
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 14  
 

Transactions:  
Two Phase Locking (2PL) and Two Phase

Commit (2PC)"
October 17, 2011!

Anthony D. Joseph and Ion Stoica!
http://inst.eecs.berkeley.edu/~cs162!

Lec 14.2!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Goals for Today"
•  Two-phase locking!

•  Two-phase commit!

Note: Some slides and/or pictures in the following are"
adapted from lecture notes by Mike Franklin."

Lec 14.3!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Review: Transactions"
•  An atomic sequence of database actions (reads/writes)!

•  ACID properties!
– Atomicity: all actions in the transaction happen, or none

happens!
– Consistency: if each transaction is consistent, and the

DB starts consistent, it ends up consistent!
–  Isolation: execution of one transaction is isolated from

that of all others!
– Durability: if a transaction commits, its effects persist!

Lec 14.4!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Review: Concurrent Transactions"
•  How do you run multiple concurrent transactions?!

•  One transaction at a time? Just execute each
transaction in a critical sections?!

•  NO: low system utilization and large response time !
– Two transactions cannot run simultaneously even if they

access different data!
–  If a transaction waits for I/O operation, another

transaction may not be able to use CPU !

Page 2

Lec 14.5!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Review: Goals of Transaction Scheduling"

•  Maximize system utilization, i.e., concurrency!
–  Interleave operations from different transactions!

•  Preserve transaction semantics!
– Emulate a serial schedule, i.e., one transaction runs at a time !
!
! T1: R, W, R, W! T2: R, W, R, R, W!

R, W, R, W, R, W, R, R, W!
Serial schedule (T1, then T2):!

R, W, R, R, W, R, W, R, W!
Serial schedule (T2, then T1):!

Lec 14.6!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Review: Transaction Scheduling"

•  Last lecture answered question: !
–  Is a given schedule equivalent to a serial execution of

transactions? In particular, is a given schedule conflict-
serializable?!

•  This lecture: how to come up with a conflict-
seralizable schedule?!

R, W, R, W, R, W, R, R, W! R, W, R, R, W, R, W, R, W!

R, R, W, W, R, R, R, W, W!Schedule:!

Serial schedule (T1, then T2):!
:!

Serial schedule (T2, then T1):!

! ?! ?

Lec 14.7!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Locks
•  “Locks” to control access to data

•  Two types of locks:
– shared (S) lock – multiple concurrent transactions

allowed to operate on data
– exclusive (X) lock – only one transaction can operate

on data at a time

S X

S √ –

X – –

Lock"
Compatibility"
Matrix"

Lec 14.8!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Two-Phase Locking (2PL)

1) Each transaction must obtain:
–  S (shared) or X (exclusive) lock on data before reading,
–  X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks

Thus, each transaction has a “growing phase” followed by a
“shrinking phase”

0!
1!
2!
3!
4!

1! 3! 5! 7! 9! 11! 13! 15! 17! 19!

Lo

ck
s

H
el

d!

Time"

Growing!
Phase!

Shrinking!
Phase!

Lock Point!!

Page 3

Lec 14.9!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Two-Phase Locking (2PL)"
•  2PL guarantees conflict serializability

•  Doesn’t allow dependency cycles. Why?

•  Answer: a dependency cycle leads to deadlock
–  Assume there is a cycle between Ti and Tj
–  Edge from Ti to Tj: Ti acquires lock first and Tj needs to wait
–  Edge from Tj to Ti: Tj acquires lock first and Ti needs to wait
–  Thus, both Ti and Tj wait for each other
–  Since with 2PL neither Ti nor Tj release locks before acquiring

all locks they need  deadlock

•  Schedule of conflicting transactions is conflict equivalent to a
serial schedule ordered by “lock point”

Lec 14.10!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Lock Management

•  Lock Manager (LM) handles all lock and unlock requests
–  LM contains an entry for each currently held lock

•  When lock request arrives see if anyone else holds a conflicting lock
–  If not, create an entry and grant the lock
–  Else, put the requestor on the wait queue

•  Locking and unlocking are atomic operations

•  Lock upgrade: shared lock can be upgraded to exclusive lock

Lec 14.11!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example"
•  T1 transfers $50 from account A to account B!

•  T2 outputs the total of accounts A and B!

•  Initially, A = $1000 and B = $2000!

•  What are the possible output values?!

T1:Read(A),A:=A-50,Write(A),Read(B),B:=B+50,Write(B)!

T2:Read(A),Read(B),PRINT(A+B)!

Lec 14.12!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Is this a 2PL Schedule?"
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Unlock(A) <granted>

6 Read(A)

7 Unlock(A)

8 Lock_S(B) <granted>

9 Lock_X(B)

10 Read(B)

11 <granted> Unlock(B)

12 PRINT(A+B)

13 Read(B)

14 B := B +50

15 Write(B)

16 Unlock(B)

No, and it is not serializable

Page 4

Lec 14.13!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Is this a 2PL Schedule?"
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B) <granted>

6 Unlock(A) <granted>

7 Read(A)

8 Lock_S(B)

9 Read(B)

10 B := B +50

11 Write(B)

12 Unlock(B) <granted>

13 Unlock(A)

14 Read(B)

15 Unlock(B)

16 PRINT(A+B)

Yes, so it is serializable
Lec 14.14!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Cascading Aborts"
•  Example: T1 aborts!

– Note: this is a 2PL schedule!

•  Rollback of T1 requires rollback of T2, since T2 reads
a value written by T1!

•  Solution: Strict Two-phase Locking (Strict 2PL):
same as 2PL except

– All locks held by a transaction are released only when
the transaction completes !

T1:R(A),W(A), R(B),W(B), Abort
T2: R(A),W(A) !

Lec 14.15!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

 Strict 2PL (cont’d)

•  All locks held by a transaction are released only when
the transaction completes

•  In effect, “shrinking phase” is delayed until:

a)  Transaction has committed (commit log record on
disk), or

b)  Decision has been made to abort the transaction
(then locks can be released after rollback).

Lec 14.16!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Is this a Strict 2PL schedule?"
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B) <granted>

6 Unlock(A) <granted>

7 Read(A)

8 Lock_S(B)

9 Read(B)

10 B := B +50

11 Write(B)

12 Unlock(B) <granted>

13 Unlock(A)

14 Read(B)

15 Unlock(B)

16 PRINT(A+B)

No: Cascading Abort Possible

Page 5

Lec 14.17!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Is this a Strict 2PL schedule?"
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B) <granted>

6 Read(B)

7 B := B +50

8 Write(B)

9 Unlock(A)

10 Unlock(B) <granted>

11 Read(A)

12 Lock_S(B) <granted>

13 Read(B)

14 PRINT(A+B)

15 Unlock(A)

16 Unlock(B)

Lec 14.18!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Deadlock"
•  Recall: if a schedule is not conflict-serializable, 2PL

leads to deadlock, i.e.,!
– Cycles of transactions waiting for each other to release

locks!

•  Recall: two ways to deal with deadlocks!
– Deadlock prevention!
– Deadlock detection!

•  Many systems punt problem by using timeouts instead!
– Associate a timeout with each lock!
–  If timeout expires release the lock!
– What is the problem with this solution?!

Lec 14.19!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Deadlock Prevention

•  Prevent circular waiting

•  Assign priorities based on timestamps. Assume Ti

wants a lock that Tj holds. Two policies are possible:
–  Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti

aborts
–  Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits

•  If a transaction re-starts, make sure it gets its original
timestamp

– Why?

Lec 14.20!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Deadlock Detection

•  Allow deadlocks to happen but check for them and fix
them if found

•  Create a wait-for graph:
–  Nodes are transactions
–  There is an edge from Ti to Tj if Ti is waiting for Tj to

release a lock

•  Periodically check for cycles in the waits-for graph

•  If cycle detected – find a transaction whose removal
will break the cycle and kill it

Page 6

Lec 14.21!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Deadlock Detection (Continued)
•  Example:	

•  T1: S(A),S(D), S(B)

•  T2: X(B), X(C)
•  T3: S(D),S(C), X(A)

•  T4: X(B)

	

	

T1	
 T2	

T4	
 T3	

Lec 14.22!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Multiple-Granularity Locks

•  Hard to decide what granularity to lock , e.g.,
– Tuples (rows), pages, tables

•  Shouldn’t have to make same decision for all
transactions!

•  Data “containers” are nested:

Tuples	
 (Rows)	

Tables	

Pages	

Database	

contains	

Database!
Table 1!
Tuple!

Table 2! Table 4!

Table 3!
Unit of
storage,
caching!

Lec 14.23!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Solution: New Lock Modes, Protocol
•  Allow transactions to lock at each level, but with a

special protocol using new “intention” locks:
•  Still need S and X locks, but before locking an item,

transaction must have proper intention locks on all
its ancestors in the granularity hierarchy

•  IS	
 –	
 Intent	
 to	
 get	
 S	
 lock(s)	
 at	
 finer	

granularity	

•  IX	
 –	
 Intent	
 to	
 get	
 X	
 lock(s)	
 at	
 finer	

granularity	

•  SIX	
 mode:	
 Like	
 S	
 &	
 IX	
 at	
 the	
 same	

Fme.	
 Why	
 useful?	

IS	
 IX	
 SIX	

IS	

IX	

SIX	

S	
 X	

S	

X	

√

√ √

	

√ √ -­‐	

√
√

√

-­‐

-­‐-­‐

-­‐
--

√

	

-­‐

-
-
-

-­‐-­‐-­‐
-­‐
-

Tuples	

Tables	

Pages	

Database	

Lec 14.24!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Multiple Granularity Lock Protocol
•  Each transaction starts from the root of the

hierarchy

•  To get S or IS lock on a node, must hold IS or IX
on parent node

– What if transaction holds SIX on parent?

•  To get X or IX or SIX on a node, must hold IX or
SIX on parent node.

•  Must release locks in bottom-up order

Tuples	

Tables	

Pages	

Database	

Page 7

Lec 14.25!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Examples – 2 level hierarchy
•  T1 scans table R, and updates few tuples:

– T1 gets an SIX lock on R, then get X lock
on tuples that are updated.

•  T2 reads only part of R:
– T2 gets an IS lock on R, and repeatedly

gets an S lock on tuples of R

•  T3 reads all of R:
– T3 gets an S lock on R
– OR, T3 could behave like T2; can

use lock escalation to decide which one
– Lock escalation dynamically asks for

coarser-grain locks when too many low
level locks acquired

IS	
 IX	
 SIX	

IS	

IX	

SIX	

√	

√	

√	

√	

 √	

√	

S	
 X	

√	

S	

X	

√	

√	

Tuples	

Tables	

Lec 14.26!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The “Phantom” Problem

•  With Insert and Delete, even Strict 2PL (on individual items)
will not assure serializability

•  Consider T1 – “Find oldest sailor”
– T1 locks all records, and finds oldest sailor (age = 71).
– Next, T2 inserts a new sailor; age = 96 and commits
– T1 (within the same transaction) checks for the oldest sailor

again and finds sailor aged 96!!

•  The sailor with age 96 is a “phantom tuple” from T1’s point
of view – first it’s not there then it is

•  No serial execution where T1’s result could happen!

Lec 14.27!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The “Phantom” Problem – Example 2

•  Consider T3 – “Find oldest sailor for each rating”
– T3 locks all pages containing sailor records with rating = 1,

and finds oldest sailor (say, age = 71)
– Next, T4 inserts a new sailor; rating = 1, age = 96.
– T4 also deletes oldest sailor with rating = 2 (and, say, age =

80), and commits
– T3 now locks all pages containing sailor records with rating =

2, and finds oldest (say, age = 63)

•  T3 saw only part of T4’s effects!

•  No serial execution where T3’s result could happen!

Lec 14.28!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Problem

•  T1 and T3 implicitly assumed they had locked the set of all
sailor records satisfying a predicate

– Assumption only holds if no sailor records are added while they
are executing!

– Need some mechanism to enforce this assumption, e.g, Index
locking and predicate locking

– Index: data structure to allow fast access to tuples; has to be
updated when a new tuple is created or removed

•  Examples show that conflict serializability on reads and
writes of individual items guarantees serializability only if the
set of objects is fixed!

Page 8

Lec 14.29!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Predicate Locking (not practical)

•  Grant lock on all records that satisfy some logical
predicate, e.g., age > 2*salary

•  Index locking is a special case of predicate locking for
which an index supports efficient implementation of
the predicate lock

•  In general, predicate locking has a lot of locking
overhead

Lec 14.30!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Index Locking

•  T3 should lock the index page containing the
data entries with rating = 1

–  If there are no records with rating = 1, T3 must
lock the index page where such a data entry would
be, if it existed!

•  If there is no suitable index, T3 must lock table,

to ensure that no records with rating = 1 are
added or deleted

r=1	

Data	

Index	

Lec 14.31!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

5min Break"

Lec 14.32!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Atomicity and Durability"
•  How do you make sure transaction results persist in

the face of failures (e.g., disk failures)? !

•  Replicate database!
– Commit transaction to each replica!

•  What happens if you have failures during a transaction
commit?!

– Need to ensure atomicity: either transaction is committed
on all replicas or none at all!

Page 9

Lec 14.33!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Two Phase (2PC) Commit"
•  2PC is a distributed protocol!

•  High-level problem statement!
–  If no node fails and all nodes are ready to commit, then

all nodes COMMIT!
– Otherwise ABORT at all nodes!

!
•  Developed by Turing award winner Jim Gray (first

Berkeley CS PhD, 1969)!

"

Lec 14.34!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

2PC Algorithm"

•  One coordinator !
•  N workers (replicas)!

•  High level algorithm description!
– Coordinator asks all workers if they can commit!
–  If all workers reply ”VOTE-COMMIT”, then coordinator

broadcasts ”GLOBAL-COMMIT”, !
!Otherwise coordinator broadcasts ”GLOBAL-ABORT”!

– Workers obey the GLOBAL messages!

Lec 14.35!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Detailed Algorithm"

Coordinator	
 sends	
 VOTE-­‐REQ	
 to	
 all	

workers	

–  Wait	
 for	
 VOTE-­‐REQ	
 from	
 coordinator	

–  If	
 ready,	
 send	
 VOTE-­‐COMMIT	
 to	

coordinator	

–  If	
 not	
 ready,	
 send	
 VOTE-­‐ABORT	
 to	

coordinator	

–  And	
 immediately	
 abort	

–  If	
 receive	
 VOTE-­‐COMMIT	
 from	
 all	
 N	

workers,	
 send	
 GLOBAL-­‐COMMIT	
 to	

all	
 workers	

–  If	
 doesn’t	
 receive	
 VOTE-­‐COMMIT	

from	
 all	
 N	
 workers,	
 send	
 GLOBAL-­‐
ABORT	
 to	
 all	
 workers	

–  If	
 receive	
 GLOBAL-­‐COMMIT	
 then	

commit	

–  If	
 receive	
 GLOBAL-­‐ABORT	
 then	
 abort	

Coordinator Algorithm" Worker Algorithm"

Lec 14.36!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Failure Free Example Execution"

coordinator	

worker	
 1	

Fme	

VOTE-­‐
REQ	

VOTE-­‐
COMMIT	

GLOBAL-­‐
COMMIT	

worker	
 2	

worker	
 3	

Page 10

Lec 14.37!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

State Machine of Coordinator"

•  Coordinator implements simple state machine!

INIT	

WAIT	

ABORT	
 COMMIT	

Recv:	
 START	

Send:	
 VOTE-­‐REQ	

Recv:	
 VOTE-­‐ABORT	

Send:	
 GLOBAL-­‐ABORT	

Recv:	
 VOTE-­‐COMMIT	

Send:	
 GLOBAL-­‐COMMIT	

Lec 14.38!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

State Machine of workers"

INIT	

READY	

ABORT	
 COMMIT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐ABORT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐COMMIT	

Recv:	
 GLOBAL-­‐ABORT	
 Recv:	
 GLOBAL-­‐COMMIT	

Lec 14.39!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Dealing with Worker Failures"

•  How to deal with worker failures?!
– Failure only affects states in which the node is waiting for

messages!
– Coordinator only waits for votes in ”WAIT” state!
–  In WAIT, if doesnʼt receive !
!N votes, it times out and sends!
!GLOBAL-ABORT!

INIT	

WAIT	

ABORT	
 COMMIT	

Recv:	
 START	

Send:	
 VOTE-­‐REQ	

Recv:	
 VOTE-­‐ABORT	

Send:	
 GLOBAL-­‐ABORT	

Recv:	
 VOTE-­‐COMMIT	

Send:	
 GLOBAL-­‐COMMIT	

Lec 14.40!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example of Worker Failure"

coordinator	

worker	
 1	

Fme	

VOTE-­‐REQ	

VOTE-­‐
COMMIT	

GLOBAL-­‐
ABORT	

INIT	

WAIT	

ABORT	
 COMM	
 Fmeout	

worker	
 2	

worker	
 3	

Page 11

Lec 14.41!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Dealing with Coordinator Failure"

•  How to deal with coordinator failures?!
– worker waits for VOTE-REQ in INIT!

» Worker can time out and abort (coordinator handles it)!
– worker waits for GLOBAL-* message in READY!

»  If coordinator fails, workers must!
"BLOCK waiting for coordinator!
!to recover and send!
!GLOBAL_* message!

!

INIT	

READY	

ABORT	
 COMMIT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐ABORT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐COMMIT	

Recv:	
 GLOBAL-­‐ABORT	
 Recv:	
 GLOBAL-­‐COMMIT	

Lec 14.42!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example of Coordinator Failure #1"

coordinator	

worker	
 1	

VOTE-­‐
REQ	

VOTE-­‐
ABORT	

Fmeout	

INIT	

READY	

ABORT	
 COMM	

Fmeout	

Fmeout	

worker	
 2	

worker	
 3	

Lec 14.43!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example of Coordinator Failure #2"

VOTE-­‐REQ	

VOTE-­‐
COMMIT	

INIT	

READY	

ABORT	
 COMM	

block	
 waiFng	
 for	

coordinator	

restarted	

GLOBAL-­‐
ABORT	

coordinator	

worker	
 1	

worker	
 2	

worker	
 3	

Lec 14.44!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Remembering Where We Were"

•  All nodes use stable storage to store which state they
were in!

•  Upon recovery, it can restore state and resume:!
– Coordinator aborts in INIT, WAIT, or ABORT!
– Coordinator commits in COMMIT!
– Worker aborts in INIT, READY, ABORT!
– Worker commits in COMMIT!

Page 12

Lec 14.45!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Blocking for Coordinator to Recover"
•  A worker waiting for global decision

can ask fellow workers about their
state!

–  If another worker is in ABORT or
COMMIT state then coordinator must
have sent GLOBAL-*!

– Thus, worker can safely abort or
commit, respectively!

–  If another worker is still in INIT state!
!then both workers can decide to abort !

–  If all workers are in ready, need to
BLOCK (donʼt know if coordinator
wanted to abort or commit)!

INIT	

READY	

ABORT	
 COMMIT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐ABORT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐COMMIT	

Recv:	
 GLOBAL-­‐ABORT	
 Recv:	
 GLOBAL-­‐COMMIT	

Lec 14.46!10/17! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Summary"
•  Two phase locking (2PL) and strict 2PL!

– Ensure conflict-seriazability for R/W operations!
–  If scheduler not conflict-serializable deadlocks!
– Deadlocks can be either prevented or prevented!

•  Must be careful if objects can be added or removed
from databse (“phantom problem”)!

•  Multiple granularity locking to improve concurrency!

•  Two-phase commit (2PC):!
– Ensure atomicity and durability: a transaction is

commited/aborted either by all replicas or by none of
them!

