
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 11  
 

Reliability, Transport Protocols"

October 5, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 11.2!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Goals for Today"

•  Finish e2e argument & fate sharing!

•  Transport: TCP/UDP!
– Reliability!
– Flow control!

!

Lec 11.3!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example: Reliable File Transfer"

•  Solution 1: make each step reliable, and then
concatenate them!

•  Solution 2: end-to-end check and try again if
necessary!

OS

Appl.

OS

Appl.

Host A Host B

OK

Lec 11.4!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Discussion"

•  Solution 1 is incomplete!
– What happens if memory is corrupted?!
– Receiver has to do the check anyway!!

•  Solution 2 is complete!
– Full functionality can be entirely implemented at

application layer with no need for reliability from lower
layers!

•  Is there any need to implement reliability at lower
layers?!

– Well, it could be more efficient!

Page 2

Lec 11.5!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Summary of End-to-End Principle"

Implementing this functionality in the network:!
•  Doesn’t reduce host implementation complexity!
•  Does increase network complexity!
•  Probably imposes delay and overhead on all

applications, even if they don’t need functionality!

•  However, implementing in network can enhance
performance in some cases!

– E.g., very losy link!

Lec 11.6!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Conservative Interpretation of E2E"

•  Don’t implement a function at the lower levels of the
system unless it can be completely implemented at this
level!

•  Unless you can relieve the burden from hosts, don’t
bother!

Lec 11.7!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Moderate Interpretation"

•  Think twice before implementing functionality in the
network!

•  If hosts can implement functionality correctly,
implement it in a lower layer only as a performance
enhancement!

•  But do so only if it does not impose burden on
applications that do not require that functionality!

Lec 11.8!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Related Notion of Fate-Sharing!

•  Idea: when storing state in a distributed system, keep it
co-located with the entities that ultimately rely on the
state!

•  Fate-sharing is a technique for dealing with failure!
– Only way that failure can cause loss of the critical state is if the

entity that cares about it also fails ...!
– … in which case it doesn’t matter!

•  Often argues for keeping network state at end hosts
rather than inside routers!

–  In keeping with End-to-End principle!
–  E.g., packet-switching rather than circuit-switching!
–  E.g., NFS file handles, HTTP “cookies”!

Page 3

Lec 11.9!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Background: Definitions"

•  Link bandwidth (capacity): maximum rate (in bps) at
which the sender can send data along the link!

!
•  Propagation delay: time it takes the signal to travel from

source to destination!
– Round Trip Time (RTT): time it takes the signal to travel

from source to destination and back!

•  Packet transmission time: time it takes the sender to
transmit all bits of the packet!

Lec 11.10!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Background: Sending One Packet"

R	
 bits	
 per	
 second	
 (bps)	

T	
 seconds	

P	
 bits	

Bandwidth:	
 R	
 bps	

Propaga.on	
 delay:	
 T	
 sec	

3me	

Transmission	
 .me	
 =	
 P/R	

T	

Propaga.on	
 delay	
 =T	
 =	
 	
 Length/speed	

1m/speed	
 =	
 3.3	
 usec	
 in	
 free	
 space	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 4	
 usec	
 in	
 copper	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5	
 usec	
 in	
 fiber	

Lec 11.11!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Sending one Packet: Examples"

P	
 =	
 1	
 Kbyte	

R	
 =	
 1	
 Gbps	

100	
 Km,	
 fiber	
 =>	
 	

	
 	
 	
 T	
 =	
 500	
 usec	

	
 	
 	
 	
 P/R	
 =	
 1KB/1Gbps	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 =	
 8000b/109bps	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 =	
 10-­‐6sec	
 =	
 8	
 usec	

T	

P/R	

3me	

T	
 >>	
 P/R	

3me	

T	

P/R	

P	
 =	
 1	
 Kbyte	

R	
 =	
 100	
 Mbps	

1	
 Km,	
 fiber	
 =>	
 	

	
 	
 	
 	
 	
 T	
 =	
 5	
 usec	

	
 	
 	
 	
 	
 	
 P/R	
 =	
 80	
 usec	

T	
 <<	
 P/R	

Lec 11.12!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Reliable Transfer"

•  Retransmit missing packets!
– Numbering of packets and ACKs!

•  Do this efficiently!
– Keep transmitting whenever possible!
– Detect missing packets and retransmit quickly!

•  Two schemes!
– Stop & Wait!
– Sliding Window (Go-back-n and Selective Repeat)!

Page 4

Lec 11.13!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Detecting Packet Loss?"
•  Timeouts!

– Sender timeouts on not receiving ACK!

•  Missing ACKs!
– Sender ACKs each packet!
– Receiver detects a missing packet when seeing a gap in

the sequence of ACKs!
– Need to be careful! Packets and acks might be

reordered!

•  NACK: Negative ACK!
– Receiver sends a NACK specifying a packet its missing!

Lec 11.14!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Stop & Wait "
•  Send; wait for ack!
•  If timeout, retransmit; else repeat!

ACK

DATA

Time

Sender

Receiver

RTT Inefficient if
Trans. << RTT

Trans.

Lec 11.15!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Sliding Window"
•  window = set of adjacent sequence numbers!

•  The size of the set is the window size!

•  Assume window size is n!

•  Let A be the last ack’d packet of sender without gap; then window
of sender = {A+1, A+2, …, A+n} 
!

•  Sender can send packets in its window  
!

•  Let B be the last received packet without gap by receiver, then
window of receiver = {B+1,…, B+n} 
!

•  Receiver can accept out of sequence, if in window!

Lec 11.16!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Go-Back-n (GBN)"

•  Transmit up to n unacknowledged packets!

•  If timeout for ACK(k), retransmit k, k+1, …!

Page 5

Lec 11.17!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

GBN Example w/o Errors"

Time!

Window size = 3 packets!

Sender! Receiver!

1!{1}!
2!{1, 2}!
3!{1, 2, 3}!
4!{2, 3, 4}!
5!{3, 4, 5}!

Sender Window! Receiver Window!

{}!

6!{4, 5, 6}!
.!
.!
.!

.!

.!

.!

{}!
{}!

Lec 11.18!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

GBN Example with Errors"

Window size = 3 packets!

Sender! Receiver!

1!
2!
3!
4!
5!

{}!
{}!
{}!

6!
{5}!
{5,6}!

4 is !
missing!Timeout!

Packet 4!

4!
5!
6! {}!

Why doesnʼt
sender retransmit

packet 4 here?!Assume
packet 4

lost!!

Lec 11.19!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Selective Repeat (SR)"
•  Sender: transmit up to n unacknowledged packets;!

•  Assume packet k is lost!

•  Receiver: indicate packet k is missing!

•  Sender: retransmit packet k !

Lec 11.20!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

SR Example with Errors"

Time"

Sender" Receiver"

1"
2"
3"
4"
5"
6"

4"

7"

Nack = 4"

Window size = 3 packets"{1}"
{1, 2}"

{1, 2, 3}"
{2, 3, 4}"
{3, 4, 5}"
{4, 5, 6}"

{4,5,6}"

{7}"

Page 6

Lec 11.21!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Observations"

•  With sliding windows, it is possible to fully utilize a
link, provided the window size is large enough.
Throughput is ~ (n/RTT)!

– Stop & Wait is like n = 1.!

•  Sender has to buffer all unacknowledged packets,
because they may require retransmission!

•  Receiver may be able to accept out-of-order packets,
but only up to its buffer limits!

Lec 11.22!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Announcements"

•  Project 1 deadlines: !
– Code: Thursday, October 6, 11:59pm!
– Group evaluations: Friday, October 7, 11:59pm!

5 Minute Break"

!
Questions Before We Proceed?!

Lec 11.24!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Motivation for Transport Protocols"
•  IP provides a weak, but efficient service model (best-effort)!

–  Packets can be delayed, dropped, reordered, duplicated!
–  Packets have limited size (why?)!

•  IP packets are addressed to a host!
–  How to decide which application gets which packets?!

•  How should hosts send packets into the network?!
–  Too fast may overwhelm the network!
–  Too slow is not efficient!

Page 7

Lec 11.25!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Transport Layer"

•  Provide a way to decide which packets go to which
applications (multiplexing/demultiplexing)!

•  Can !
– Provide reliability, in order delivery, at most once delivery!
– Support messages of arbitrary length!
– Govern when hosts should send data  can implement

congestion and flow control!
!

Lec 11.26!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Congestion vs. Flow Control"

•  Flow Control – avoid overflowing the receiver!
•  Congestion Control – avoid congesting the network!

•  What is network congestion?!

Lec 11.27!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Transport Layer (cont’d)"

IP

Transport

A B C

[A | B | p1 | p2 | …]

p1 p2 p1 p2 p3 p1 p2

ports
Application

HTTP DNS SSH

UDP: Not reliable
TCP: Ordered, reliable, well-paced

Lec 11.28!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Ports"
•  Need	
 to	
 decide	
 which	
 applica3on	
 gets	
 which	
 packets	

•  Solu3on:	
 map	
 each	
 socket	
 to	
 a	
 port	

•  Client	
 must	
 know	
 server’s	
 port	

•  Separate	
 16-­‐bit	
 port	
 address	
 space	
 for	
 UDP	
 and	
 TCP	

–  (src_IP,	
 src_port,	
 dst_IP,	
 dst_port)	
 uniquely	
 iden3fies	
 TCP	
 connec3on	

•  Well	
 known	
 ports	
 (0-­‐1023):	
 everyone	
 agrees	
 which	
 services	
 run	
 on	
 these	
 ports	

–  e.g.,	
 ssh:22,	
 h_p:80	

–  On	
 UNIX,	
 must	
 be	
 root	
 to	
 gain	
 access	
 to	
 these	
 ports	
 (why?)	

•  Ephemeral	
 ports	
 (most	
 1024-­‐65535):	
 given	
 to	
 clients	

–  e.g.	
 chat	
 clients,	
 p2p	
 networks	

Page 8

Lec 11.29!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Headers"

•  IP header  used for IP routing, fragmentation, error detection!
•  UDP header  used for multiplexing/demultiplexing, error

detection!
•  TCP header  used for multiplexing/demultiplexing, flow and

congestion control !

IP"
TCP UDP"data"TCP/UDP"

data"TCP/UDP"IP"

Application"
Sender"

data"

IP"
TCP UDP"

Application"
Receiver"

data"TCP/UDP"
data"TCP/UDP"IP"

data"

Lec 11.30!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

UDP: User (Unreliable) Data Protocol"

•  Minimalist transport protocol!

•  Same best-effort service model as IP!

•  Messages up to 64KB!

•  Provides multiplexing/demultiplexing to IP!

•  Does not provide flow and congestion control!

•  Application examples: video/audio streaming !

Lec 11.31!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

UDP Service & Header"

•  Service:!
– Send datagram from (IPa, Port1) to (IPb, Port2)!
– Service is unreliable, but error detection possible!

•  Header:!

Source port" Destination port"
0" 16" 31"

UDP length" UDP checksum"
Payload (variable)"

• UDP length is UDP packet length !
(including UDP header and payload, but not IP header)!
• Optional UDP checksum is over UDP packet!

Lec 11.32!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP: Transport Control Protocol"

•  Reliable, in-order, and at most once delivery!

•  Stream oriented: messages can be of arbitrary length!

•  Provides multiplexing/demultiplexing to IP!

•  Provides congestion control and avoidance!

•  Application examples: file transfer, chat!

Page 9

Lec 11.33!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Service"

1)  Open connection: 3-way handshaking!

2)  Reliable byte stream transfer from (IPa,
TCP_Port1) to (IPb, TCP_Port2)!
•  Indication if connection fails: Reset!

3)  Close (tear-down) connection!

Lec 11.34!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Open Connection: 3-Way Handshaking"

•  Goal: agree on a set of parameters: the start
sequence number for each side!

– Starting sequence numbers are random!

Client (initiator)" Server"

SYN, SeqNum = x"

SYN and ACK, SeqNum = y and Ack = x + 1"

ACK, Ack = y + 1"

Active  
Open!

Passive  
Open!

connect()" listen()"

accept()"

allocate  
buffer space"

Lec 11.35!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

3-Way Handshaking (cont’d) "

•  Three-way handshake adds 1 RTT delay !

•  Why?!
– Congestion control: SYN (40 byte) acts as cheap probe!
– Protects against delayed packets from other connection

(would confuse receiver)!

Lec 11.36!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Close Connection (Two Generals Problem) "

•  Goal: both sides agree to close the connection!
•  Two-army problem: !

–  “Two blue armies need to simultaneously attack the white army to win;
otherwise they will be defeated. The blue army can communicate only across
the area controlled by the white army which can intercept the messengers.” !

•  What is the solution?!

Page 10

Lec 11.37!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Close Connection"

•  4-ways tear down connection!

FIN"
FIN ACK"

FIN"
FIN ACK"

Host 1" Host 2"

tim
eo

ut
"

  Avoid reincarnation"
  Can retransmit FIN ACK  
 if it is lost"

closed"

close"

close"

closed"

data"

Lec 11.38!10/5! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Summary"
•  Reliable transmission!

– S&W not efficient  Go-Back-n!
– What to ACK? (cumulative, …)!

•  UDP: Multiplex, detect errors!
•  TCP: Reliable Byte Stream!

– 3-way handshaking!

