
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 13  
 

Transactions"

October 12, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 13.2!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Goals for Today"
•  What is a database?!

•  Transactions!

•  Conflict serializability!

Note: Some slides and/or pictures in the following are"
adapted from lecture notes by Mike Franklin."

Lec 13.3!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

What is a Database "

•  A large integrated collection of data!

•  Models real world, e.g., enterprise!
– Entities (e.g., teams, games)!
– Relationships, e.g., !
 Cal plays against Stanford in The Big Game!
!

Lec 13.4!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Key Concept: Structured Data"
•  A data model is a collection of entities and their

relationships

•  A schema is an instance of a data model
–  E.g., describes the fields in the database; how the

database is organized

•  A relational data model is the most used data model
–  Relation, a table with rows and columns
–  Every relation has a schema which describes the fields

in the column

Page 2

Lec 13.5!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example: University Database"
•  Conceptual schema: !

Students(sid: string, name: string, age: integer, gpa:real)!
Courses(cid: string, cname:string, credits:integer) !
Enrolled(sid:string, cid:string, grade:string) !

!! !FOREIGN KEY sid REFERENCES Students!
!! !FOREIGN KEY cid REFERENCES Courses!

!
•  External Schema (View): !

Course_info(cid:string,enrollment:integer) !
!Create View Course_info AS!
!SELECT cid, Count (*) as enrollment !
!FROM Enrolled!
!GROUP BY cid!

Lec 13.6!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example: An Instance of Students
Relation"

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Lec 13.7!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

What is a Database System?"
!

•  A Database Management System (DBMS) is a
software system designed to store, manage, and
facilitate access to databases.!

•  A DBMS provides:!
– Data Definition Language (DDL)!

» Define relations, schema!
– Data Manipulation Language (DML)!

» Queries – to retrieve, analyze and modify data.!
– Guarantees about durability, concurrency, semantics,

etc!

Lec 13.8!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Key Concepts: Queries, Query Plans,
and Operators"

 System handles query
plan generation &
optimization; ensures
correct execution. !

SELECT sid, name, gpa
FROM Students S
WHERE S.gpa > 3

Students"

Select"

Projection"

"
Students"
Curses"

Enrolled"

Select all students with GPA > 3.0 !

Select all
students
with GPA>3 !

Pick columns:
(sid, name, gpa)!

Page 3

Lec 13.9!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Key Concepts: Queries, Query Plans,
and Operators"

 System handles query
plan generation &
optimization; ensures
correct execution. !

"
Students"
Curses"

Enrolled"

SELECT
 COUNT DISTINCT (E.sid)
FROM Enrolled E, Courses C
WHERE E.cid = C.cid

 AND C.credits = 4

Count distinct"

Select"

Enrolled"

Join"

Courses"

Number of students who take a 4
credit class !

Columns: !
(sid,cid,!
credits,…)!

Select rows
with credits=4!

Count distinct
sids!

Columns: !
(sid,cid,..)!

Columns: !
(cid,credits,..)!

Lec 13.10!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Key concept: Transaction"

•  An atomic sequence of database actions (reads/writes)!
•  Takes DB from one consistent state to another!

consistent state 1! consistent state 2!
transaction!

Lec 13.11!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example"

•  Here, consistency is based on our knowledge
of banking “semantics”!

•  In general, up to writer of transaction to
ensure transaction preserves consistency!

•  DBMS provides (limited) automatic
enforcement, via integrity constraints (IC)!

– e.g., balances must be >= 0!

checking: $200!
savings: $1000!

transaction! checking: $300!
savings: $900!

Lec 13.12!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

From Multiprogramming to Transactions"
•  Users would like the illusion of running their programs

on the machine alone!
– Why not running the entire program in a critical section?!

•  Users want fast response time and operators want to
increase machine utilization  increase concurrency!

–  Interleave executions of multiple programs!

•  How can DBMS help?!

Page 4

Lec 13.13!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Concurrent Execution & Transactions

•  Concurrent execution essential for good performance
–  Disk slow, so need to keep the CPU busy by working on

several user programs concurrently

•  DBMS only concerned about what data is read/written from/
to the database

– Not concerned about other operations performed by program
on data

•  Transaction - DBMS’s abstract view of a user program,
i.e., a sequence of reads and writes.

Lec 13.14!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Locking Granularity"
•  What granularity to lock?!

– Database!
– Tables!
– Rows!

•  Fine granularity (e.g., row)  high concurrency!
– Multiple users can update the database and same table

simultaneously!
•  Coarse granularity (e.g., database, table)  simple,

but low concurrency!

Database!
Table 1!

Row!

Table 2! Table 4!

Table 3!

Lec 13.15!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Transaction - Example

UPDATE accounts SET balance = balance -
100.00 WHERE name = 'Alice'; !

UPDATE branches SET balance = balance -
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Alice');!

UPDATE accounts SET balance = balance +
100.00 WHERE name = 'Bob'; !

UPDATE branches SET balance = balance +
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Bob');!

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account!
Lec 13.16!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The ACID properties of Transactions"
•  Atomicity: all actions in the transaction happen, or

none happen!

•  Consistency: if each transaction is consistent, and the
DB starts consistent, it ends up consistent!

•  Isolation: execution of one transaction is isolated from
that of all others!

•  Durability: if a transaction commits, its effects persist!

Page 5

Lec 13.17!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Atomicity"
•  A transaction

– might commit after completing all its operations, or
–  it could abort (or be aborted by the DBMS) after

executing some operations

•  Atomic Transactions: a user can think of a transaction
as always either executing all its operations, or not
executing any operations at all

–  DBMS logs all actions so that it can undo the actions of
aborted transactions

Lec 13.18!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Consistency"
•  Data in DBMS follows integrity constraints (ICs)

•  If DBMS is consistent before transaction, it will be after

•  System checks ICs and if they fail, the transaction rolls
back (i.e., is aborted)

– DBMS enforces some ICs, depending on the ICs declared in
CREATE TABLE statements

– Beyond this, DBMS does not understand the semantics of the
data (e.g., it does not understand how the interest on a
bank account is computed)

Lec 13.19!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Isolation"
•  Each transaction executes as if it was running by itself

–  Concurrency is achieved by DBMS, which interleaves
operations (reads/writes of DB objects) of various
transactions

•  Techniques:
–  Pessimistic – don’t let problems arise in the first place
–  Optimistic – assume conflicts are rare, deal with them after

they happen.

Lec 13.20!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Durability"
•  Data should survive in the presence of!

– System crash!
– Disk crash  need backups!

•  All committed updates and only those updates are reflected in the
database

–  Some care must be taken to handle the case of a crash
occurring during the recovery process!

Page 6

Lec 13.21!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

This Lecture"
•  Deal with (I)solation, by focusing on concurrency

control

•  Next lecture focus on (A)tomicity, and partially on (D)

urability

Lec 13.22!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example"
•  Consider two transactions:!

– T1: moves $100 from account A to account B!
! ! !!
!!

– T2: moves $50 from account B to account A!

!
•  Each operation consists of (1) a read, (2) an addition/

subtraction, and (3) a write !
•  Example: A = A-100!

!

T1:A := A-100; B := B+100; !

Read(A); // R(A)
A := A – 100;

Write(A); // W(A)

T2:A := A+50; B := B-50; !

Lec 13.23!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example (cont’d)"
•  Database only sees reads and writes!

!
•  Assume initially: A = $1000 and B = $500!
•  What is the legal outcome of running T1 and T2?!

– A = $950!
– B = $550 !

T1:R(A),W(A),R(B),W(B)!T1: A:=A-100; B:=B+100; ! !

T2:R(A),W(A),R(B),W(B)!T2: A:=A+50; B:=B-50; ! !

Database View!

Lec 13.24!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example (cont’d)"

•  What is the outcome of the following execution?!

•  What is the outcome of the following execution?!

T1:R(A),W(A),R(B),W(B)
T2: R(A),W(A),R(B),W(B) !

T1: R(A),W(A),R(B),W(B)
T2:R(A),W(A),R(B),W(B) ! B=550!A=950!

B=450!A=1050!

A=900! B=600!
A=950! B=550!

T1: A:=A-100; B:=B+100; !

T2: A:=A+50; B:=B-50; !

Initial values:!
A:=1000
B:=500

Page 7

Lec 13.25!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example (cont’d)"

•  What is the outcome of the following execution?!

•  What is the outcome of the following execution?!

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A),R(B),W(B) !

T1:R(A), W(A),R(B),W(B)
T2: R(A),W(A),R(B),W(B) !B=550!A=900!

B=450!A=1050!

A=900!
A=950! B=450!

B=550!

T1: A:=A-100; B:=B+100; !

T2: A:=A+50; B:=B-50; !

Lost $50!"

Initial values:!
A:=1000
B:=500

Lec 13.26!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Transaction Scheduling"
•  Why not run only one transaction at a time?!

•  Answer: low system utilization!
– Two transactions cannot run simultaneously even if they

access different data!

•  Goal of transaction scheduling:!
– Maximize system utilization, i.e., concurency!

»  Interleave operations from different transactions!
– Preserve transaction semantics!

»  Logically the sequence of all operations in a transaction
are executed atomically!

»  Intermediate state of a transaction is not visible to other
tranasctions !

!
!

Lec 13.27!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Midterm"

•  Midterm: Thursday, October 13, 5-6:30pm in 155 Dwinelle!
– Up to and including lecture 11!
– Closed book, 1 cheat sheet (hand written, two sides)!

•  Extra office hours (right after the lecture):!
– Anthony: 5:30-6:30pm, 465 Soda Hall!
–  Ion: 6:30-7:30pm, 465 Soda Hall!

Lec 13.28!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

5min Break"

Page 8

Lec 13.29!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Transaction Scheduling"
•  Serial schedule: A schedule that does not interleave

the operations of different transactions!
– Transactions run serially (one at a time)!

!
•  Equivalent schedules: For any database state, the

effect (on the database) and output of executing the
first schedule is identical to the effect of executing the
second schedule!

!
•  Serializable schedule: A schedule that is equivalent

to some serial execution of the transactions!
–  Intuitively: with a serializable schedule you only see

things that could happen in situations where you were
running transactions one-at-a-time!

Lec 13.30!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Anomalies with Interleaved Execution "
•  May violate transaction semantics, e.g., some data

read by the transaction changes before committing!

•  Inconsistent database state, e.g., some updates are
lost!

•  Anomalies always involves a “write”; Why?!

Lec 13.31!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Anomalies with Interleaved Execution "
•  Read-Write conflict (Unrepeatable reads)!

•  Violates transaction semantics!
•  Example: Mary and John want to buy a TV set on

Amazon but there is only one left in stock!
–  (T1) John logs first, but waits…!
–  (T2) Mary logs second and buys the TV set right away!
–  (T1) John decides to buy, but it is too late…!

T1:R(A), R(A),W(A)
T2: R(A),W(A) !

Lec 13.32!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Anomalies with Interleaved Execution "
•  Write-read conflict (reading uncommitted data)!

•  Example: !
–  (T1) A user updates value of A in two steps!
–  (T2) Another user reads the intermediate value of A,

which can be inconsistent!
– Violates transaction semantics since T2 is not supposed

to see intermediate state of T1 !
!

T1:R(A),W(A), W(A)
T2: R(A), … !

Page 9

Lec 13.33!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Anomalies with Interleaved Execution "
•  Write-write conflict (overwriting uncommitted data)!

•  Get T1’s update of B and T2’s update of A!
•  Violates transaction serializability!
•  If transactions were serial, you’d get either:!

– T1’s updates of A and B!
– T2’s updates of A and B!

T1:W(A), W(B)
T2: W(A),W(B) !

Lec 13.34!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Conflict Serializable Schedules
•  Two operations conflict if they

– Belong to different transactions
– Are on the same data
– At least one of them is a write.

•  Two schedules are conflict equivalent iff:
–  Involve same operations of same transactions
– Every pair of conflicting operations is ordered the same way

•  Schedule S is conflict serializable if S is conflict equivalent
to some serial schedule

Lec 13.35!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Conflict Equivalence – Intuition"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

•  Example:!
T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A), R(B),W(B) !

T1:R(A),W(A), R(B), W(B)
T2: R(A), W(A), R(B),W(B) !

T1:R(A),W(A),R(B), W(B)
T2: R(A),W(A), R(B),W(B) !

Lec 13.36!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Conflict Equivalence – Intuition (cont’d)"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

•  Example:!
T1:R(A),W(A),R(B), W(B)
T2: R(A),W(A), R(B),W(B) !

T1:R(A),W(A),R(B), W(B)
T2: R(A), W(A),R(B),W(B) !

T1:R(A),W(A),R(B),W(B)
T2: R(A), W(A),R(B),W(B) !

Page 10

Lec 13.37!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Conflict Equivalence – Intuition (cont’d)"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

•  Is this schedule serializable?!

T1:R(A), W(A)
T2: R(A),W(A), !

Lec 13.38!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Dependency Graph

•  Dependency graph:
– Transactions represented as nodes
– Edge from Ti to Tj:

»  an operation of Ti conflicts with an operation of Tj
»  Ti appears earlier than Tj in the schedule

•  Theorem: Schedule is conflict serializable if and only if
its dependency graph is acyclic

Lec 13.39!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example

•  Conflict serializable schedule:

•  No cycle!

T1 T2
A

Dependency graph!
B

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A), R(B),W(B) !

Lec 13.40!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example

•  Conflict that is not serializable:

•  Cycle: The output of T1 depends on T2, and vice-
versa

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A),R(B),W(B) !

T1 T2
A

B

Dependency graph!

Page 11

Lec 13.41!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Notes on Conflict Serializability"
•  Conflict Serializability doesn’t allow all schedules that

you would consider correct
– This is because it is strictly syntactic - it doesn’t consider

the meanings of the operations or the data

•  In practice, Conflict Serializability is what gets used,
because it can be done efficiently

– Note: in order to allow more concurrency, some special
cases do get implemented, such as for travel
reservations, …

•  Two-phase locking (2PL) is how we implement it (next
lecture)

Lec 13.42!10/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Summary"
•  Transaction: a sequence of DB operations

•  ACID:
–  Atomicity: all operations in a transaction happen, or none happens
–  Consistency: if DB starts consistent, it ends up consistent
–  Isolation: execution of one transaction is isolated from another
–  Durability: the results of a transaction persists!

•  Correctness criterion for transactions is “serializability”.
–  In practice, we use “conflict serializability”, which is somewhat more

restrictive but easy to enforce.

