
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 7  
 

Programming Techniques and Teams"

September 21, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 6.2!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Four requirements for Deadlock"
•  Mutual exclusion!

– Only one thread at a time can use a resource.!
•  Hold and wait!

– Thread holding at least one resource is waiting to acquire
additional resources held by other threads!

•  No preemption!
– Resources are released only voluntarily by the thread holding

the resource, after thread is finished with it!
•  Circular wait!

– There exists a set {T1, …, Tn} of waiting threads!
»  T1 is waiting for a resource that is held by T2!
»  T2 is waiting for a resource that is held by T3!
» …!
»  Tn is waiting for a resource that is held by T1!

Lec 6.3!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Techniques for Preventing Deadlock"
•  Infinite resources!

–  Include enough resources so that no one ever runs out of
resources. Doesnʼt have to be infinite, just large!

– Give illusion of infinite resources (e.g. virtual memory)!
– Examples:!

»  Bay bridge with 12,000 lanes. Never wait!!
»  Infinite disk space (not realistic yet?)!

•  No Sharing of resources (totally independent threads)!
– Not very realistic!

•  Donʼt allow waiting !
– How the phone company avoids deadlock!

» Call to your Mom in Toledo, works its way through the phone lines,
but if blocked get busy signal !

– Technique used in Ethernet/some multiprocessor nets!
»  Everyone speaks at once. On collision, back off and retry!

Lec 6.4!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Techniques for Preventing Deadlock (conʼt)"
•  Make all threads request everything theyʼll need at the

beginning!
– Problem: Predicting future is hard, tend to over-estimate

resources!
– Example:!

»  If need 2 chopsticks, request both at same time!
» Donʼt leave home until we know no one is using any intersection

between here and where you want to go!!

•  Force all threads to request resources in a particular order
preventing any cyclic use of resources!

– Thus, preventing deadlock!
– Example (x.P, y.P, z.P,…)!

» Make tasks request disk, then memory, then…!

Page 2

Lec 6.5!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Review: Train Example (Wormhole-Routed
Network)"

•  Circular dependency (Deadlock!)!
– Each train wants to turn right!
– Blocked by other trains!
– Similar problem to multiprocessor networks!

•  Fix? Imagine grid extends in all four directions!
– Force ordering of channels (tracks)!

»  Protocol: Always go east-west first, then north-south!
– Called “dimension ordering” (X then Y)!

Disallowed

By Rule

Lec 6.6!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Train Example (Wormhole-Routed Network)"
•  Circular dependency (Deadlock!)!

– Each train wants to turn right!
– Blocked by other trains!
– Similar problem to multiprocessor networks!

•  Fix? Imagine grid extends in all four directions!
– Force ordering of channels (tracks)!

»  Protocol: Always go east-west first, then north-south!
– Called “dimension ordering” (X then Y)!

A

B

Lec 6.7!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

•  Toward right idea: !
– State maximum resource needs in advance!
– Allow particular thread to proceed if:!

!(available resources - #requested) ≥ max  
remaining that might be needed by any thread!

•  Bankerʼs algorithm (less conservative):!
– Allocate resources dynamically!

»  Evaluate each request and grant if some  
ordering of threads is still deadlock free afterward !

»  Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting  
 ([Maxnode]-[Allocnode] ≤ [Avail]) for ([Requestnode] ≤ [Avail]) 
Grant request if result is deadlock free (conservative!)!

»  Keeps system in a “SAFE” state, i.e. there exists a sequence {T1,
T2, … Tn} with T1 requesting all remaining resources, finishing, then
T2 requesting all remaining resources, etc..!

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources!

Bankerʼs Algorithm for Preventing
Deadlock"

Lec 6.8!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Bankerʼs Algorithm Example"

•  Bankerʼs algorithm with dining philosophers!
–  “Safe” (wonʼt cause deadlock) if when try to grab chopstick

either:!
» Not last chopstick!
»  Is last chopstick but someone will have  

two afterwards!
– What if k-handed philosophers? Donʼt allow if:!

»  Itʼs the last one, no one would have k!
»  Itʼs 2nd to last, and no one would have k-1!
»  Itʼs 3rd to last, and no one would have k-2!
» …!

Page 3

Lec 6.9!9/19/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Summary: Deadlock"
•  Starvation vs. Deadlock!

– Starvation: thread waits indefinitely!
– Deadlock: circular waiting for resources!

•  Four conditions for deadlocks!
– Mutual exclusion!

» Only one thread at a time can use a resource!
– Hold and wait!

»  Thread holding at least one resource is waiting to acquire
additional resources held by other threads!

– No preemption!
» Resources are released only voluntarily by the threads!

– Circular wait!
»  ∃ set {T1, …, Tn} of threads with a cyclic waiting pattern!

•  Deadlock preemption!
•  Deadlock prevention (Bankerʼs algorithm)!

Lec 7.10!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Goals for Today"
•  Tips for Programming in a Project Team!
•  The Software Process!

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.!

Lec 7.11!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Role of Software Engineering"
•  Developing software efficiently!

» Minimize time!
» Minimize dollars!
» Minimize …!

•  First, weʼll go through some tips for working in a team!
–  [poll]!

•  Then, weʼll talk about more formal processes!

Lec 7.12!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Tips for Programming in a Project
Team"

•  Big projects require more than one
person (or long, long, long time)!

– Big OS: thousands of person-years!!
•  Itʼs very hard to make software  

project teams work correctly!
– Doesnʼt seem to be as true of big

construction projects!
»  Empire state building finished in one

year: staging iron production thousands
of miles away!

» Or the Hoover dam: built towns to hold
workers!

“You just have
to get your
synchronization right!”

Page 4

Lec 7.13!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Big Projects"
•  What is a big project?!

– Time/work estimation is hard!
– Programmers are eternal optimistics  

(it will only take two days)!!
»  This is why we bug you about  

starting the project early!

•  Can a project be efficiently partitioned?!
– Partitionable task decreases in time as 

you add people!
– But, if you require communication:!

»  Time reaches a minimum bound!
» With complex interactions, time increases!!

– Mythical person-month problem:!
»  You estimate how long a project will take!
»  Starts to fall behind, so you add more people!
»  Project takes even more time!!

Lec 7.14!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Techniques for Partitioning Tasks"
•  Functional!

– Person A implements threads, Person B implements
semaphores, Person C implements locks…!

– Problem: Lots of communication across APIs!
»  If B changes the API, A may need to make changes!
»  Story: Large airline company spent $200 million on a new

scheduling and booking system. Two teams “working together.”
After two years, went to merge software. Failed! Interfaces had
changed (documented, but no one noticed). Result: would cost
another $200 million to fix. !

•  Task!
– Person A designs, Person B writes code, Person C tests!
– May be difficult to find right balance, but can focus on each

personʼs strengths (Theory vs systems hacker)!
– Since Debugging is hard, Microsoft has two testers for each

programmer!
•  Most CS162 project teams are functional, but people have

had success with task-based divisions [poll]!

Lec 7.15!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Communication"
•  More people mean more communication!

– Changes have to be propagated to more people!
– Think about person writing code for most  

fundamental component of system: everyone depends  
on them!!

•  Miscommunication is common!
–  “Index starts at 0? I thought you said 1!”!

•  Who makes decisions? [poll]!
–  Individual decisions are fast but trouble!
– Group decisions take time!
– Centralized decisions require a big picture view (someone who

can be the “system architect”)!
•  Often designating someone as the system architect can be a

good thing!
– Better not be clueless!
– Better have good people skills!
– Better let other people do work !

Lec 7.16!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Coordination"
•  More people ⇒ no one can make all meetings!!

– They miss decisions and associated discussion!
– Example from earlier class: one person missed  

meetings and did something group had rejected!
– Why do we limit groups to 5 people? !

»  You would never be able to schedule meetings otherwise!
– Why do we require 4 people minimum?!

»  You need to experience groups to get ready for real world!
•  People have different work styles!

– Some people work in the morning, some at night!
– How do you decide when to meet or work together?!

•  What about project slippage?!
–  It will happen, guaranteed!!
– Ex: everyone busy but not talking. One person way behind.

No one knew until very end – too late!!
•  Hard to add people to existing group!

– Members have already figured out how to work together!

Page 5

Lec 7.17!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

How to Make it Work?"
•  People are human. Get over it.!

– People will make mistakes, miss meetings, miss deadlines, etc.
You need to live with it and adapt!

–  It is better to anticipate problems than clean up afterwards. !
•  Document, document, document!

– Why Document?!
»  Expose decisions and communicate to others!
»  Easier to spot mistakes early!
»  Easier to estimate progress!

– What to document?!
»  Everything (but donʼt overwhelm people or no one will read)!

– Standardize!!
» One programming format: variable naming conventions, tab

indents,etc.!
» Comments (Requires, effects, modifies)—javadoc?!

Lec 7.18!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Suggested Documents for You to
Maintain"

•  Project objectives: goals, constraints, and priorities!
•  Specifications: the manual plus performance specs!

– This should be the first document generated and the last
one finished!

•  Meeting notes!
– Document all decisions!
– You can often cut & paste for the design documents!

•  Schedule: What is your anticipated timing?!
– This document is critical!!

•  Organizational Chart!
– Who is responsible for what task?!

Lec 7.19!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Use Software Tools"

•  Source revision control software (CVS, SVN, git)!
– Easy to go back and see history!
– Figure out where and why a bug got introduced!
– Communicates changes to everyone (use RCSʼs features)!

•  Use an Integrated Development Environment!
– Structured development model!

•  Use automated testing tools!
– Write scripts for non-interactive software!
– Use “expect” for interactive software!
– Microsoft rebuilt Vista, W7 kernels every night with the dayʼs

changes. Everyone ran/tested the latest software!
•  Use E-mail and instant messaging consistently to leave a

history trail!
Lec 7.20!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Integrated Development
Environments"

•  Structured Compile-Edit-Debug environment!
– Organizes top-level projects, folders, and  

files in a hierarchical structure!
– Makes it easy to find uses of variables, procedures, …!
– Formats code for easier interaction!
–  Interacts with version control infrastructure!

•  Projects consist of:!
– Files, interdependencies, configurations, version control

information, etc.!
– May also manage non-project information:!

» Global preferences, windows layout, search and navigation
history, local change history (like version control, but local
changes only)!

•  Different IDEs support different languages!
– MS Visual Studio (C/C++/C#/.NET), IBM Eclipse (Java)!

Page 6

Lec 7.21!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Test Continuously"
•  Integration tests all the time, not at 11pm 

on due date!!
– Write dummy stubs with simple functionality!

»  Letʼs people test continuously, but more work!
– Schedule periodic integration tests!

» Get everyone in the same room, check out code, build, and test.!
» Donʼt wait until it is too late!!

•  Testing types:!
– Unit tests: white-/black-box check each module in isolation

(use JUnit?)!
– Daemons: subject code to exceptional cases !
– Random testing: Subject code to random timing changes!

•  Test early, test later, test again!
– Tendency is to test once and forget; what if something

changes in some other part of the code?!

Lec 7.22!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Software Engineering Layers"

•  Process: framework of the required tasks!
– e.g., waterfall, extreme programming!

•  Methods: technical “how to”!
– e.g., design review, code review, testing, etc.!

•  Tools: automate processes and methods!

Process"

Methods"

Tools"

Lec 7.23!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Software Process"
•  Most projects follow recognized stages!

– From inception to completion!

•  These steps are a “software process”!
– Arrived at by trial and (lots of) error!
!

•  Process = how things are done!
–  In contrast to what is done!

•  Ideal Project (to me)!
– Core functionality is reasonably attainable!
– But extra features are cool and can be implemented as

time permits!

Lec 7.24!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Administrivia"
•  Proj 1 individual part and group design due Tue 9/27 11:59P!

•  Section changes posted to Piazza!

•  CSUA Hackathon Sept 23-24!
– The goal: code something cool! !
– What: 18 hour coding marathon in teams - great prizes like

iPad2ʼs!!
– When: Sept 23-24, i.e. 6pm Friday night to Saturday morning!
– Where: 4th floor Soda, Wozniak Lounge!
– Sponsor: Yahoo!!

Page 7

Lec 7.25!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

5min Break"

Lec 7.26!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Product"

Waterfall Process Phases"

Gather Requirements"

Specification"

Design"

Implementation"

Integration"

Testing
"

Lec 7.27!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

1. Gather Requirements"
•  Figure out what this thing is

supposed to do!
–  A raw list of features!
– Written down . . .!

•  Usually a good idea to talk
to users, clients, or
customers!!

–  But note, they donʼt always
know what they want!

•  Purpose: Make sure we
donʼt build the wrong thing!

Lec 7.28!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

2. Specification"

•  A written description of
what the system does!

–  In all circumstances!
»  For all inputs!
»  In each possible state!

– Donʼt assume correct
inputs or states!!

•  Because it covers all
situations, much more
comprehensive than
requirements!

Page 8

Lec 7.29!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

3. Design"

•  The system architecture!

•  Decompose system into
modules!

•  Specify interfaces
between modules!

•  Much more of how the
system works, rather than
what it does!

Lec 7.30!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

3. Design"

•  The system architecture!

•  Decompose system in
modules !

•  Specify interfaces
between modules!

•  Much more of how the
system works, rather than
what it does!

Lec 7.31!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

4. Implementation"

•  Code up the design!

•  First, make a plan!
–  The order in which things

will be done!
– Usually by priority!
–  Also for testability!

•  Test each module!

Lec 7.32!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

5. Integration"

•  Put the pieces together!

•  A major QA effort at this
point to test the entire
system!

Page 9

Lec 7.33!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

5. Integration"

•  Put the pieces together!

•  A major QA effort at this
point to test the entire
system!

Lec 7.34!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

6. Product"

•  Ship/Deploy and be happy!!

•  Actually, start maintenance…!

Lec 7.35!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

A Software Process"
•  This is called the waterfall model!

– One of the standard models for developing software!

•  Each stage leads on to the next!
– No iteration or feedback between stages!

Lec 7.36!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Waterfall Model"

Gather Requirements"

Specification"

Design"

Implementation"

Integration"

Product"

Page 10

Lec 7.37!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Waterfall Model (Contʼd)"
•  There is testing after each phase!

– Verify the requirements, the spec, the design!
– Not just the coding and the integration!

•  Note the top-down design!
– Requirements, spec, design!

•  Bottom-up implementation!
–  Implement, integrate, product!

Lec 7.38!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Waterfall Model (Discussion)"

•  What are the risks with the waterfall model?!

•  The major risks are (my opinions):!
– Relies heavily on being able to accurately assess

requirements at the start!

–  Little feedback from users until very late!
»  Unless they understand specification documents!

–  Problems in the specification may be found very late!
»  Coding or integration!

– Whole process can take a long time before the first working
version is seen!

Lec 7.39!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

My Opinions"
•  The waterfall model seems to be adopted from other

fields of engineering!
–  This is how to build bridges!

•  Not much software is truly built using the waterfall
process!

– Where is it most, least applicable?!

•  But many good aspects!
–  Emphasis on spec, design, testing!
–  Emphasis on communication through documents!

!

Lec 7.40!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

An Opinion on Time"
•  Time is the enemy of all software projects!

•  Taking a long time is inherently risky!

”It is hard to make predictions,

especially about the future”
- Yogi Berra

Page 11

Lec 7.41!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Why?"
•  The world changes, sometimes quickly!

•  Technologies become obsolete!
– Many products obsolete before they first ship!!

•  Other people produce competitive software!

•  Software usually depends on many 3rd-party pieces!
– Compilers, networking libraries, operating systems, etc.!
–  All of these are in constant motion!
– Moving slowly means spending lots of energy keeping up with

these changes!

Lec 7.42!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Case Study #1"
•  California DMV software (1987-1993)!

•  Attempt to merge driver & vehicle registration systems!
– Thought to take 6 years and $8 million!

•  Spent 7 years and $50 million before pulling the plug!
– Costs 6.5x initial estimate and expected delivery slipped to

1998 (or 11 years)!!

Lec 7.43!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Case Study #2"
•  FBI Virtual Case File system (2000-2003)!

– Trilogy project: thought to take 3 years and $380 million
(including PC and networking upgrades)!

•  Replace FBIʼs Automated Case Support (ACS) software!
– Developed in-house by the bureau, considered obsolete

when deployed in 1995…!
•  In 2002, Congress granted Trilogy another $123 million!

–  In 2004, contractor requests another $50m, FBI pays
contractor $16m to salvage system and another $2m to
perform external review!

•  In 2005, FBI scraps project!
– Continues to use “obsolete” ACS…!

Lec 7.44!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Flip Side: Advantages to Being Fast"
•  In the short-term, we can assume the world will not

change!
– At least not much!

•  Being fast greatly simplifies planning!
– Near-term predictions are much more reliable!

•  Unfortunately, the waterfall model does not lend itself
to speed…!

Page 12

Lec 7.45!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Something Faster: Rapid Prototyping"
•  Write a quick prototype!

•  Show it to users!
– Use to refine requirements!

•  Then proceed as in waterfall model!
– Throw away the prototype!
– Do spec, design, coding, integration, etc.!

Lec 7.46!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Fundamental Assumption"
•  We do not know much about the final product!

– No matter what we think!
– Environment will change!
– Requirements will change!
– Tools will change!
– Design will change!
– Better to roll with the punches than go for the KO!

»  (A terrible analogy)!

Lec 7.47!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Comments on Rapid Prototyping"
•  Hard to throw away the prototype!

– Slogan “the prototype is the product”!
– Happens more often than you might think!!
– Best way to avoid: write prototype in another language!

•  But prototyping is so useful!
– Much more realistic to show users a system rather than

specification documents!

Lec 7.48!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

More Comments"
•  A prototype exposes design mistakes!

–  “Man, this is a pain in the butt to code up, even in the
prototype”

•  Easy to do with web technologies!
– Scripting languages are flexible!
– Browsers are forgiving!
– Much of the glue (CGI, etc.) is already there!
– Ruby on Rails makes everything easy!

»  Even using a DBMS!

Page 13

Lec 7.49!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Opinions on Reality"
•  Neither of these models is true to life!

•  In reality, feedback between all stages!
– Specifications will demand refined requirements !
– Design can affect the specification!
– Coding problems can affect the design!
– Final product may lead to changes in requirements!

»  I.e., the initial requirements were incorrect!!

•  Waterfall model with “feedback loops”!
–  Iterative model!

Lec 7.50!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

What to Do?"
•  Accept that later stages may force changes in earlier

decisions!

•  And plan for it!!

•  The key: Minimize the risk!
– Recognize which decisions may need to be revised!
– Plan to get confirmation/refutation as soon as possible!

Lec 7.51!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Iterative Models: Plan for Change"
•  Use the same stages as the waterfall model!

•  But plan to iterate the whole cycle several times!
– Each cycle is a “build”!
– Smaller, lighter-weight than entire product!

•  Break the project into a series of builds which lead
from a skeletal prototype to a finished product!

•  This is the model we use in Berkeley research projects!!
– Also used by Microsoft (internally), Google, Facebook,

Twitter, and many others!

Lec 7.52!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Gather Requirements"
•  Same idea as before!

•  Talk to users, find out what
is needed!

•  But recognize diminishing
returns!

•  Without something to show,
probably cant get full
picture of requirements on
the first iteration!

Page 14

Lec 7.53!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Specification"

•  A written description of what
the system does!

–  In all circumstances!
»  For all inputs!
»  In each possible state!

– Donʼt assume correct inputs
or states!!

•  Still need this!
– Worth significant time!

•  Recognize it will evolve!
–  Be aware of what aspects are

under-specified!
Lec 7.54!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Design"

•  Decompose system into
modules and specify
interfaces!

•  Design for change!

•  Which parts are most
likely to change? !

–  Put abstraction there!

Lec 7.55!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Design"

•  Decompose system into
modules and specify
interfaces!

•  Design for change!

•  Which parts are most
likely to change? !

–  Put abstraction there!

Lec 7.56!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Design"

•  Plan incremental
development of each
module!

•  From skeletal component
to full functionality!

•  From most critical to least
critical features!

–  Example: Two engineers 
at Facebook implemented
photo sharing with just one
feature – tagging !

Page 15

Lec 7.57!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Implementation: Build 1"
•  Get a skeletal system working!

•  All the pieces are there, but
none of them do very much!

•  But the interfaces are
implemented!

•  This allows!
–  A complete system to be built!
– Development of individual

components to rely on all
interfaces of other components!

Lec 7.58!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Implementation: Subsequent Builds"

•  After build 1, always have a
demo to show (or product
to deploy)!

–  To customers!
–  To the team!
– Communication!!

•  Each build adds more
functionality!

Lec 7.59!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Integration"

•  Integration and major test
for each build!

•  Stabilization point!

•  Continues until “last” build!
–  But may begin shipping or

deploying earlier builds!

Lec 7.60!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Advantages"
•  Find problems sooner!

– Get early feedback from users!
– Get early feedback on whether spec/design are feasible!

•  More quantifiable than waterfall!
– When build 3 of 4 is done, product is 75% complete!
– What percentage have we completed at the

implementation stage of the waterfall model?!

Page 16

Lec 7.61!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Disadvantages"
•  Main risk is making a major mistake in requirements,

spec, or design!
– Because we donʼt invest as much time before build 1!
– Begin coding before problem is fully understood!

•  Trade this off against the risks of being slow!
– Often better to get something working and get feedback

on that rather than study problem in the abstract!

Lec 7.62!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

In Practice"
•  Most consumer software development uses the

iterative model!
– Daily builds!
– System is always working!
– Always getting feedback!
– Microsoft, Google, Facebook, Twitter are well-known

examples!

•  Many systems that are hard to test use something
more like a waterfall model!

– E.g., unmanned space probes!

Lec 7.63!9/21/11! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Conclusions"
•  Important to follow a good process!

•  Waterfall!
– Top-down design, bottom-up implementation!
– Lots of upfront thinking, but slow, hard to iterate!

•  Iterative, or evolutionary processes!
– Build a prototype quickly (and ship/deploy it), then evolve

it over time!
– Postpone some of the thinking!

