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Goals for Today"
•  Two-phase locking!

•  Two-phase commit!

Note: Some slides and/or pictures in the following are"
adapted from lecture notes by Mike Franklin."
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Review: Transactions"
•  An atomic sequence of database actions (reads/writes)!

•  ACID properties!
– Atomicity: all actions in the transaction happen, or none 

happens!
– Consistency: if each transaction is consistent, and the 

DB starts consistent, it ends up consistent!
–  Isolation: execution of one transaction is isolated from 

that of all others!
– Durability: if a transaction commits, its effects persist!
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Review: Concurrent Transactions"
•  How do you run multiple concurrent transactions?!

•  One transaction at a time? Just execute each 
transaction in a critical sections?!

•  NO: low system utilization and large response time !
– Two transactions cannot run simultaneously even if they 

access different data!
–  If a transaction waits for I/O operation, another 

transaction may not be able to use CPU !
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Review: Goals of Transaction Scheduling"

•  Maximize system utilization, i.e., concurrency!
–  Interleave operations from different transactions!

•  Preserve transaction semantics!
– Emulate a serial schedule, i.e., one transaction runs at a time !
!
! T1: R, W, R, W! T2: R, W, R, R, W!

R, W, R, W, R, W, R, R, W!
Serial schedule (T1, then T2):!

R, W, R, R, W, R, W, R, W!
Serial schedule (T2, then T1):!
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Review: Transaction Scheduling"

•  Last lecture answered question: !
–  Is a given schedule equivalent to a serial execution of 

transactions?  In particular, is a given schedule conflict-
serializable?!

•  This lecture: how to come up with a conflict-
seralizable schedule?!

R, W, R, W, R, W, R, R, W! R, W, R, R, W, R, W, R, W!

R, R, W, W, R, R, R, W, W!Schedule:!

Serial schedule (T1, then T2):!
:!

Serial schedule (T2, then T1):!

! ?! ?
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Locks 
•  “Locks” to control access to data 

•  Two types of locks: 
– shared (S) lock – multiple concurrent transactions 

allowed to operate on data 
– exclusive (X) lock – only one transaction can operate 

on data at a time 

 
 

S X 

S √ – 

X – – 

Lock"
Compatibility"
Matrix"
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Two-Phase Locking (2PL) 

1) Each transaction must obtain:  
–  S (shared) or X (exclusive) lock on data before reading,  
–  X (exclusive) lock on data before writing 

2) A transaction can not request additional locks once it 
releases any locks 

Thus, each transaction has a “growing phase” followed by a 
“shrinking phase” 

0!
1!
2!
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4!

1! 3! 5! 7! 9! 11! 13! 15! 17! 19!
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Two-Phase Locking (2PL)"
•  2PL guarantees conflict serializability 

•  Doesn’t allow dependency cycles. Why? 

•  Answer: a dependency cycle leads to deadlock 
–  Assume there is a cycle between Ti and Tj 
–  Edge from Ti to Tj: Ti acquires lock first and Tj needs to wait 
–  Edge from Tj to Ti: Tj acquires lock first and Ti needs to wait 
–  Thus, both Ti and Tj wait for each other  
–  Since with 2PL neither Ti nor Tj release locks before acquiring 

all locks they need  deadlock 
  

•  Schedule of conflicting transactions is conflict equivalent to a 
serial schedule ordered by “lock point” 
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Lock Management 

•  Lock Manager (LM) handles all lock and unlock requests 
–  LM contains an entry for each currently held lock 

•  When lock request arrives see if anyone else holds a conflicting lock 
–  If not, create an entry and grant the lock 
–  Else, put the requestor on the wait queue 

•  Locking and unlocking are atomic operations 

•  Lock upgrade: shared lock can be upgraded to exclusive lock 
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Example"
•  T1 transfers $50 from account A to account B!

•  T2 outputs the total of accounts A and B!

•  Initially, A = $1000 and B = $2000!

•  What are the possible output values?!

T1:Read(A),A:=A-50,Write(A),Read(B),B:=B+50,Write(B)!

T2:Read(A),Read(B),PRINT(A+B)!
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Is this a 2PL Schedule?"
1 Lock_X(A)   <granted> 

2 Read(A) Lock_S(A) 

3 A: = A-50 

4 Write(A) 

5 Unlock(A)               <granted> 

6 Read(A) 

7 Unlock(A) 

8 Lock_S(B) <granted> 

9 Lock_X(B) 

10 Read(B) 

11            <granted> Unlock(B) 

12 PRINT(A+B) 

13 Read(B) 

14 B := B +50 

15 Write(B) 

16 Unlock(B) 

 
 

No, and it is not serializable 
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Is this a 2PL Schedule?"
1 Lock_X(A)  <granted> 

2 Read(A) Lock_S(A) 

3 A: = A-50 

4 Write(A) 

5 Lock_X(B)  <granted> 

6 Unlock(A)                <granted> 

7 Read(A) 

8 Lock_S(B) 

9 Read(B) 

10 B := B +50 

11 Write(B) 

12 Unlock(B)              <granted> 

13 Unlock(A) 

14 Read(B) 

15 Unlock(B) 

16 PRINT(A+B) 

 
 

Yes, so it is serializable 
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Cascading Aborts"
•  Example: T1 aborts!

– Note: this is a 2PL schedule!

•  Rollback of T1 requires rollback of T2, since T2 reads 
a value written by T1!

•  Solution: Strict Two-phase Locking (Strict 2PL): 
same as 2PL except 

– All locks held by a transaction are released only when 
the transaction completes !

T1:R(A),W(A),         R(B),W(B), Abort 
T2:          R(A),W(A)           !
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 Strict 2PL (cont’d) 

•  All locks held by a transaction are released only when 
the transaction completes 

 
•  In effect, “shrinking phase” is delayed until: 

a)  Transaction has committed (commit log record on 
disk), or 

b)  Decision has been made to abort the transaction 
(then locks can be released after rollback). 
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Is this a Strict 2PL schedule?"
1 Lock_X(A)  <granted> 

2 Read(A) Lock_S(A) 

3 A: = A-50 

4 Write(A) 

5 Lock_X(B)  <granted> 

6 Unlock(A)                <granted> 

7 Read(A) 

8 Lock_S(B) 

9 Read(B) 

10 B := B +50 

11 Write(B) 

12 Unlock(B)              <granted> 

13 Unlock(A) 

14 Read(B) 

15 Unlock(B) 

16 PRINT(A+B) 

 
 

No: Cascading Abort Possible 
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Is this a Strict 2PL schedule?"
1 Lock_X(A) <granted> 

2 Read(A) Lock_S(A) 

3 A: = A-50 

4 Write(A) 

5 Lock_X(B) <granted> 

6 Read(B) 

7 B := B +50 

8 Write(B) 

9 Unlock(A) 

10 Unlock(B)             <granted> 

11 Read(A) 

12 Lock_S(B)  <granted> 

13 Read(B) 

14 PRINT(A+B) 

15 Unlock(A) 

16 Unlock(B) 
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Deadlock"
•  Recall: if a schedule is not conflict-serializable, 2PL 

leads to deadlock, i.e.,!
– Cycles of transactions waiting for each other to release 

locks!

•  Recall: two ways to deal with deadlocks!
– Deadlock prevention!
– Deadlock detection!

•  Many systems punt problem by using timeouts instead!
– Associate a timeout with each lock!
–  If timeout expires release the lock!
– What is the problem with this solution?!

Lec 14.19!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Deadlock Prevention 

•  Prevent circular waiting 
  
•  Assign priorities based on timestamps. Assume Ti 

wants a lock that Tj holds. Two policies are possible: 
–  Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti 

aborts 
–  Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits 

•  If a transaction re-starts, make sure it gets its original 
timestamp 

– Why? 
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Deadlock Detection 

•  Allow deadlocks to happen but check for them and fix 
them if found 

•  Create a wait-for graph: 
–  Nodes are transactions 
–  There is an edge from Ti to Tj if Ti is waiting for Tj to 

release a lock 

•  Periodically check for cycles in the waits-for graph 

•  If cycle detected – find a transaction whose removal 
will break the cycle and kill it 
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Deadlock Detection (Continued) 
•  Example:	
  

•  T1:  S(A),S(D),    S(B) 

•  T2:            X(B),          X(C) 
•  T3:          S(D),S(C),    X(A) 

•  T4:                    X(B) 

	
  
	
  

T1	
   T2	
  

T4	
   T3	
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Multiple-Granularity Locks 

•  Hard to decide what granularity to lock , e.g., 
– Tuples (rows), pages, tables 

•  Shouldn’t have to make same decision for all 
transactions! 

•  Data “containers” are nested:  

 
 

Tuples	
  (Rows)	
  

Tables	
  

Pages	
  

Database	
  

contains	
  

Database!
Table 1!
Tuple!

Table 2! Table 4!

Table 3!
Unit of 
storage, 
caching!
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Solution: New Lock Modes, Protocol 
•  Allow transactions to lock at each level, but with a 

special protocol using new “intention” locks: 
•  Still need S and X locks, but before locking an item, 

transaction must have proper intention locks on all 
its ancestors in the granularity hierarchy 

 
 

•  IS	
  –	
  Intent	
  to	
  get	
  S	
  lock(s)	
  at	
  finer	
  
granularity	
  

•  IX	
  –	
  Intent	
  to	
  get	
  X	
  lock(s)	
  at	
  finer	
  
granularity	
  

•  SIX	
  mode:	
  Like	
  S	
  &	
  IX	
  at	
  the	
  same	
  
Fme.	
  Why	
  useful?	
  

IS	
   IX	
   SIX	
  

IS	
  

IX	
  

SIX	
  

S	
   X	
  

S	
  

X	
  

√ 

√ √ 

	
  
√ √ -­‐	
  

√ 
√ 

√ 

-­‐

-­‐-­‐

-­‐
--

√ 

	
  
-­‐

-
-
-

-­‐-­‐-­‐
-­‐
-

Tuples	
  

Tables	
  

Pages	
  

Database	
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Multiple Granularity Lock Protocol 
•  Each transaction starts from the root of the 

hierarchy 

•  To get S or IS lock on a node, must hold IS or IX 
on parent node 

– What if transaction holds SIX on parent?  
 

•  To get X or IX or SIX on a node, must hold IX or 
SIX on parent node. 

•  Must release locks in bottom-up order 

 
 

Tuples	
  

Tables	
  

Pages	
  

Database	
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Examples – 2 level hierarchy 
•  T1 scans table R, and updates few tuples: 

– T1 gets an SIX lock on R, then get X lock 
on tuples that are updated. 

•  T2 reads only part of R: 
– T2 gets an IS lock on R, and repeatedly 

gets an S lock on tuples of R 

•  T3 reads all of R: 
– T3 gets an S lock on R  
– OR, T3 could behave like T2; can                                      

use lock escalation to decide which one 
– Lock escalation dynamically asks for 

coarser-grain locks when too many low 
level locks acquired 

 
 

IS	
   IX	
  SIX	
  
IS	
  
IX	
  
SIX	
  

√	


√	


√	



√	

 √	


√	



S	
   X	
  

√	

S	
  
X	
  

√	



√	



Tuples	
  

Tables	
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The “Phantom” Problem 

•  With Insert and Delete, even Strict 2PL (on individual items) 
will not assure serializability 

•  Consider T1 – “Find oldest sailor” 
– T1 locks all records, and finds oldest sailor (age = 71). 
– Next, T2 inserts a new sailor; age = 96 and commits 
– T1 (within the same transaction) checks for the oldest sailor 

again and finds sailor aged 96!! 

•  The sailor with age 96 is a “phantom tuple” from T1’s point 
of view – first it’s not there then it is 

•  No serial execution where T1’s result could happen! 

 
 

Lec 14.27!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The “Phantom” Problem – Example 2 

•  Consider T3 – “Find oldest sailor for each rating” 
– T3 locks all pages containing sailor records with rating = 1, 

and finds oldest sailor (say, age = 71) 
– Next, T4 inserts a new sailor; rating = 1, age = 96. 
– T4 also deletes oldest sailor with rating = 2 (and, say, age = 

80), and commits 
– T3 now locks all pages containing sailor records with rating = 

2, and finds oldest (say, age = 63) 

•  T3 saw only part of T4’s effects! 

•  No serial execution where T3’s result could happen! 
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The Problem 

•  T1 and T3 implicitly assumed they had locked the set of all 
sailor records satisfying a predicate 

– Assumption only holds if no sailor records are added while they 
are executing! 

– Need some mechanism to enforce this assumption, e.g, Index 
locking and predicate locking 

– Index: data structure to allow fast access to tuples; has to be 
updated when a new tuple is created or removed 

•  Examples show that conflict serializability on reads and 
writes of individual items guarantees serializability only if the 
set of objects is fixed! 
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Predicate Locking (not practical) 

•  Grant lock on all records that satisfy some logical 
predicate, e.g., age > 2*salary 

•  Index locking is a special case of predicate locking for 
which an index supports efficient implementation of 
the predicate lock 

•  In general, predicate locking has a lot of locking 
overhead 
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Index Locking 

•  T3 should lock the index page containing the 
data entries with rating = 1 

–  If there are no records with rating = 1, T3 must 
lock the index page where such a data entry would 
be, if it existed! 

 
•  If there is no suitable index, T3 must lock table, 

to ensure that no records with rating = 1 are 
added or deleted 

 
 

r=1	
  

Data	
  
Index	
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5min Break"
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Atomicity and Durability"
•  How do you make sure transaction results persist in 

the face of failures (e.g., disk failures)? !

•  Replicate database!
– Commit transaction to each replica!

•  What happens if you have failures during a transaction 
commit?!

– Need to ensure atomicity: either transaction is committed 
on all replicas or none at all!
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Two Phase (2PC) Commit"
•  2PC is a distributed protocol!

•  High-level problem statement!
–  If no node fails and all nodes are ready to commit, then 

all nodes COMMIT!
– Otherwise ABORT at all nodes!

!
•  Developed by Turing award winner Jim Gray (first 

Berkeley CS PhD, 1969)!

"
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2PC Algorithm"

•  One coordinator !
•  N workers (replicas)!

•  High level algorithm description!
– Coordinator asks all workers if they can commit!
–  If all workers reply ”VOTE-COMMIT”, then coordinator 

broadcasts ”GLOBAL-COMMIT”, !
!Otherwise coordinator broadcasts ”GLOBAL-ABORT”!

– Workers obey the GLOBAL messages!
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Detailed Algorithm"

Coordinator	
  sends	
  VOTE-­‐REQ	
  to	
  all	
  
workers	
  

–  Wait	
  for	
  VOTE-­‐REQ	
  from	
  coordinator	
  
–  If	
  ready,	
  send	
  VOTE-­‐COMMIT	
  to	
  

coordinator	
  
–  If	
  not	
  ready,	
  send	
  VOTE-­‐ABORT	
  to	
  

coordinator	
  
–  And	
  immediately	
  abort	
  

–  If	
  receive	
  VOTE-­‐COMMIT	
  from	
  all	
  N	
  
workers,	
  send	
  GLOBAL-­‐COMMIT	
  to	
  
all	
  workers	
  

–  If	
  doesn’t	
  receive	
  VOTE-­‐COMMIT	
  
from	
  all	
  N	
  workers,	
  send	
  GLOBAL-­‐
ABORT	
  to	
  all	
  workers	
  

–  If	
  receive	
  GLOBAL-­‐COMMIT	
  then	
  
commit	
  

–  If	
  receive	
  GLOBAL-­‐ABORT	
  then	
  abort	
  

Coordinator Algorithm" Worker Algorithm"
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Failure Free Example Execution"

coordinator	
  

worker	
  1	
  

Fme	
  

VOTE-­‐
REQ	
  

VOTE-­‐
COMMIT	
  

GLOBAL-­‐
COMMIT	
  

worker	
  2	
  

worker	
  3	
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State Machine of Coordinator"

•  Coordinator implements simple state machine!

INIT	
  

WAIT	
  

ABORT	
   COMMIT	
  

Recv:	
  START	
  
Send:	
  VOTE-­‐REQ	
  

Recv:	
  VOTE-­‐ABORT	
  
Send:	
  GLOBAL-­‐ABORT	
  

Recv:	
  VOTE-­‐COMMIT	
  
Send:	
  GLOBAL-­‐COMMIT	
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State Machine of workers"

INIT	
  

READY	
  

ABORT	
   COMMIT	
  

Recv:	
  VOTE-­‐REQ	
  
Send:	
  VOTE-­‐ABORT	
  

Recv:	
  VOTE-­‐REQ	
  
Send:	
  VOTE-­‐COMMIT	
  

Recv:	
  GLOBAL-­‐ABORT	
   Recv:	
  GLOBAL-­‐COMMIT	
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Dealing with Worker Failures"

•  How to deal with worker failures?!
– Failure only affects states in which the node is waiting for 

messages!
– Coordinator only waits for votes in ”WAIT” state!
–  In WAIT, if doesnʼt receive !
!N votes, it times out and sends!
!GLOBAL-ABORT!

INIT	
  

WAIT	
  

ABORT	
   COMMIT	
  

Recv:	
  START	
  
Send:	
  VOTE-­‐REQ	
  

Recv:	
  VOTE-­‐ABORT	
  
Send:	
  GLOBAL-­‐ABORT	
  

Recv:	
  VOTE-­‐COMMIT	
  
Send:	
  GLOBAL-­‐COMMIT	
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Example of Worker Failure"

coordinator	
  

worker	
  1	
  

Fme	
  

VOTE-­‐REQ	
  

VOTE-­‐
COMMIT	
  

GLOBAL-­‐
ABORT	
  

INIT	
  

WAIT	
  

ABORT	
   COMM	
   Fmeout	
  

worker	
  2	
  

worker	
  3	
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Dealing with Coordinator Failure"

•  How to deal with coordinator failures?!
– worker waits for VOTE-REQ in INIT!

» Worker can time out and abort (coordinator handles it)!
– worker waits for GLOBAL-* message in READY!

»  If coordinator fails, workers must!
"BLOCK waiting for coordinator!
!to recover and send!
!GLOBAL_* message!

!

INIT	
  

READY	
  

ABORT	
   COMMIT	
  

Recv:	
  VOTE-­‐REQ	
  
Send:	
  VOTE-­‐ABORT	
  

Recv:	
  VOTE-­‐REQ	
  
Send:	
  VOTE-­‐COMMIT	
  

Recv:	
  GLOBAL-­‐ABORT	
   Recv:	
  GLOBAL-­‐COMMIT	
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Example of Coordinator Failure #1"

coordinator	
  

worker	
  1	
  

VOTE-­‐
REQ	
  

VOTE-­‐
ABORT	
  

Fmeout	
  

INIT	
  

READY	
  

ABORT	
   COMM	
  

Fmeout	
  

Fmeout	
  

worker	
  2	
  

worker	
  3	
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Example of Coordinator Failure #2"

VOTE-­‐REQ	
  

VOTE-­‐
COMMIT	
  

INIT	
  

READY	
  

ABORT	
   COMM	
  

block	
  waiFng	
  for	
  
coordinator	
  

restarted	
  

GLOBAL-­‐
ABORT	
  

coordinator	
  

worker	
  1	
  

worker	
  2	
  

worker	
  3	
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Remembering Where We Were"

•  All nodes use stable storage to store which state they 
were in!

•  Upon recovery, it can restore state and resume:!
– Coordinator aborts in INIT, WAIT, or ABORT!
– Coordinator commits in COMMIT!
– Worker aborts in INIT, READY, ABORT!
– Worker commits in COMMIT!
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Blocking for Coordinator to Recover"
•  A worker waiting for global decision 

can ask fellow workers about their 
state!

–  If another worker is in ABORT or 
COMMIT state then coordinator must 
have sent GLOBAL-*!

– Thus, worker can safely abort or 
commit, respectively!

–  If another worker is still in INIT state!
!then both workers can decide to abort !

–  If all workers are in ready, need to 
BLOCK (donʼt know if coordinator 
wanted to abort or commit)!

INIT	
  

READY	
  

ABORT	
   COMMIT	
  

Recv:	
  VOTE-­‐REQ	
  
Send:	
  VOTE-­‐ABORT	
  

Recv:	
  VOTE-­‐REQ	
  
Send:	
  VOTE-­‐COMMIT	
  

Recv:	
  GLOBAL-­‐ABORT	
   Recv:	
  GLOBAL-­‐COMMIT	
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Summary"
•  Two phase locking (2PL) and strict 2PL!

– Ensure conflict-seriazability for R/W operations!
–  If scheduler not conflict-serializable deadlocks!
– Deadlocks can be either prevented or prevented!

•  Must be careful if objects can be added or removed 
from databse (“phantom problem”)!

•  Multiple granularity locking to improve concurrency!

•  Two-phase commit (2PC):!
– Ensure atomicity and durability: a transaction is 

commited/aborted either by all replicas or by none of 
them!


