, i.e. 6pm Friday night to Saturday morning!
– Where: 4th floor Soda, Wozniak Lounge!
– Sponsor: Yahoo!!
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5min Break"
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Product"

Waterfall Process Phases"

Gather Requirements"

Specification"

Design"

Implementation"

Integration"

Testing
"
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1. Gather Requirements"
•  Figure out what this thing is 

supposed to do!
–  A raw list of features!
– Written down . . .!

•  Usually a good idea to talk 
to users, clients, or 
customers!!

–  But note, they donʼt always 
know what they want!

•  Purpose: Make sure we 
donʼt build the wrong thing!
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2. Specification"

•  A written description of 
what the system does!

–  In all circumstances!
»  For all inputs!
»  In each possible state!

– Donʼt assume correct 
inputs or states!!

•  Because it covers all 
situations, much more 
comprehensive than 
requirements!
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3. Design"

•  The system architecture!

•  Decompose system into 
modules!

•  Specify interfaces 
between modules!

•  Much more of how the 
system works, rather than 
what it does!

Lec 7.30!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

3. Design"

•  The system architecture!

•  Decompose system in 
modules !

•  Specify interfaces 
between modules!

•  Much more of how the 
system works, rather than 
what it does!
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4. Implementation"

•  Code up the design!

•  First, make a plan!
–  The order in which things 

will be done!
– Usually by priority!
–  Also for testability!

•  Test each module!
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5. Integration"

•  Put the pieces together!

•  A major QA effort at this 
point to test the entire 
system!
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5. Integration"

•  Put the pieces together!

•  A major QA effort at this 
point to test the entire 
system!
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6. Product"

•  Ship/Deploy and be happy!!

•  Actually, start maintenance…!
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A Software Process"
•  This is called the waterfall model!

– One of the standard models for developing software!

•  Each stage leads on to the next!
– No iteration or feedback between stages!
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The Waterfall Model"

Gather Requirements"

Specification"

Design"

Implementation"

Integration"

Product"
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The Waterfall Model (Contʼd)"
•  There is testing after each phase!

– Verify the requirements, the spec, the design!
– Not just the coding and the integration!

•  Note the top-down design!
– Requirements, spec, design!

•  Bottom-up implementation!
–  Implement, integrate, product!
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The Waterfall Model (Discussion)"

•  What are the risks with the waterfall model?!

•  The major risks are (my opinions):!
– Relies heavily on being able to accurately assess 

requirements at the start!

–  Little feedback from users until very late!
»  Unless they understand specification documents!

–  Problems in the specification may be found very late!
»  Coding or integration!

– Whole process can take a long time before the first working 
version is seen!
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My Opinions"
•  The waterfall model seems to be adopted from other 

fields of engineering!
–  This is how to build bridges!

•  Not much software is truly built using the waterfall 
process!

– Where is it most, least applicable?!

•  But many good aspects!
–  Emphasis on spec, design, testing!
–  Emphasis on communication through documents!

!
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An Opinion on Time"
•  Time is the enemy of all software projects!

•  Taking a long time is inherently risky!

 
”It is hard to make predictions,  

especially about the future” 
- Yogi Berra 
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Why?"
•  The world changes, sometimes quickly!

•  Technologies become obsolete!
– Many products obsolete before they first ship!!

•  Other people produce competitive software!

•  Software usually depends on many 3rd-party pieces!
– Compilers, networking libraries, operating systems, etc.!
–  All of these are in constant motion!
– Moving slowly means spending lots of energy keeping up with 

these changes!
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Case Study #1"
•  California DMV software (1987-1993)!

•  Attempt to merge driver & vehicle registration systems!
– Thought to take 6 years and $8 million!

•  Spent 7 years and $50 million before pulling the plug!
– Costs 6.5x initial estimate and expected delivery slipped to 

1998 (or 11 years)!!
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Case Study #2"
•  FBI Virtual Case File system (2000-2003)!

– Trilogy project: thought to take 3 years and $380 million 
(including PC and networking upgrades)!

•  Replace FBIʼs Automated Case Support (ACS) software!
– Developed in-house by the bureau, considered obsolete 

when deployed in 1995…!
•  In 2002, Congress granted Trilogy another $123 million!

–  In 2004, contractor requests another $50m, FBI pays 
contractor $16m to salvage system and another $2m to 
perform external review!

•  In 2005, FBI scraps project!
– Continues to use “obsolete” ACS…!
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The Flip Side: Advantages to Being Fast"
•  In the short-term, we can assume the world will not 

change!
– At least not much!

•  Being fast greatly simplifies planning!
– Near-term predictions are much more reliable!

•  Unfortunately, the waterfall model does not lend itself 
to speed…!



Page 12 

Lec 7.45!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Something Faster: Rapid Prototyping"
•  Write a quick prototype!

•  Show it to users!
– Use to refine requirements!

•  Then proceed as in waterfall model!
– Throw away the prototype!
– Do spec, design, coding, integration, etc.!
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Fundamental Assumption"
•  We do not know much about the final product!

– No matter what we think!
– Environment will change!
– Requirements will change!
– Tools will change!
– Design will change!
– Better to roll with the punches than go for the KO!

»  (A terrible analogy)!

Lec 7.47!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Comments on Rapid Prototyping"
•  Hard to throw away the prototype!

– Slogan “the prototype is the product”!
– Happens more often than you might think!!
– Best way to avoid: write prototype in another language!

•  But prototyping is so useful!
– Much more realistic to show users a system rather than 

specification documents!
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More Comments"
•  A prototype exposes design mistakes!

–  “Man, this is a pain in the butt to code up, even in the 
prototype” 

•  Easy to do with web technologies!
– Scripting languages are flexible!
– Browsers are forgiving!
– Much of the glue (CGI, etc.) is already there!
– Ruby on Rails makes everything easy!

»  Even using a DBMS!
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Opinions on Reality"
•  Neither of these models is true to life!

•  In reality, feedback between all stages!
– Specifications will demand refined requirements !
– Design can affect the specification!
– Coding problems can affect the design!
– Final product may lead to changes in requirements!

»  I.e., the initial requirements were incorrect!!

•  Waterfall model with “feedback loops”!
–  Iterative model!
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What to Do?"
•  Accept that later stages may force changes in earlier 

decisions!

•  And plan for it!!

•  The key: Minimize the risk!
– Recognize which decisions may need to be revised!
– Plan to get confirmation/refutation as soon as possible!
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Iterative Models: Plan for Change"
•  Use the same stages as the waterfall model!

•  But plan to iterate the whole cycle several times!
– Each cycle is a “build”!
– Smaller, lighter-weight than entire product!

•  Break the project into a series of builds which lead 
from a skeletal prototype to a finished product!

•  This is the model we use in Berkeley research projects!!
– Also used by Microsoft (internally), Google, Facebook, 

Twitter, and many others!
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Gather Requirements"
•  Same idea as before!

•  Talk to users, find out what 
is needed!

•  But recognize diminishing 
returns!

•  Without something to show, 
probably cant get full 
picture of requirements on 
the first iteration!
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Specification"

•  A written description of what 
the system does!

–  In all circumstances!
»  For all inputs!
»  In each possible state!

– Donʼt assume correct inputs 
or states!!

•  Still need this!
– Worth significant time!

•  Recognize it will evolve!
–  Be aware of what aspects are 

under-specified!
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Design"

•  Decompose system into 
modules and specify 
interfaces!

•  Design for change!

•  Which parts are most 
likely to change? !

–  Put abstraction there!
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Design"

•  Decompose system into 
modules and specify 
interfaces!

•  Design for change!

•  Which parts are most 
likely to change? !

–  Put abstraction there!
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Design"

•  Plan incremental 
development of each 
module!

•  From skeletal component 
to full functionality!

•  From most critical to least 
critical features!

–  Example: Two engineers 
at Facebook implemented 
photo sharing with just one 
feature – tagging !
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Implementation: Build 1"
•  Get a skeletal system working!

•  All the pieces are there, but 
none of them do very much!

•  But the interfaces are 
implemented!

•  This allows!
–  A complete system to be built!
– Development of individual 

components to rely on all 
interfaces of other components!
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Implementation: Subsequent Builds"

•  After build 1, always have a 
demo to show (or product 
to deploy)!

–  To customers!
–  To the team!
– Communication!!

•  Each build adds more 
functionality!
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Integration"

•  Integration and major test 
for each build!

•  Stabilization point!

•  Continues until “last” build!
–  But may begin shipping or 

deploying earlier builds!
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Advantages"
•  Find problems sooner!

– Get early feedback from users!
– Get early feedback on whether spec/design are feasible!

•  More quantifiable than waterfall!
– When build 3 of 4 is done, product is 75% complete!
– What percentage have we completed at the 

implementation stage of the waterfall model?!
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Disadvantages"
•  Main risk is making a major mistake in requirements, 

spec, or design!
– Because we donʼt invest as much time before build 1!
– Begin coding before problem is fully understood!

•  Trade this off against the risks of being slow!
– Often better to get something working and get feedback 

on that rather than study problem in the abstract!
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In Practice"
•  Most consumer software development uses the 

iterative model!
– Daily builds!
– System is always working!
– Always getting feedback!
– Microsoft, Google, Facebook, Twitter are well-known 

examples!

•  Many systems that are hard to test use something 
more like a waterfall model!

– E.g., unmanned space probes!
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Conclusions"
•  Important to follow a good process!

•  Waterfall!
– Top-down design, bottom-up implementation!
– Lots of upfront thinking, but slow, hard to iterate!

•  Iterative, or evolutionary processes!
– Build a prototype quickly (and ship/deploy it), then evolve 

it over time!
– Postpone some of the thinking!


