
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 12  
 

Flow Control, DNS"

October 10, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 12.2!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Goals for Today"

•  Closing connection !
•  Flow control!
•  Retransmission timeout!
•  Domain Name Service (DNS)!

Lec 12.3!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Service"

1)  Open connection: 3-way handshaking!

2)  Reliable byte stream transfer from (IPa,
TCP_Port1) to (IPb, TCP_Port2)!

!
3)  Close (tear-down) connection!

Lec 12.4!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Close Connection (Two Generals Problem) "

•  Goal: both sides agree to close the connection!
•  Two-army problem: !

–  “Two blue armies need to simultaneously attack the white army to win;
otherwise they will be defeated. The blue army can communicate only across
the area controlled by the white army which can intercept the messengers.” !

•  What is the solution?!

Page 2

Lec 12.5!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Close Connection"

•  4-ways tear down connection!

FIN"
FIN ACK"

FIN"
FIN ACK"

Host 1" Host 2"

tim
eo

ut
"

  Avoid reincarnation"
  Can retransmit FIN ACK  
 if it is lost"

closed"

close"

close"

closed"

data"

Lec 12.6!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"
•  TCP: stream oriented protocol!

– Sender sends a stream of bytes, not packets (e.g., no
need to tell TCP how much you send)!

– Receiver reads a stream of bytes!

•  TCP flow control:!
– Sliding window protocol at byte (not packet) level!

» Go-back-N: TCP Tahoe, Reno, New Reno!
»  Selective acknowledgement (SR): TCP Sack !

– Receiver tells sender how many more bytes it can receive
without overflowing its buffer (i.e., AdvertisedWindow)!

– The ack(nowledgement) contains sequence number N of
next byte the receiver expects, i.e., receiver has received
all bytes in sequence up to and including N-1!

Lec 12.7!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

•  TCP/IP implemented by OS (Kernel)!
– TCP and application run in different processes!
– Cannot do context switching on sending/receiving every packet!

»  At 1Gbps, it takes 12 usec to send an 1500 bytes, and 0.8usec to
send an 100 byte packet !

•  Need buffers to match … !
– sending app with sending TCP!
–  receiving TCP with receiving app!

Sending Application" Receiving Application"

TCP layer! TCP layer!

IP layer! IP layer!
OS!

Lec 12.8!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

•  Three pairs of producer-consumer’s!
– sending app  sending TCP!
– sending TCP  receiving TCP!
–  receiving TCP  receiving app!

•  How is mutual exclusion implemented?!

Sending Application" Receiving Application"

TCP layer! TCP layer!

IP layer! IP layer!
OS!

Page 3

Lec 12.9!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

•  Example assumptions: !
– Maximum IP packet size = 100 bytes!
– Size of the receiving buffer (MaxRcvBuf) = 300bytes!

•  Use circular buffers, i.e., N’s byte is stored at (N mod
MaxRcvBuf) in the buffer!

•  Recall, ack indicates the next expected byte in-sequence, not
the last received byte !

!

Sending Application" Receiving Application"

TCP layer! TCP layer!

IP layer! IP layer!

300 bytes!

OS!

Lec 12.10!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

•  LastByteWritten: last byte written by the sending app !
•  LastByteSent: last byte sent by the sender!
•  LastByteAcked: last byte acked at the sender!
•  LastByteRcvd: last byte received at receiver!
•  NextByteExpected: last in-sequence byte expected by receiver!
•  LastByteRead: last byte read by the receiving app!

LastByteAcked(0)" LastByteSent(0)"

Sending Application"

NextByteExpected(1)"LastByteRcvd(0)"

LastByteRead(0)"

Receiving Application"

LastByteWritten(0)"

Lec 12.11!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

Receiving Application"

NextByteExpected" LastByteRcvd"

LastByteRead"

•  AdvertisedWindow: number of bytes the receiver can receive!

•  Sender window: number of bytes the sender can send!
!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)"

Sender window = AdvertisedWindow – (LastByteSent – LastByteAcked)"
MaxSendBuffer >= LastByteWritten - LastByteAcked"
"

LastByteAcked"

Sending Application"

LastByteWritten"

LastByteSent"

MaxRcvBuffer!

Lec 12.12!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

Receiving Application"

NextByteExpected" LastByteRcvd"

LastByteRead"

•  Still true if receiver missed data….!

•  Sender window: number of bytes the sender can send!
!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)"

Sender window = AdvertisedWindow – (LastByteSent – LastByteAcked)"
MaxSendBuffer >= LastByteWritten - LastByteAcked"
"

LastByteAcked"

Sending Application"

LastByteWritten"

LastByteSent"

MaxRcvBuffer!

Page 4

Lec 12.13!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

•  Sending app sends 350 bytes!
•  Recall: we assume IP only accepts packets no larger than

100 bytes!

LastByteAcked(0)" LastByteSent(0)"

Sending Application"

NextByteExpected(1)"LastByteRcvd(0)"

LastByteRead(0)"

Receiving Application"

LastByteWritten(350)"
1, 350!

Lec 12.14!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

1, 350!

TCP Flow Control"

LastByteAcked(0)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(350)"
101, 350!

LastByteSent(100)"

1,!
100!

NextByteExpected(101)"LastByteRcvd(100)"

1,
100!

Sender sends first packet (i.e., first 100
bytes) and receiver gets the packet!

Data[1,100]!{[1,100]}!
{[1,100]}!

Lec 12.15!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(0)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(350)"

LastByteSent(200)" NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Sender sends 2nd packet (i.e., next 100
bytes) and receiver gets the packet!

Data[101,200]!{[1,200]}!
{[1,200]}!

1,!
100! 101, 350!101,!

200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

1,
100!

Lec 12.16!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(0)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(350)"

LastByteSent(200)" NextByteExpected(201)"LastByteRcvd(200)"

1, 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 2nd packet (i.e., next 100
bytes) and receiver gets the packet!

Page 5

Lec 12.17!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(0)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(350)"

LastByteSent(300)" NextByteExpected(201)"LastByteRcvd(200)"

1, 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 3rd packet (i.e., next 100
bytes) and the packet is lost!

201,!
300!

{[1,300]}! Data[201,300]!

301,
350!

Lec 12.18!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(0)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(350)"

LastByteSent(300)" NextByteExpected(201)"LastByteRcvd(200)"

1, 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender stops sending as window full !
SndWin = AdvWin – (LastByteSent – LastByteAcked) = 0"

1,300!

{[1,300]}! Data[201,300]!

301,
350!

Lec 12.19!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(0)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(350)"

LastByteSent(300)" NextByteExpected(201)"LastByteRcvd(200)"

1, 200!101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Receiver sends ack for 1st packet (ack
indicates next byte expected by receiver)!

•  AdvWin (Advertised Window) = 200!

1,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

Lec 12.20!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(100)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(350)"

LastByteSent(300)" NextByteExpected(201)"LastByteRcvd(200)"

1, 200!101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

•  Sender receives ack for 1st packet (ack
indicates next byte expected by receiver)!

•  Receiver no longer needs first 100 bytes!

Page 6

Lec 12.21!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(100)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(350)"

LastByteSent(300)" NextByteExpected(201)"LastByteRcvd(200)"

1, 200!101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

Sender still cannot send as window full !
SndWin = AdvWin – (LastByteSent – LastByteAcked) = 0"

Lec 12.22!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(100)"

Sending Application"

LastByteRead(100)"

Receiving Application"

LastByteWritten(350)"

LastByteSent(300)" NextByteExpected(201)"LastByteRcvd(200)"

101,
200!101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender app reads 100 bytes"

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

1, !
100!

Lec 12.23!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(100)"

Sending Application"

LastByteRead(100)"

Receiving Application"

LastByteWritten(350)"

LastByteSent(300)" NextByteExpected(201)"LastByteRcvd(200)"

101,
200!101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Receiver sends ack for 2nd packet!
•  AdvWin (AdvertisedWindow) = 200 bytes!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

Lec 12.24!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(200)"

Sending Application"

LastByteRead(100)"

Receiving Application"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(200)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

Sender can now send new data! !
SndWin = AdvWin – (LasByteSent – LastByteAcked) = 100"

101,
200!

LastByteSent(300)"

Page 7

Lec 12.25!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(200)"

Sending Application"

LastByteRead(100)"

Receiving Application"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(300)"

301,
350!

Lec 12.26!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(200)"

Sending Application"

LastByteRead(100)"

Receiving Application"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(300)"

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

Lec 12.27!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(200)"

Sending Application"

LastByteRead(100)"

Receiving Application"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!201,
300!

301,
350!

101,
200!

301,
350!

LastByteSent(300)"

301,
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 2nd packet?! Lec 12.28!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(200)"

Sending Application"

LastByteRead(100)"

Receiving Application"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!201,
300!

301,
350!

101,
200!

301,
350!

LastByteSent(300)"

301,
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!

•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 2nd packet?!

Page 8

Lec 12.29!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(200)"

Sending Application"

LastByteRead(100)"

Receiving Application"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!201, 350!201,
300!

301,
350!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(300)"

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 2nd packet since itʼs in existing
window – wonʼt cause receiver window to grow !

Data[201,300]!{[201,350]}!
{[101,350]}!

201,
300!

Lec 12.30!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TCP Flow Control"

LastByteAcked(200)"

Sending Application"

LastByteRead(100)"

Receiving Application"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!201, 350!201,
300!

301,
350! 101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(300)"

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 2nd packet since itʼs in existing
window – wonʼt cause receiver window to grow !

Data[201,300]!{[201,350]}!
{[101,350]}!

Lec 12.31!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Recap: Packet-level Flow Control "
•  Implement flow control at packet level (see last lecture)!
•  Advertised window is 3 packets!
•  Ack packet specifies the seq. number of last packet

received in sequence!

1!{1}!
{1}!

{1,2,3}! 3!

2!{1,2}!
{1,2}  {2}!

ack=1, AdWin =2!

{2, 3}!
ack=2, AdWin = 2!

{3}!
4!{3,4}! {2,4}!

ack=2, AdWin = 0!

{3,4}! 3!
{2,3,4}!

Pkt 1 delivered
to app!

Lec 12.32!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Retransmission Timeout"
•  If haven’t received ack by timeout, retransmit packet

after last acked packet!

•  How to set timeout?!

Page 9

Lec 12.33!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Timing Illustration"

1"

1"

Timeout too long 
inefficiency

RTT"

Timeout"

1"

1"

Timeout too short 
duplicate packets

Timeout"
RTT"

Lec 12.34!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Retransmission Timeout (cont’d)"
•  If haven’t received ack by timeout, retransmit packet

after last acked packet!

•  How to set timeout?!
– Too long: connection has low throughput!
– Too short: retransmit packet that was just delayed!

»  Packet was probably delayed because of congestion!
»  Sending another packet too soon just makes congestion

worse!

•  Solution: make timeout proportional to RTT!
– Use exponential averaging to estimate RTT!

Lec 12.35!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

What did We Learn so Far?"
•  Packet switching (vs. circuit switching)!

– Store & forwarding: a packet is stored before being forwarded!
– Each packet is independently forwarded!

•  Statistical multiplexing: !
– Un-correlated bursty traffic  aggregate average is close to

the peak aggregate bandwidth!

•  Layering: network organization!

•  E2E argument: think twice before adding functionality at a
lower layer, do it if and only if!

–  Improves dramatically the performance of apps that need it!
– Doesnʼt hurt performance of apps that donʼt need it!

Lec 12.36!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

What did We Learn so Far? (cont’d)"
•  Opening & closing a connection!

•  Flow control!

•  Reliability!
– Stop & wait!
– Sliding window (Go-back-n, selective repeat)!
– Retransmission timeout!

Page 10

Lec 12.37!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Midterm"

•  Midterm: Thursday, October 13, 5-6:30pm in 155 Dwinelle!
– Up to and including lecture 11!
– Closed book, 1 cheat sheet (two sides)!

•  Materials: everything up to laste lecture, i.e., Lecture 11
(Reliability, TCP Connection Setup)!

•  Midterm review: Today, 7:30-9:30pm, 306 Soda Hall!

•  Ionʼs office hour change: !
– 11-12am  10-11am, Wednesday, October 12!
– Additional office hour: 6:30-7:30pm, Wednesday, October 12!

Lec 12.38!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

5min Break"

Lec 12.39!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Domain Name System (DNS)"
•  Concepts & principles underlying the Domain Name

System (DNS)!
–  Indirection: names in place of addresses!
– Hierarchy: in names, addresses, and servers!
– Caching: of mappings from names to/from addresses!

Lec 12.40!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!40

IP Addresses (IPv4)"

•  A unique 32-bit number!
•  Identifies an interface (on a host, on a router, …)!
•  Represented in dotted-quad notation. E.g, 12.34.158.5:!

00001100 00100010 10011110 00000101

12 34 158 5

Page 11

Lec 12.41!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Host Names vs. IP addresses"
•  Host names!

– Mnemonic name appreciated by humans!
– Variable length, full alphabet of characters!
– Provide little (if any) information about location!
– Examples: www.cnn.com and bbc.co.uk!

•  IP addresses!
– Numerical address appreciated by routers!
– Fixed length, binary number!
– Hierarchical, related to host location!
– Examples: 64.236.16.20 and 212.58.224.131!

Lec 12.42!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Separating Naming and Addressing"

•  Names are easier to remember!
– www.cnn.com vs. 64.236.16.20!

•  Addresses can change underneath!
– Move www.cnn.com to 64.125.91.21!
– E.g., renumbering when changing providers!

•  Name could map to multiple IP addresses!
– www.cnn.com to multiple (8) replicas of the Web site!
– Enables!

»  Load-balancing!
» Reducing latency by picking nearby servers!
»  Tailoring content based on requester’s location/identity!

•  Multiple names for the same address!
– E.g., aliases like www.cnn.com and cnn.com!

Lec 12.43!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Scalable (Name ↔ Address) Mappings"

•  Originally: per-host file!
– Flat namespace!
– /etc/hosts (what is this on your computer today?)!
– SRI (Menlo Park) kept master copy!
– Downloaded regularly!

•  Single server doesn’t scale!
– Traffic implosion (lookups & updates)!
– Single point of failure!
– Amazing politics!

Need a distributed, hierarchical collection of servers"
Lec 12.44!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Domain Name System (DNS)"
•  Properties of DNS!

– Hierarchical name space divided into zones!
– Zones distributed over collection of DNS servers!

•  Hierarchy of DNS servers!
– Root (hardwired into other servers)!
– Top-level domain (TLD) servers!
– Authoritative DNS servers!

•  Performing the translations!
– Local DNS servers!
– Resolver software!

Page 12

Lec 12.45!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Distributed Hierarchical Database"

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

Top-Level Domains (TLDs)

Lec 12.46!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

DNS Root"

•  Located in Virginia, USA!
•  How do we make the root scale?!

 Verisign, Dulles, VA

Lec 12.47!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

DNS Root Servers"

•  13 root servers (see http://www.root-servers.org/)!
–  Labeled A through M!

•  Does this scale?!

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium
 Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign

Lec 12.48!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

DNS Root Servers"

•  13 root servers (see http://www.root-servers.org/)!
–  Labeled A through M!

•  Replication via any-casting (localized routing for
addresses)!

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium,
 Palo Alto, CA
 (and 37 other locations)

I Autonomica, Stockholm
(plus 29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo
 plus Seoul, Paris,
 San Francisco

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign (21 locations)

Page 13

Lec 12.49!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

TLD and Authoritative DNS Servers"

•  Top-level domain (TLD) servers!
– Generic domains (e.g., com, org, edu)!
– Country domains (e.g., uk, fr, cn, jp)!
–  Special domains (e.g., arpa)!
–  Typically managed professionally!

» Network Solutions maintains servers for “com”!
»  Educause maintains servers for “edu”!

•  Authoritative DNS servers!
–  Provide public records for hosts at an organization!

»  Private records may differ, though not part of original
design’s intent!

–  For the organization’s servers (e.g., Web and mail)!
– Can be maintained locally or by a service provider!

Lec 12.50!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Using DNS"
•  Local DNS server (“default name server”)!

– Usually near the endhosts that use it!
– Local hosts configured with local server (e.g., /etc/
resolv.conf)!

•  Extract server name (e.g., from the URL)!
– Do gethostbyname() to trigger resolver code!

Lec 12.51!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

requesting host
cis.poly.edu gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server
 .edu

Example"

Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu!

Lec 12.52!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

How did it know the root server IP?"
•  Hard-coded!
•  What if it changes?!

Page 14

Lec 12.53!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

DNS Caching"
•  Performing all these queries takes time!

– And all this before actual communication takes place!
– E.g., 1-second latency before starting Web download!

•  Caching can greatly reduce overhead!
– The top-level servers very rarely change!
– Popular sites (e.g., www.cnn.com) visited often!
– Local DNS server often has the information cached!

•  How DNS caching works!
– DNS servers cache responses to queries!
– Responses include a “time to live” (TTL) field!
– Server deletes cached entry after TTL expires!

Lec 12.54!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Negative Caching"

•  Remember things that don’t work!
– Misspellings like www.cnn.comm and www.cnnn.com!
– These can take a long time to fail the first time!
– Good to remember that they don’t work!
– … so the failure takes less time the next time around!

•  But: negative caching is optional!
– And not widely implemented!

Lec 12.55!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

DNS Summary"

•  Distributed, hierarchical database!

•  Indirection gets us human-readable names, ability to change
address, etc.!

•  Caching to improve performance!

