CS162
Operating Systems and
Systems Programming

Lecture 15

Kernel/User, I/0, Disks

October 19, 2011
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Goals for Today

+ Important System Properties
+ Dual Mode Operation: Kernel versus User Mode

+ I/O Systems
— Hardware Access
— Device Drivers
+ Disk Performance
— Hardware performance parameters

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.3

Page 1

Review: Memory Hierarchy of a Modern Computer System

+ Take advantage of the principle of locality to:
— Present as much memory as in the cheapest technology
— Provide access at speed offered by the fastest technology

Processor
Control Tertiary
Secondary| S
Storage torage
Second Main Di kg (Tape)
IS
z o8 Level || Memory (Disk)
Datapath@. 2 o Cache (DRAM)
7] 53
F o= (SRAM)
= T
7]
Speed (ns): 1’s 10’s-100’s 100’'s 10,000,000’s 10,000,000,000’s
(10s ms) (10s sec)
Size (bytes): 100’s KB’s-MB’s MB’s GB’s TB’s
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.2

Important “ilities”

+ Availability: the probability that the system can accept and
process requests
— Often measured in “nines” of probability. So, a 99.9% probability
is considered “3-nines of availability”
— Key idea here is independence of failures
+ Durability: the ability of a system to recover data despite faults
— This idea is fault tolerance applied to data
 Durability doesn’t imply Availability
— Information on pyramids was very durable, but could not be
accessed until discovery of Rosetta Stone
+ Reliability: the ability of a system or component to perform its
required functions under stated conditions for a specified
period of time (IEEE definition)
— Usually stronger than simply availability: means that the system
is not only “up”, but also working correctly
— Includes availability, security, fault tolerance/durability
— Must make sure data survives system crashes, disk crashes,
other problems

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.4

Review: Example of General Address Translation

Code \ Code
Data ¥ i Stacki Data
H Heap 1
Heap > 3 P Heap
Stack N Stack
Prog 1 -: . Prog 2
Virtual : : Data 1 Virtual
Address s Address
Space 1 b Space 2
l OS code
Translation Map 1 OS data Translation Map 2
OS heap &
Stacks

Physical Address Space

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

165

For Protection, Lock User-Programs in Asylum

+ Idea: Lock user programs in padded cell
with no exit or sharp objects
— Cannot change mode to kernel mode
— User cannot modify translation maps
— Limited access to memory: cannot
adversely effect other processes

» Side-effect: Limited access to
memory-mapped |/O operations

— What else needs to be protected?

+ A couple of issues
— How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are the
same person. How do you manage this???

— How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell
» User— OS (user — kernel mode): getting out of cell

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

15.7

Page 2

Dual-Mode Operation

+ Can an application modify its own translation maps?
— If it could, could get access to all of physical memory
— Has to be restricted somehow

+ To assist with protection, hardware provides at least two
modes (Dual-Mode Operation):
— “Kernel” mode (or “supervisor” or “protected”)
—“User” mode (Normal program mode)

— Mode set with bits in special control register only accessible
in kernel-mode

+ Intel processors actually have four “rings” of protection:
— PL (Privilege Level) from 0 — 3
» PLO has full access, PL3 has least

— Typical OS kernels on Intel processors only use PLO
(“kernel”) and PL3 (“user”)

10/19/2011

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.6

How to get from Kernel—User

+ What does the kernel do to create a new user process?
— Allocate and initialize process control block
— Read program off disk and store in memory
— Allocate and initialize translation map
» Point at code in memory so program can execute
» Possibly point at statically initialized data
— Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
+ How does kernel switch between processes?
— Same saving/restoring of registers as before
— Save/restore hardware pointer to translation map

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

User—Kernel (System Call)

+ Can't let inmate (user) get out of padded cell on own
— Would defeat purpose of protection!
— So, how does the user program get back into kernel?

user process
user mode
(mode bit = 1)

‘ user process executing H calls system call ‘ ‘ return from system call ‘

\ 7

\ Z

.3 7
K 1 trap return
orme mode bit = 0 mode bit = 1

execute system call

+ System call: Voluntary procedure call into kernel
— Hardware for controlled User—Kernel transition
— Can any kernel routine be called?
» No! Only specific ones.
— System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

kernel mode
(mode bit = 0)f

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.9

User—Kernel (Exceptions: Traps and Interrupts)

. ;(A sytsterp) call instruction causes a synchronous exception
or “trap

— In fact, often called a software “trap” instruction

+ Other sources of Synchronous Exceptions:

— Divide by zero, lllegal instruction, Bus error (bad address, e.g.

unaligned access)
— Segmentation Fault (address out of range)
— Page Fault (for illusion of infinite-sized memory)

+ Interrupts are Asynchronous Exceptions
— Examples: timer, disk ready, network, etc....
— Interrupts can be disabled, traps cannot!

+ On system call, exception, or interrupt:
— Hardware enters kernel mode with interrupts disabled
— Saves PC, then jumps to appropriate handler in kernel

— For some processors (x86), processor also saves registers,
changes stack, etc.
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.11

Page 3

10/19/2011

System Call Continued

What are some system calls?
—1/O: open, close, read, write, Iseek
— Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
— Process: fork, exit, wait (like join)
— Network: socket create, set options
Are system calls constant across operating systems?
— Not entirely, but there are lots of commonalities
— Also some standardization attempts (POSIX)
What happens at beginning of system call?
— On entry to kernel, sets system to kernel mode
— Handler address fetched from table, and Handler started
System Call argument passing:
— In registers (not very much can be passed)
— Write into user memory, kernel copies into kernel memory
» User addresses must be translated!
» Kernel has different view of memory than user

— Every argument must be explicitly checked!
Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.10

Additions to MIPS ISA to support Exceptions?

- Exception state is kept in “Coprocessor 0”

10/19/2011

—Use mfcO to read contents of these registers:

» BadVAddr (register 8): contains memory address at which memory
reference error occurred

» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction
15 8 543210
Mask | |k|e Ikle Ikle |
old prev cur

Status

Status Register fields:

— Mask: Interrupt enable

» 1 bit for each of 5 hardware and 3 software interrupts

—k = kernel/luser: 0=kernel mode

— e = interrupt enable: O=interrupts disabled

— Exception=6 LSB shifted left 2 bits, setting 2 LSB to 0:
» run in kernel mode with interrupts disabled

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.12

Modern I/O Systems

2)\&
i

" \l
} s ‘
\JL\
———— N morv\itor ‘

graphics bridge/memory
controller controller

SCSl bus
@ @ (@ (@
&

&

SCSI controller

L L_PCl bus - I

—-expansion bus——!

parallel serial

& 8
&N\&/

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Faff 2011 15.13

S
o
expansion bus m“ AN
interface ‘ keyb?a'd e R

Example Device-Transfer Rates (Sun Enterprise 6000)

gigaplane
bus

SBUS

SCSI bus

fast
ethernet

hard disk

ethernet

laser
printer

modem

mouse

keyboard

0 0.01 0.1 1 10 100 S
s §
g 8

|
S S

g §

$ §

» Device Rates vary over many orders of magnitude
— System better be able to handle this wide range
— Better not have high overhead/byte for fast devices!

— Better not waste time waiting for slow devices
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.15

Page 4

The Requirements of I/0

+ What is the role of 1/0?
— Without I/0O, computers are useless (disembodied brains?)
— But... thousands of devices, each slightly different
» How can we standardize the interfaces to these devices?
— Devices unreliable: media failures and transmission errors
» How can we make them reliable???
— Devices unpredictable and/or slow
» How can we manage them if we don’t know what they will do or
how they will perform?
+ Some operational parameters:
— Byte/Block
» Some devices provide single byte at a time (e.g., keyboard)
» Others provide whole blocks (e.g., disks, networks, etc.)
— Sequential/Random
» Some devices must be accessed sequentially (e.g., tape)
» Others can be accessed randomly (e.g., disk, cd, etc.)
— Polling/Interrupts
» Some devices require continual monitoring
» Others generate interrupts when they need service

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.14

The Goal of the I/0 Subsystem

+ Provide uniform interfaces, despite wide range of different
devices
— This code works on many different devices:
FILE fd = fopen (“/dev/something”, “rw”) ;
for (int 1 = 0; 1 < 10; i++) {
fprintf (fd, “Count %d\n”,1i);

}
close (fd) ;

—Why? Because code that controls devices (“device driver”)
implements standard interface.

+ We will try to get a flavor for what is involved in actually
controlling devices in rest of lecture

— Can only scratch surface!

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.16

Want Standard Interfaces to Devices

+ Block Devices: e.g., disk drives, tape drives, DVD-ROM
— Access blocks of data
— Commands include open (), read (), write(), seek()
— Raw I/O or file-system access
— Memory-mapped file access possible
+ Character Devices: e.g., keyboards, mice, serial ports, some
USB devices
— Single characters at a time
— Commands include get (), put ()
— Libraries layered on top allow line editing
+ Network Devices: e.g., Ethernet, Wireless, Bluetooth
— Different enough from block/character to have own interface
— Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select () functionality
— Usage: pipes, FIFOs, streams, queues, mailboxes

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.17

Administrivia

+ Check our addition on your midterm exam!

+ New lecture schedule posted: new order for topics

—1/0, File Systems, Security, Address Translation,
Capstones

+ New project deadlines posted
— Project 2 codef/final design deadline moved later in term
— Project 3 being merged with project 4
» Working to improve quality/experience

» Will focus on moving client and server to Amazon EC2 and
adding a database for storing game history

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.19

Page 5

How Does User Deal with Timing?

« Blocking Interface: “Wait”

— When request data (e.g., read () system call), put process to
sleep until data is ready

— When write data (e.g., write () system call), put process to
sleep until device is ready for data

+ Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of bytes
successfully transferred to kernel

— Read may return nothing, write may write nothing
« Asynchronous Interface: “Tell Me Later”

— When requesting data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

— When sending data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.18
5min Break
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.20

How does the processor actually talk to the device?

~—
Processor Memory Bus Regular
Memory
Device "\‘

Bus
- —
] Address+ Controller "7
Interrupt e Buses = Data Bus Hardware
Interface
Controller Interrupt Request Controller
. . reac Addressable
» CPU interacts with a Controller [Control| Memory
— Contains a set of registers that and/or
can be read and written (Egg'gggg) Queues
— May contain memory for request Memo Ma&)ed
queues or bit-mapped images Region: 0x8f008020

+ Regardless of the complexity of the connections and buses,
processor accesses registers in two ways:
— 1/0 instructions: in/out instructions
» Example from the Intel architecture: out 0x21,AL
— Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space

» /0O accomplished with load and store instructions

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.21

Example: Memory-Mapped Display Controller

» Memory-Mapped:
— Hardware maps control registers and

display memory into physical address 0x80020000 [2 ohics
space Command
» Addresses set by hardware jumpers or Queue
programming at boot time
0x80010000
. . . Display
— Simply writing to display memory (also
called the “frame buffer”) changes Memory
image on screen 0x8000F000

» Addr: 0x8000F000—0x8000FFFF
— Writing graphics description to
command-queue area
» Say enter a set of triangles that describe
some scene
» Addr: 0x80010000—0x8001FFFF
— Writing to the command register may
cause on-board graphics hardware to do
something
» Say render the above scene
» Addr: 0x0007F004

0x0007F004 |[Command
0x0007F000 | Status

Physical Address
~ ,L Space
e

. . N
+ Can protect with address translation \\g-r/n’
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.23

Page 6

Main components of Intel Chipset: Pentium 4

+ Northbridge:
— Handles memory
— Graphics

+ Southbridge: 110
— PCl bus
— Disk controllers
— USB controllers
— Audio
— Serial 110
— Interrupt controller
—Timers

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.22

Transferring Data To/From Controller

+ Programmed I/O:

— Each byte transferred via processor in/out or load/store

— Pro: Simple hardware, easy to program

— Con: Consumes processor cycles proportional to data size
+ Direct Memory Access:

— Give controller access to memory bus

— Ask it to transfer data to/from memory directly

+ Sample interaction with DMA controller (from book):
1. device driver is told
to transfer disk data CPU
to buffer at address X

5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer -
and decreasing C at address X
untilC =0 ST

us/

6. when C = 0, DMA 4 i + = X
interrupts CPU to signal | Interfupt CRUmeimorybus.<) memory
transfer i controller

} | L PCI b)
‘ 3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends
\ each byte to DMA
@sk) GisR) controller
10/19/2011 >T\ 15.24

disk) @isk

A Kernel I/0 Structure

kernel
o
I
= kernel 1/O subsystem
B
SCSI keyboard | mouse PCl bus floppy ATAPI
device device device cco device device device
driver driver driver driver driver driver
SCsI keyboard | mouse PCI bus floppy ATAPI
device device device (XX device device device
° controller | controller | controller controller | controller | controller
- A T A T
S
2 ATAPI
scsl floppy- | | devices
s keyboard| | mouse LX) PCl bus dd,'Sk (dlisks,
rives tapes,
drives)
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.25
Life Cycle of An I/O Request
User A
Program completed
system call retum fiom system call
10 subsystem It aw‘(;:;';": :’:‘;MSS‘
return completion
Kernel 1/0 or ermor code
Subsystem

Device Driver
Top Half

Device Driver
Bottom Half

send request to device
driver, block process If kemel
appropriate /0 subsystem

process request, issue
commands o controlier,
configure controller to
block untilinterrupted

device
driver

interrupt
hander

Device
Hardware

device
monitor device, controller

interrupt when 110

determine which IO
completed, indicate state
change to 1/0 subsystem

.......... ——

recelve interrupt, store
data in device-driver buffer
it input, signai to unblock
device driver

10 completed,

10/19/2011 Anthony D. Josep

generate Interrupt

time.

> 15.27

Page 7

Device Drivers

+ Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
— Supports a standard, internal interface
— Same kernel I/0 system can interact easily with different
device drivers
— Special device-specific configuration supported with the
ioctl () system call
+ Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

» Implements a set of standard, cross-device calls like open (),
close (), read(), write(), ioctl (), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until
finished
— Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

15.26

I/0 Device Notifying the OS

» The OS needs to know when:
—The 1/O device has completed an operation
—The 1/O operation has encountered an error
* 1/0O Interrupt:
—Device generates an interrupt whenever it needs service
—Handled in bottom half of device driver
» Often run on special kernel-level stack
—Pro: handles unpredictable events well
—Con: interrupts relatively high overhead
* Polling:
—OS periodically checks a device-specific status register
» /0O device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally
—Pro: low overhead
—Con: may waste many cycles on polling if infrequent or
unpredictable 1/0 operations
* Actual devices combine both polling and interrupts
—For instance — High-bandwidth network adapter:
» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

15.28

I/0 Performance

300 | Response

o Time (ms)
(]
User 3 /0 200
Thread _'D]]_' o
Queue [
[OS Paths] 100
Response Time = Queue + I/O device service time

L 100%
Throughput (Utilization)
(% total BW)
+ Performance of I/O subsystem
— Metrics: Response Time, Throughput
— Contributing factors to latency:
» Software paths (can be loosely modeled by a queue)
» Hardware controller
» |/O device service time
+ Queuing behavior:
— Can lead to big increases of latency as utilization approaches
O,

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.29

Properties of a Magnetic Hard Disk

Sect

Platters

Tracl

+ Properties
- Indeé)endently addressable element: sector
» OS always transfers groups of sectors together— “blocks”
— A disk can access directly any given block of information it
contains (random access). Can access any file either
sequentially or randomly.
— A disk can be rewritten In place: it is possible to read/modify/
write a block from the disk
+ Typical numbers (depending on the disk size):
— 500 to more than 20,000 tracks per surface
— 32 to 800 sectors per track
» A sector is the smallest unit that can be read or written
+ Zoned bit recording
— Constant bit density: more sectors on outer tracks

— Speed varies with track location
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.31

Page 8

Hard Disk Drives

Cover Mounting Holes

(Cover not shown)

Base Casting
Spindle

Slider (and Head)

Actuator Arm

Actuator Axis

_#
s Read/Write Head
Side View

Actuator

Platters

Ribbon Cable
(attaches heads
to Logic Board)

r

SCS! Interface
Connector

Jumper Pins

)

Jumper Power Tape Seal

Western Dié‘i’fglaﬁrive
http://www.storagereview.com/guide/
IBM Personal Computer/AT (1986)
30 MB hard disk - $500

30-40ms seek time
0.7-1 MB/s (est.)

IBM/Hitachi Microdrive

a CS162 ©UCB Fall 2011 15.30

10/19/2017

Track

Magnetic Disk Characteristic Sector

+ Cylinder: all the tracks under the
head at a given point on all surfaces Head[(N—"=
+ Read/write data is a three-stage e Cylinder
process: “Platter
— Seek time: position the head/arm over the proper track (into
proper cylinder)
— Rotational latency: wait for the desired sector
to rotate under the read/write head
— Transfer time: transfer a block of bits (sector)
under the read-write head
+ Disk Latency = Queuing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

B Software Q 2])

_‘g" e 33 Media Time 2
. . Q= —

o (Device Driver) g5 (Seek+Rot+Xfer) %

3 = @

* Highest Bandwidth:

— Transfer large group of blocks sequentially from one track
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.32

Typical Numbers of a Magnetic Disk

» Average seek time as reported by the industry:
— Typically in the range of 8 ms to 12 ms
— Due to locality of disk reference may only be 25% to 33% of the
advertised number
+ Rotational Latency:
- Most)disks rotate at 3,600 to 7200 RPM (Up to 15,000RPM or
more
— Approximately 16 ms to 8 ms per revolution, respectively
— An average latency to the desired information is halfway around
the disk: 8 ms at 3600 RPM, 4 ms at 7200 RPM
+ Transfer Time is a function of:
— Transfer size (usually a sector): 512B — 1KB per sector
— Rotation speed: 3600 RPM to 15000 RPM
— Recording density: bits per inch on a track
— Diameter: ranges from 1into 5.25 in
— Typical values: 2 to 50 MB per second
+ Controller time depends on controller hardware
+ Cost drops by factor of two per year (since 1991)

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.33

Disk Scheduling

- Disk'can do only one request at a time; What order do you
choose to do queued requests?

User s R B S IS Head
Requests NN N =

» FIFO Order
— Fair among requesters, but order of arrival may be to random
spots on the disk = Very long seeks
+ SSTF: Shortest seek time first
— Pick the request that’s closest on the disk
— Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek
— Con: SSTF good at reducing seeks, but
may lead to starvation
+ SCAN: Implements an Elevator Algorithm: take the closest
request in the direction of travel
— No starvation, but retains flavor of SSTF
+ C-SCAN: Circular-Scan: only goes in one direction
— Skips any requests on the way back

— Fairer than SCAN not biased towards es |n middle
10/19/2011 Anthony D."Joseph and on Stoica CS$162 © C all 2011 15.35

PeaH ¥sia

Page 9

Disk Performance Examples
* Assumptions:
— Ignoring queuing and controller times for now
— Avg seek time of 5ms,
— 7200RPM => Time for one rotation: 8ms
— Transfer rate of 4MByte/s, sector size of 1 KByte
+ Read sector from random place on disk:
— Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)
— Approx 10ms to fetch/put data: 100 KByte/sec
+ Read sector from random place in same cylinder:
— Rot. Delay (4ms) + Transfer (0.25ms)
— Approx 5ms to fetch/put data: 200 KByte/sec
* Read next sector on same track:
— Transfer (0.25ms): 4 MByte/sec

+ Key to using disk effectively (esp. for filesystems) is to
minimize seek and rotational delays

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.34

Solid State Disks (SSDs)

+ 1995 — Replace rotating magnetic media with non-volatile
memory (battery backed DRAM, since 2009 NAND Flash)

— Single Level Cell (1-bit/cell), Multi-Level Cell (2-bit/cell)
+ Sector addressable

— Stores 4-64 “sectors” per memory page
» No moving parts (no rotate/seek motors)
— Eliminates seek and rotational delay (0.1-0.2ms access time)

— Very low power and lightweight
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.36

_— 3

SSD Architecture — Data ReadsL =]
NANO '

P
P
P
P
P T

.~.~>]
=1H

59:‘:’6A7Amkd.lce Buff
31 3.0Gbs (300MBVs) uffer 2
Gen—— L
HOST Manager

Flash
Memory |e=—>
Controller

T

L s W«OW |'
» Read data is similar to memory read (25ps) e .
— No seek or rotational latency

— Transfer time: transfer a block of bits (sector) L=

» Limited by controller and disk interface (SATA: 300-600MB/s)
— Disk Latency = Queuing Time + Controller time + Xfer Time
— Highest Bandwidth: Sequential OR Random reads

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.37
Storage Performance & Price

Bandwidth Cost/GB Size
(sequential R/W)

HHD 50-100 MB/s $0.05-0.1/GB 2-4TB

SSD! 200-500 MB/s $2-5/GB 200GB-1TB
(SATA)
6 GB/s (PCI)

DRAM 10-16 GB/s $12-13/GB 64GB-256GB

http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/

BW: SSD up to x10 than HDD, DRAM > x10 than SSD
Price: HDD x20 less than SSD, SSD x5 less than DRAM |

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

10/19/2011 15.39

Page 10

SSD Architecture — Data Writes

+ Write data is complex! (~200us — 1.7ms)
— No seek or rotational latency
— Transfer time: transfer a block of bits (sector)
+ But, can only write empty pages (erase takes ~1.5ms!)
— Controller maintains pool of empty pages by coalescing used
sectors (read, erase, write), also reserve some % of capacity

Steady state, when SSD full

— One erase every 64 or 128 writes (depending on page size)
+ Write and erase cycles require “high” voltage

— Damages memory cells, limits SSD lifespan

— Controller uses ECC, performs wear leveling

— OS may provide TRIM information about “deleted” sector
+ Result is very workload dependent performance

— Disk Latency = Queuing Time + Controller time (Find Free
Block) + Xfer Time

Rule of thumb: writes 10x more expensive than reads,
and erases 10x more expensive than writes

SSD Summary

+ Pros (vs. magnetic disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)
— No moving parts:
» Very light weight, low power, silent, very shock insensitive
— Read at memory speeds (limited by controller and 1/0 bus)

+ Cons
— Small storage (0.1-0.5x disk), very expensive (20x disk)
» Hybrid alternative: combine small SSD with large HDD
— Asymmetric block write performance: read pg/erase/write pg
» Controller GC algorithms have major effect on performance
» Sequential write performance may be worse than HDD
— Limited drive lifetime (NOR is higher, more expensive)

» 50-100K writes/page for SLC, 1-10K writes/page for MLC

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.40

Summary

+ Important system properties
— Availability: how often is the resource available?
— Durability: how well is data preserved against faults?
— Reliability: how often is resource performing correctly?

* Dual-Mode
— Kernel/User distinction: User restricted
— User—Kernel: System calls, Traps, or Interrupts

— Inter-process communication: shared memory, or
through kernel (system calls)

+ 1/O Devices Types:
— Many different speeds (0.1 bytes/sec to GBytes/sec)
— Different Access Patterns: block, char, net devices
— Different Access Timing: Non-/Blocking, Asynchronous

10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.41

Page 11

Summary

I/0 Controllers: Hardware that controls actual device
— CPU accesses thru I/O insts, Id/st to special phy memory
— Report results thru interrupts or a status register polling

+ Device Driver: Device-specific code in kernel

* Magnetic Disk Performance:
— Queuing time + Controller + Seek + Rotational + Transfer
— Rotational latency: on average ¥ rotation
— Transfer time: depends on rotation speed and bit density

+ SSD Performance:
— Read: Queuing time + Controller + Transfer
— Write: Queuing time + Controller (Find Free Block) + Transfer
— Find Free Block time: depends on how full SSD is (available
empty pages), write burst duration, ...

— Limited drive lifespan
10/19/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 15.42

