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Review: Transactions

» An atomic sequence of database actions (reads/writes)

« ACID properties

— Atomicity: all actions in the transaction happen, or none
happens

— Consistency: if each transaction is consistent, and the
DB starts consistent, it ends up consistent

— Isolation: execution of one transaction is isolated from
that of all others

— Durability: if a transaction commits, its effects persist
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Goals for Today

+ Two-phase locking

+ Two-phase commit

Note: Some slides and/or pictures in the following are
adapted from lecture notes by Mike Franklin.
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Review: Concurrent Transactions

» How do you run multiple concurrent transactions?

« One transaction at a time? Just execute each
transaction in a critical sections?

+ NO: low system utilization and large response time
— Two transactions cannot run simultaneously even if they
access different data
— If a transaction waits for I/O operation, another
transaction may not be able to use CPU
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Review: Goals of Transaction Scheduling

+ Maximize system utilization, i.e., concurrency
— Interleave operations from different transactions

* Preserve transaction semantics
— Emulate a serial schedule, i.e., one transaction runs at a time
Ti:R, W, R, W T2:R,W,R, R, W

|

/\

Serial schedule (T1, then T2): Serial schedule (T2, then T1):
R,W,R,W,R, W, R, R, W R,W,R,R,W,R, W, R, W

\ J
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Locks
e “Locks” to control access to data

¢ Two types of locks:

— shared (S) lock — multiple concurrent transactions
allowed to operate on data

— exclusive (X) lock — only one transaction can operate
on data at a time

Lock
Compatibility |S |/ |~
Matrix
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Review: Transaction Scheduling

+ Last lecture answered question:

—Is a given schedule equivalent to a serial execution of
transactions? In particular, is a given schedule conflict-
serializable?

Schedule: R, R, W, W, R, R, R, W, W

Serial schedule (T1, then T2): Serial schedule (T2, then T1):
R,W,R,W,R, W, R, R, W R,W,R,R,W,R, W, R, W

+ This lecture: how to come up with a conflict-
seralizable schedule?
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Two-Phase Locking (2PL)

1) Each transaction must obtain:
- S (shared) or X (exclusive) lock on data before reading,
- X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks

Thus, each transaction has a “growing phase” followed by a

“shrinking phase” i, Lock Point!
[ Growing A Shrinking
| Phase ! Phase
1

# Locks Held
o = N W A

1.8 5 7 9 11 13115 17 19 Time
1

I
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Two-Phase Locking (2PL)

¢ 2PL guarantees conflict serializability
« Doesn’ t allow dependency cycles. Why?

« Answer: a dependency cycle leads to deadlock
- Assume there is a cycle between Ti and Tj
- Edge from Ti to Tj: Ti acquires lock first and Tj needs to wait
- Edge from Tj to Ti: Tj acquires lock first and Ti needs to wait
- Thus, both Ti and Tj wait for each other

- Since with 2PL neither Ti nor Tj release locks before acquiring
all locks they need > deadlock

« Schedule of conflicting transactions is conflict equivalent to a
serial schedule ordered by “lock point”
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Example

« T1 transfers $50 from account A to account B

’Tl:Read(A) ,A:=A-50,Write (A),Read(B),B:=B+50,Write (B) ‘

+ T2 outputs the total of accounts A and B

]Tz :Read (A) , Read (B) , PRINT (A+B) \

« Initially, A = $1000 and B = $2000

+ What are the possible output values?
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Lock Management

Lock Manager (LM) handles all lock and unlock requests
— LM contains an entry for each currently held lock

« When lock request arrives see if anyone else holds a conflicting lock
- If not, create an entry and grant the lock
- Else, put the requestor on the wait queue

Locking and unlocking are atomic operations

Lock upgrade: shared lock can be upgraded to exclusive lock
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Is this a 2PL Schedule?
1| Lock_X(A) <granted>
2| Read(A) Lock_S(A)
3 |A: = A-50
4 | Write(A)
5 | Unlock(A) <granted>
6 Read(A)
7 Unlock(A)
8 Lock_S(B) <granted>
9 | Lock_X(B)
10 Read(B)
11 <granted> Unlock(B)
12 PRINT(A+B)
13 | Read(B)
14| B:=B +50
15 | Write(B)
16 | Unlock(B)
No, and it is not serializable
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Is this a 2PL Schedule?

1| Lock_X(A) <granted>

2| Read(A) Lock_S(A)

3 |A: = A-50

4 | Write(A)

5 | Lock_X(B) <granted>

6 | Unlock(A) <granted>
7 Read(A)

8 Lock_S(B)

9 | Read(B)

10| B:=B +50

11 | Write(B)

12 | Unlock(B) <granted>
13 Unlock(A)

14 Read(B)

15 Unlock(B)

16 PRINT(A+B)

Yes, so it is serializable
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Strict 2PL (cont’ d)

All locks held by a transaction are released only when
the transaction completes

In effect, “shrinking phase” is delayed until:

a) Transaction has committed (commit log record on
disk), or

b) Decision has been made to abort the transaction
(then locks can be released after rollback).
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Cascading Aborts

+ Example: T1 aborts
— Note: this is a 2PL schedule

T1:R(A),W(R),
T2: R(A) ,W(A)

R(B),W(B), Abort

» Rollback of T1 requires rollback of T2, since T2 reads
a value written by T1

+ Solution: Strict Two-phase Locking (Strict 2PL):
same as 2PL except

— All locks held by a transaction are released only when
the transaction completes
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Is this a Strict 2PL schedule?
1 | Lock_X(A) <granted>
2 | Read(A) Lock_S(A)
3| A: = A-50
4 | Write(A)
5| Lock_X(B) <granted>
6 | Unlock(A) <granted>
7 Read(A)
8 Lock_S(B)
9 | Read(B)
10| B:=B +50
11 | Write(B)
12 | Unlock(B) <granted>
13 Unlock(A)
14 Read(B)
15 Unlock(B)
16 PRINT(A+B)
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Is this a Strict 2PL schedule?

1 | Lock_X(A) <granted>

2 | Read(A) Lock_S(A)

3 |A: = A-50

4 | Write(A)

5 | Lock_X(B) <granted>

6 | Read(B)

7 |(B:=B+50

8 | Write(B)

9 | Unlock(A)

10 | Unlock(B) <granted>
11 Read(A)

12 Lock_S(B) <granted>
13 Read(B)

14 PRINT(A+B)

15 Unlock(A)

16 Unlock(B)
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Deadlock Prevention

¢ Prevent circular waiting

¢ Assign priorities based on timestamps. Assume Ti
wants a lock that Tj holds. Two policies are possible:

- Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti
aborts

- Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits

o If a transaction re-starts, make sure it gets its original
timestamp

- Why?
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Deadlock

» Recall: if a schedule is not conflict-serializable, 2PL
leads to deadlock, i.e.,

— Cycles of transactions waiting for each other to release
locks

+ Recall: two ways to deal with deadlocks
— Deadlock prevention
— Deadlock detection

+ Many systems punt problem by using timeouts instead
— Associate a timeout with each lock
— If timeout expires release the lock
— What is the problem with this solution?

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.18

1017

Deadlock Detection

¢ Allow deadlocks to happen but check for them and fix
them if found

¢ Create a wait-for graph:
- Nodes are transactions

- There is an edge from Ti to Tj if Ti is waiting for Tj to
release a lock

e Periodically check for cycles in the waits-for graph

o If cycle detected — find a transaction whose removal
will break the cycle and kill it
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Deadlock Detection (Continued)

e Example:

e T1l:
e T2:
e T3:
e T4:

X (C)
S(D),S(C), X (A)
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Solution: New Lock Modes, Protocol

« Allow transactions to lock at each level, but with a ~ Patabase

special protocol using new “intention” locks:

o Still need S and X locks, but before locking an item,
transaction must have proper intention locks on all pages
its ancestors in the granularity hierarchy ‘

Tables

Tuples
IS — Intent to get S lock(s) at finer IS | IX|SIX]S | X
granularity slvIivivIiv]-
IX — Intent to get X lock(s) at finer
granularity X|VIV]-[-]-
SIX mode: Like S & IX at the same six| V -1 -1-
time. Why useful? s |V v
X - - — - -
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Multiple-Granularity Locks

¢ Hard to decide what granularity to lock , e.g.,
— Tuples (rows), pages, tables

e Shouldn’ t have to make same decision for all
transactions!

e Data “containers” are nested:

Database
Data‘lbase Table 1 Table 3
nit of
. Tables Unit o P
contains ‘ storage,
Pages caching Table 2 Table 4
Tuples (Rows)
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Multiple Granularity Lock Protocol

. Datab
* Each transaction starts from the root of the ? T e
hierarchy Tak‘)les
e To get S or IS lock on a node, must hold IS or IX Pages
on parent node \
— What if transaction holds SIX on parent? Tuples
e To get X or IX or SIX on a node, must hold IX or
SIX on parent node.
e Must release locks in bottom-up order
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Examples — 2 level hierarchy

e T1 scans table R, and updates few tuples: Tables
—T1 gets an SIX lock on R, then get X lock \
on tuples that are updated. Tuples

e T2 reads only part of R:

— T2 gets an IS lock on R, and repeatedly
gets an S lock on tuples of R

1s| Ix[six| s | x
e T3 reads all of R:
—T3 gets an S lock on R SIVIVIVLY
—OR, T3 could behave like T2; can LIRVARTE
use lock escalation to decide which one SX| v
— Lock escalation dynamically asks for s |V v
coarser-grain locks when too many low X
level locks acquired
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The “Phantom” Problem

¢ With Insert and Delete, even Strict 2PL (on individual items)
will not assure serializability

¢ Consider T1 — “Find oldest sailor”
—T1 locks all records, and finds oldest sailor (age = 71).
— Next, T2 inserts a new sailor; age = 96 and commits

—T1 (within the same transaction) checks for the oldest sailor
again and finds sailor aged 96!!

« The sailor with age 96 is a “phantom tuple” from T1’ s point
of view — first it’ s not there then it is

» No serial execution where T1's result could happen!
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The “Phantom” Problem — Example 2

¢ Consider T3 — “Find oldest sailor for each rating”

— T3 locks all pages containing sailor records with rating = 1,
and finds oldest sailor (say, age = 71)

— Next, T4 inserts a new sailor; rating = 1, age = 96.

— T4 also deletes oldest sailor with rating = 2 (and, say, age =
80), and commits

— T3 now locks all pages containing sailor records with rating =
2, and finds oldest (say, age = 63)

e T3 saw only part of T4’ s effects!

 No serial execution where T3’ s result could happen!
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The Problem

e T1 and T3 implicitly assumed they had locked the set of all
sailor records satisfying a predicate
— Assumption only holds if no sailor records are added while they
are executing!
— Need some mechanism to enforce this assumption, e.g, Index
locking and predicate locking

— Index: data structure to allow fast access to tuples; has to be
updated when a new tuple is created or removed

e Examples show that conflict serializability on reads and
writes of individual items guarantees serializability only if the
set of objects is fixed!
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Predicate Locking (not practical)

¢ Grant lock on all records that satisfy some logical
predicate, e.g., age > 2*salary

« Index locking is a special case of predicate locking for
which an index supports efficient implementation of
the predicate lock

¢ In general, predicate locking has a lot of locking

overhead
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Index Locking

a Data

r=1

¢ T3 should lock the index page containing the
data entries with rating = 1

— If there are no records with rating = 1, T3 must
lock the index page where such a data entry would
be, if it existed!

¢ If there is no suitable index, T3 must lock table,
to ensure that no records with rating = 1 are
added or deleted
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Atomicity and Durability

* How do you make sure transaction results persist in
the face of failures (e.g., disk failures)?

* Replicate database
— Commit transaction to each replica

+ What happens if you have failures during a transaction
commit?
— Need to ensure atomicity: either transaction is committed
on all replicas or none at all
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Two Phase (2PC) Commit

« 2PC is a distributed protocol

+ High-level problem statement

— If no node fails and all nodes are ready to commit, then
all nodes COMMIT

— Otherwise ABORT at all nodes

+ Developed by Turing award winner Jim Gray (first
Berkeley CS PhD, 1969)
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2PC Algorithm

* One coordinator
+ N workers (replicas)

+ High level algorithm description
— Coordinator asks all workers if they can commit

— If all workers reply "VOTE-COMMIT”, then coordinator
broadcasts "GLOBAL-COMMIT”,

Otherwise coordinator broadcasts "GLOBAL-ABORT”
— Workers obey the GLOBAL messages
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Detailed Algorithm

Coordinator Algorithm Worker Algorithm
Coordinator sends VOTE-REQ to all
workers
— Wait for VOTE-REQ from coordinator
— If ready, send VOTE-COMMIT to
coordinator
/) - If not ready, send VOTE-ABORT to
— If receive VOTE-COMMIT from all N coordinator
workers, send GLOBAL-COMMIT to — And immediately abort
all workers

— If doesn’t receive VOTE-COMMIT
from all N workers, send GLOBAL-

ABORT to all workers

— If receive GLOBAL-COMMIT then

commit
— If receive GLOBAL-ABORT then abort
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Failure Free Example Execution

coordinator

VOTE- GLOBAL-
worker 1 REQ coMmMmiT
worker 2

VOTE-
worker 3 coMMIT
time
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State Machine of Coordinator

+ Coordinator implements simple state machine

INIT

Recv: START
Send: VOTE-REQ

WAIT

Recv: VOTE-COMMIT
Send: GLOBAL-COMMIT

Recv: VOTE-ABORT
Send: GLOBAL-ABORT

{ ABORT J {COMMITJ

Lec 14.37
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Dealing with Worker Failures

* How to deal with worker failures?

— Failure only affects states in which the node is waiting for
messages

— Coordinator only waits for votes in "WAIT” state
—In WAIT, if doesn’t receive
N votes, it times out and sends
GLOBAL-ABORT Recv: START
Send: VOTE-REQ

WAIT

Recv: VOTE-COMMIT
Send: GLOBAL-COMI

Recv: VOTE-ABORT
Send: GLOBAL-ABORT

[ ABORT } [COMMIT}

Lec 14.39
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State Machine of workers

INIT

Recv: VOTE-REQ Recv: VOTE-REQ
Send: VOTE-ABORT” | go 4. yOTE-COMMIT

READY

Recv: GLOBAL-ABORT Recv: GLOBAL-COMMIT

[ ABORT } {COMMITJ
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Example of Worker Failure
(war
coordinator timeout
GLOBAL-
VOTE-REQ ABORT
worker 1
VOTE-
worker 2 coMmMIT
worker 3 f time
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Dealing with Coordinator Failure

+ How to deal with coordinator failures?
— worker waits for VOTE-REQ in INIT
» Worker can time out and abort (coordinator handles it)
— worker waits for GLOBAL-* message in READY
» |f coordinator fails, workers must
BLOCK waiting for coordinator
to recover and send
GLOBAL_* message

INIT
Recv: VOTE-REQ Recv: VOTE-REQ
Send: VOTE-ABORT™ | g0, yOTE-COMMIT

READY

Recv: GLOBAL-ABORT Recv: GLOBAL-COMMIT|

[ ABORT } [COMMIT}

Lec 14.41
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Example of Coordinator Failure #2

READY

icoordinator restarted

VOTE-REQ
worker 1
VOTE- GLOBAL-
worker 2 COMMIT BORT
block waiting for
worker 3 coordinator
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Example of Coordinator Failure #1

READY

coordinator \4\\
VOTE-
X

REQ i
worker 1 tfimeout
VOTE-
: ABORT
worker 2 timeout
worker 3 timeout
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Remembering Where We Were

+ All nodes use stable storage to store which state they
were in

+ Upon recovery, it can restore state and resume:
— Coordinator aborts in INIT, WAIT, or ABORT
— Coordinator commits in COMMIT
— Worker aborts in INIT, READY, ABORT
— Worker commits in COMMIT
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Blocking for Coordinator to Recover

+ A worker waiting for global decision
can ask fellow workers about their
state

— If another worker is in ABORT or
COMMIT state then coordinator must
have sent GLOBAL-*

— Thus, worker can safely abort or
commit, respectively

Recv: VOTE-REQ /| gocy: VOTE-REQ
Send: VOTE-ABORT | 5o g: yOTE-COMMIT

READY
Recv: GLOBAL-ABORT Recv: GLOBAL-COMMIT|
— If another worker is still in INIT state { } { }
then both workers can decide to abort ABORT commIT

— If all workers are in ready, need to
BLOCK (don’t know if coordinator
wanted to abort or commit)

10117
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Summary

Two phase locking (2PL) and strict 2PL
— Ensure conflict-seriazability for R/W operations
— If scheduler not conflict-serializable deadlocks
— Deadlocks can be either prevented or prevented

Must be careful if objects can be added or removed
from databse (“phantom problem”)

Multiple granularity locking to improve concurrency

Two-phase commit (2PC):

— Ensure atomicity and durability: a transaction is
commited/aborted either by all replicas or by none of
them
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