CS162
Operating Systems and
Systems Programming

Lecture 14

Transactions:
Two Phase Locking (2PL) and Two Phase
Commit (2PC)
October 17, 2011
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Review: Transactions

» An atomic sequence of database actions (reads/writes)

« ACID properties

— Atomicity: all actions in the transaction happen, or none
happens

— Consistency: if each transaction is consistent, and the
DB starts consistent, it ends up consistent

— Isolation: execution of one transaction is isolated from
that of all others

— Durability: if a transaction commits, its effects persist

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.3

Page 1

Goals for Today

+ Two-phase locking

+ Two-phase commit

Note: Some slides and/or pictures in the following are
adapted from lecture notes by Mike Franklin.

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.2

Review: Concurrent Transactions

» How do you run multiple concurrent transactions?

« One transaction at a time? Just execute each
transaction in a critical sections?

+ NO: low system utilization and large response time
— Two transactions cannot run simultaneously even if they
access different data
— If a transaction waits for I/O operation, another
transaction may not be able to use CPU

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.4

Review: Goals of Transaction Scheduling

+ Maximize system utilization, i.e., concurrency
— Interleave operations from different transactions

* Preserve transaction semantics
— Emulate a serial schedule, i.e., one transaction runs at a time
Ti:R, W, R, W T2:R,W,R, R, W

|

/\

Serial schedule (T1, then T2): Serial schedule (T2, then T1):
R,W,R,W,R, W, R, R, W R,W,R,R,W,R, W, R, W

\ J

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.5

Locks
e “Locks” to control access to data

¢ Two types of locks:

— shared (S) lock — multiple concurrent transactions
allowed to operate on data

— exclusive (X) lock — only one transaction can operate
on data at a time

Lock
Compatibility |S |/ |~
Matrix

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.7

Page 2

Review: Transaction Scheduling

+ Last lecture answered question:

—Is a given schedule equivalent to a serial execution of
transactions? In particular, is a given schedule conflict-
serializable?

Schedule: R, R, W, W, R, R, R, W, W

Serial schedule (T1, then T2): Serial schedule (T2, then T1):
R,W,R,W,R, W, R, R, W R,W,R,R,W,R, W, R, W

+ This lecture: how to come up with a conflict-
seralizable schedule?

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.6

Two-Phase Locking (2PL)

1) Each transaction must obtain:
- S (shared) or X (exclusive) lock on data before reading,
- X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks

Thus, each transaction has a “growing phase” followed by a

“shrinking phase” i, Lock Point!
[Growing A Shrinking
| Phase ! Phase
1

Locks Held
o = N W A

1.8 5 7 9 11 13115 17 19 Time
1

I
1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.8

Two-Phase Locking (2PL)

¢ 2PL guarantees conflict serializability
« Doesn’ t allow dependency cycles. Why?

« Answer: a dependency cycle leads to deadlock
- Assume there is a cycle between Ti and Tj
- Edge from Ti to Tj: Ti acquires lock first and Tj needs to wait
- Edge from Tj to Ti: Tj acquires lock first and Ti needs to wait
- Thus, both Ti and Tj wait for each other

- Since with 2PL neither Ti nor Tj release locks before acquiring
all locks they need > deadlock

« Schedule of conflicting transactions is conflict equivalent to a
serial schedule ordered by “lock point”
1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.9

Example

« T1 transfers $50 from account A to account B

’Tl:Read(A) ,A:=A-50,Write (A),Read(B),B:=B+50,Write (B) ‘

+ T2 outputs the total of accounts A and B

]Tz :Read (A) , Read (B) , PRINT (A+B) \

« Initially, A = $1000 and B = $2000

+ What are the possible output values?

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.11

Page 3

Lock Management

Lock Manager (LM) handles all lock and unlock requests
— LM contains an entry for each currently held lock

« When lock request arrives see if anyone else holds a conflicting lock
- If not, create an entry and grant the lock
- Else, put the requestor on the wait queue

Locking and unlocking are atomic operations

Lock upgrade: shared lock can be upgraded to exclusive lock

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.10
Is this a 2PL Schedule?
1| Lock_X(A) <granted>
2| Read(A) Lock_S(A)
3 |A: = A-50
4 | Write(A)
5 | Unlock(A) <granted>
6 Read(A)
7 Unlock(A)
8 Lock_S(B) <granted>
9 | Lock_X(B)
10 Read(B)
11 <granted> Unlock(B)
12 PRINT(A+B)
13 | Read(B)
14| B:=B +50
15 | Write(B)
16 | Unlock(B)
No, and it is not serializable
10117 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.12

1017

Is this a 2PL Schedule?

1| Lock_X(A) <granted>

2| Read(A) Lock_S(A)

3 |A: = A-50

4 | Write(A)

5 | Lock_X(B) <granted>

6 | Unlock(A) <granted>
7 Read(A)

8 Lock_S(B)

9 | Read(B)

10| B:=B +50

11 | Write(B)

12 | Unlock(B) <granted>
13 Unlock(A)

14 Read(B)

15 Unlock(B)

16 PRINT(A+B)

Yes, so it is serializable
Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Lec 14.13

1017

Strict 2PL (cont’ d)

All locks held by a transaction are released only when
the transaction completes

In effect, “shrinking phase” is delayed until:

a) Transaction has committed (commit log record on
disk), or

b) Decision has been made to abort the transaction
(then locks can be released after rollback).

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Lec 14.15

Page 4

Cascading Aborts

+ Example: T1 aborts
— Note: this is a 2PL schedule

T1:R(A),W(R),
T2: R(A) ,W(A)

R(B),W(B), Abort

» Rollback of T1 requires rollback of T2, since T2 reads
a value written by T1

+ Solution: Strict Two-phase Locking (Strict 2PL):
same as 2PL except

— All locks held by a transaction are released only when
the transaction completes

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.14
Is this a Strict 2PL schedule?
1 | Lock_X(A) <granted>
2 | Read(A) Lock_S(A)
3| A: = A-50
4 | Write(A)
5| Lock_X(B) <granted>
6 | Unlock(A) <granted>
7 Read(A)
8 Lock_S(B)
9 | Read(B)
10| B:=B +50
11 | Write(B)
12 | Unlock(B) <granted>
13 Unlock(A)
14 Read(B)
15 Unlock(B)
16 PRINT(A+B)
1017 anr No: Cascading Abort Possible Lec 14.16

1017

Is this a Strict 2PL schedule?

1 | Lock_X(A) <granted>

2 | Read(A) Lock_S(A)

3 |A: = A-50

4 | Write(A)

5 | Lock_X(B) <granted>

6 | Read(B)

7 |(B:=B+50

8 | Write(B)

9 | Unlock(A)

10 | Unlock(B) <granted>
11 Read(A)

12 Lock_S(B) <granted>
13 Read(B)

14 PRINT(A+B)

15 Unlock(A)

16 Unlock(B)

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.17

1017

Deadlock Prevention

¢ Prevent circular waiting

¢ Assign priorities based on timestamps. Assume Ti
wants a lock that Tj holds. Two policies are possible:

- Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti
aborts

- Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits

o If a transaction re-starts, make sure it gets its original
timestamp

- Why?

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.19

Page 5

1017

Deadlock

» Recall: if a schedule is not conflict-serializable, 2PL
leads to deadlock, i.e.,

— Cycles of transactions waiting for each other to release
locks

+ Recall: two ways to deal with deadlocks
— Deadlock prevention
— Deadlock detection

+ Many systems punt problem by using timeouts instead
— Associate a timeout with each lock
— If timeout expires release the lock
— What is the problem with this solution?

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.18

1017

Deadlock Detection

¢ Allow deadlocks to happen but check for them and fix
them if found

¢ Create a wait-for graph:
- Nodes are transactions

- There is an edge from Ti to Tj if Ti is waiting for Tj to
release a lock

e Periodically check for cycles in the waits-for graph

o If cycle detected — find a transaction whose removal
will break the cycle and kill it

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.20

Deadlock Detection (Continued)

e Example:

e T1l:
e T2:
e T3:
e T4:

X (C)
S(D),S(C), X (A)

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.21

Solution: New Lock Modes, Protocol

« Allow transactions to lock at each level, but with a ~ Patabase

special protocol using new “intention” locks:

o Still need S and X locks, but before locking an item,
transaction must have proper intention locks on all pages
its ancestors in the granularity hierarchy ‘

Tables

Tuples
IS — Intent to get S lock(s) at finer IS | IX|SIX]S | X
granularity slvIivivIiv]-
IX — Intent to get X lock(s) at finer
granularity X|VIV]-[-]-
SIX mode: Like S & IX at the same six| V -1 -1-
time. Why useful? s |V v
X - - — - -
1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.23

Page 6

Multiple-Granularity Locks

¢ Hard to decide what granularity to lock , e.g.,
— Tuples (rows), pages, tables

e Shouldn’ t have to make same decision for all
transactions!

e Data “containers” are nested:

Database
Data‘lbase Table 1 Table 3
nit of
. Tables Unit o P
contains ‘ storage,
Pages caching Table 2 Table 4
Tuples (Rows)
1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.22

Multiple Granularity Lock Protocol

. Datab
* Each transaction starts from the root of the ? T e
hierarchy Tak‘)les
e To get S or IS lock on a node, must hold IS or IX Pages
on parent node \
— What if transaction holds SIX on parent? Tuples
e To get X or IX or SIX on a node, must hold IX or
SIX on parent node.
e Must release locks in bottom-up order
10117 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.24

Examples — 2 level hierarchy

e T1 scans table R, and updates few tuples: Tables
—T1 gets an SIX lock on R, then get X lock \
on tuples that are updated. Tuples

e T2 reads only part of R:

— T2 gets an IS lock on R, and repeatedly
gets an S lock on tuples of R

1s| Ix[six| s | x
e T3 reads all of R:
—T3 gets an S lock on R SIVIVIVLY
—OR, T3 could behave like T2; can LIRVARTE
use lock escalation to decide which one SX| v
— Lock escalation dynamically asks for s |V v
coarser-grain locks when too many low X
level locks acquired
1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.25

The “Phantom” Problem

¢ With Insert and Delete, even Strict 2PL (on individual items)
will not assure serializability

¢ Consider T1 — “Find oldest sailor”
—T1 locks all records, and finds oldest sailor (age = 71).
— Next, T2 inserts a new sailor; age = 96 and commits

—T1 (within the same transaction) checks for the oldest sailor
again and finds sailor aged 96!!

« The sailor with age 96 is a “phantom tuple” from T1’ s point
of view — first it’ s not there then it is

» No serial execution where T1's result could happen!

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.26

The “Phantom” Problem — Example 2

¢ Consider T3 — “Find oldest sailor for each rating”

— T3 locks all pages containing sailor records with rating = 1,
and finds oldest sailor (say, age = 71)

— Next, T4 inserts a new sailor; rating = 1, age = 96.

— T4 also deletes oldest sailor with rating = 2 (and, say, age =
80), and commits

— T3 now locks all pages containing sailor records with rating =
2, and finds oldest (say, age = 63)

e T3 saw only part of T4’ s effects!

 No serial execution where T3’ s result could happen!

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.27

The Problem

e T1 and T3 implicitly assumed they had locked the set of all
sailor records satisfying a predicate
— Assumption only holds if no sailor records are added while they
are executing!
— Need some mechanism to enforce this assumption, e.g, Index
locking and predicate locking

— Index: data structure to allow fast access to tuples; has to be
updated when a new tuple is created or removed

e Examples show that conflict serializability on reads and
writes of individual items guarantees serializability only if the
set of objects is fixed!

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.28

Predicate Locking (not practical)

¢ Grant lock on all records that satisfy some logical
predicate, e.g., age > 2*salary

« Index locking is a special case of predicate locking for
which an index supports efficient implementation of
the predicate lock

¢ In general, predicate locking has a lot of locking

overhead
1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.29
5min Break
1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.31

Page 8

Index Locking

a Data

r=1

¢ T3 should lock the index page containing the
data entries with rating = 1

— If there are no records with rating = 1, T3 must
lock the index page where such a data entry would
be, if it existed!

¢ If there is no suitable index, T3 must lock table,
to ensure that no records with rating = 1 are
added or deleted

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.30

Atomicity and Durability

* How do you make sure transaction results persist in
the face of failures (e.g., disk failures)?

* Replicate database
— Commit transaction to each replica

+ What happens if you have failures during a transaction
commit?
— Need to ensure atomicity: either transaction is committed
on all replicas or none at all

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.32

Two Phase (2PC) Commit

« 2PC is a distributed protocol

+ High-level problem statement

— If no node fails and all nodes are ready to commit, then
all nodes COMMIT

— Otherwise ABORT at all nodes

+ Developed by Turing award winner Jim Gray (first
Berkeley CS PhD, 1969)

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.33

2PC Algorithm

* One coordinator
+ N workers (replicas)

+ High level algorithm description
— Coordinator asks all workers if they can commit

— If all workers reply "VOTE-COMMIT”, then coordinator
broadcasts "GLOBAL-COMMIT”,

Otherwise coordinator broadcasts "GLOBAL-ABORT”
— Workers obey the GLOBAL messages

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.34

Detailed Algorithm

Coordinator Algorithm Worker Algorithm
Coordinator sends VOTE-REQ to all
workers
— Wait for VOTE-REQ from coordinator
— If ready, send VOTE-COMMIT to
coordinator
/) - If not ready, send VOTE-ABORT to
— If receive VOTE-COMMIT from all N coordinator
workers, send GLOBAL-COMMIT to — And immediately abort
all workers

— If doesn’t receive VOTE-COMMIT
from all N workers, send GLOBAL-

ABORT to all workers

— If receive GLOBAL-COMMIT then

commit
— If receive GLOBAL-ABORT then abort

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.35

Failure Free Example Execution

coordinator

VOTE- GLOBAL-
worker 1 REQ coMmMmiT
worker 2

VOTE-
worker 3 coMMIT
time

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.36

State Machine of Coordinator

+ Coordinator implements simple state machine

INIT

Recv: START
Send: VOTE-REQ

WAIT

Recv: VOTE-COMMIT
Send: GLOBAL-COMMIT

Recv: VOTE-ABORT
Send: GLOBAL-ABORT

{ ABORT J {COMMITJ

Lec 14.37

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Dealing with Worker Failures

* How to deal with worker failures?

— Failure only affects states in which the node is waiting for
messages

— Coordinator only waits for votes in "WAIT” state
—In WAIT, if doesn’t receive
N votes, it times out and sends
GLOBAL-ABORT Recv: START
Send: VOTE-REQ

WAIT

Recv: VOTE-COMMIT
Send: GLOBAL-COMI

Recv: VOTE-ABORT
Send: GLOBAL-ABORT

[ABORT } [COMMIT}

Lec 14.39

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Page 10

State Machine of workers

INIT

Recv: VOTE-REQ Recv: VOTE-REQ
Send: VOTE-ABORT” | go 4. yOTE-COMMIT

READY

Recv: GLOBAL-ABORT Recv: GLOBAL-COMMIT

[ABORT } {COMMITJ

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.38
Example of Worker Failure
(war
coordinator timeout
GLOBAL-
VOTE-REQ ABORT
worker 1
VOTE-
worker 2 coMmMIT
worker 3 f time
1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.40

Dealing with Coordinator Failure

+ How to deal with coordinator failures?
— worker waits for VOTE-REQ in INIT
» Worker can time out and abort (coordinator handles it)
— worker waits for GLOBAL-* message in READY
» |f coordinator fails, workers must
BLOCK waiting for coordinator
to recover and send
GLOBAL_* message

INIT
Recv: VOTE-REQ Recv: VOTE-REQ
Send: VOTE-ABORT™ | g0, yOTE-COMMIT

READY

Recv: GLOBAL-ABORT Recv: GLOBAL-COMMIT|

[ABORT } [COMMIT}

Lec 14.41

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

Example of Coordinator Failure #2

READY

icoordinator restarted

VOTE-REQ
worker 1
VOTE- GLOBAL-
worker 2 COMMIT BORT
block waiting for
worker 3 coordinator
1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.43

Page 11

Example of Coordinator Failure #1

READY

coordinator \4\\
VOTE-
X

REQ i
worker 1 tfimeout
VOTE-
: ABORT
worker 2 timeout
worker 3 timeout
1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.42

Remembering Where We Were

+ All nodes use stable storage to store which state they
were in

+ Upon recovery, it can restore state and resume:
— Coordinator aborts in INIT, WAIT, or ABORT
— Coordinator commits in COMMIT
— Worker aborts in INIT, READY, ABORT
— Worker commits in COMMIT

1017 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.44

Blocking for Coordinator to Recover

+ A worker waiting for global decision
can ask fellow workers about their
state

— If another worker is in ABORT or
COMMIT state then coordinator must
have sent GLOBAL-*

— Thus, worker can safely abort or
commit, respectively

Recv: VOTE-REQ /| gocy: VOTE-REQ
Send: VOTE-ABORT | 5o g: yOTE-COMMIT

READY
Recv: GLOBAL-ABORT Recv: GLOBAL-COMMIT|
— If another worker is still in INIT state { } { }
then both workers can decide to abort ABORT commIT

— If all workers are in ready, need to
BLOCK (don’t know if coordinator
wanted to abort or commit)

10117

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.45

Page 12

1017

Summary

Two phase locking (2PL) and strict 2PL
— Ensure conflict-seriazability for R/W operations
— If scheduler not conflict-serializable deadlocks
— Deadlocks can be either prevented or prevented

Must be careful if objects can be added or removed
from databse (“phantom problem”)

Multiple granularity locking to improve concurrency

Two-phase commit (2PC):

— Ensure atomicity and durability: a transaction is
commited/aborted either by all replicas or by none of
them

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 Lec 14.46

