CS162
Operating Systems and
Systems Programming

Lecture 19

Address Translation

November 2, 2011
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Virtualizing Resources

+ Physical Reality: Processes/Threads share the same hardware
— Need to multiplex CPU (CPU Scheduling)
— Need to multiplex use of Memory (Today)

+ Why worry about memory multiplexing?
— The complete working state of a process and/or kernel is defined
by its data in memory (and registers)
— Consequently, cannot just let different processes use the same
memory
— Probably don’t want different processes to even have access to
each other’'s memory (protection)

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.3

Page 1

Goals for Today

+ Address Translation Schemes
— Segmentation
— Paging
— Multi-level translation
— Paged page tables
— Inverted page tables

Note: Some slides and/or pictures in the following are adapted
from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides
generated from lecture notes by Kubiatowicz.

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.2

11/2/2011

Important Aspects of Memory Multiplexing

+ Controlled overlap:
— Processes should not collide in physical memory
— Conversely, would like the ability to share memory when desired
(for communication)

* Protection:
— Prevent access to private memory of other processes
» Different pages of memory can be given special behavior (Read
Only, Invisible to user programs, etc)
» Kernel data protected from User programs

+ Translation:
— Ability to translate accesses from one address space (virtual) to
a different one (physical)
— When translation exists, process uses virtual addresses,
physical memory uses physical addresses

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.4

Binding of Instructions and Data to
Memory

Assume 4byte words
0x300 = 4 * 0x0CO

Process view of memory Physi| 0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000
datal: dw 32 0x03 (0]
start: 1w rl,0(datal) 0%0900 8C2000C0
jal checkit 0x0904 0C00
loop: addi r1, zl, -1 0x0908 2021FFFF
bnz rl, r0, loop 0x090C 14200242
checkit: .. Ox

11/2/2011

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.5

Binding of Instructions and Data to

Physical
Memory Memory
0x0000
0x0300
Process view of memory Physical addresses
datal: dw 32 0x300 00000020 0’;;900 g
start: 1lw rl,0(datal) 0x900 8C2000C0 "
e AR 0x904 0C000280
loop: addi r1, r1, -1 0x908 2021FFFF
bnz rl, r0, loop 0x90C 14200242
checkit: .. O;OAOO
OXFFFF
Need address translation!
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.7

Page 2

Binding of Instructions and Data ;9 a
ysica
Memory Memory
0x0000
0x0300{ 00000020
Process view of memory Physical addresses
datal: dw 32 00300 00000020 | 9X0900| 8C2000C0
0C000340
start: 1w rl,0(datal) 0x0900 8C2000C0 2021FFFF
jal checkit 0x0904 0C00 £3200212
loop: addi r1, rl, -1 0x0908 2021FFFF
bnz rl, r0, loop 0x090C 14200242
checkit: .. Ox
OXFFFF
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.6
Binding of Instructions and Data to
Memory Mermory
0x0000
0x0300
Process view of memory Processor view of memory
datal: dw 32 0x1300 00000020 %X0900 D
start: 1w rl,0(datal) 0x1900 8C2004C0
JE - EeRElE 0x1904 0C00 0x1300[00000020
loop: addi rl, rl, -1 0x1908 2021FFFF
bnz rl, r0, loop 0x190C 14200642
oxf900| 8c2004c0
checkit: .. 0x 0C000680
2021FFFF
« One Possible Translation! pa200512
* Where does translation take place? oxFFFF
Compile time, Load time, or Execution time?
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.8

Multi-step Processing of a Program for Execution Example of General Address Translation
+ Preparation of a program for execution -
involves components at: program Code i Code
— Compile time (i.e., “gcc”) _ Data \ : Stack 1 /
— Link/Load time (unix “Id” does link) } compie i Hean 1 Data
— Execution time (e.g. dynamic libs) secarmbler fme Heap . d Heap
Stack E E Code 1 Stack
+ Addresses can be bound to final ER
values anywhere in this path Prog 1 R o Prog 2
— Depends on hardware support Virtual E Virtual
— Also depends on operating system editod Address "m'. Address
Space 1 Space 2
- Dynamic Libraries e [0S code \
— Linking postponed until execution
— Small piece of code, stub, used to Translation Map 1 0S data Translation Map 2
locate appropriate memory-resident fynamican 0S heap &
library routine o s:ack'i
— Stub replaces itself with the address of 207 [immemon | | o)
the routine, and executes routine finking |~ memory ey ™" Physical Address SJ)ace
11/2/2011 Anthony D. Joseph and lon Stoica CS162 © inags 11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.10
Two Views of Memory Uniprogramming (MS-DOS) Starting M5 D0S. .

Virtual Physical
Addresses Addresses

- Uniprogramming (no Translation or Protection)

— Application always runs at same place in physical memory
since only one application at a time

— Application can access any physical address

Untranslated read or write

+ Address Space:
— All the addresses and state a process can touch Operating OxFFFFFFFF
— Each process and kernel has different address space System
« Consequently, two views of memory:
— View from the CPU (what program sees, virtual memory)
— View from memory (physical memory)
— Translation box (MMU) converts between the two views

Valid 32-bit
Addresses

+ Translation helps to implement protection Application
; , 0x00000000
— If task A cannot even gain access to task B’s data, no way for A T)) L
to adversely affect B — Application given illusion of dedicated machine by giving it
« With translation, every program can be linked/loaded into reality of a dedicated machine
same region of user address space
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.11 11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.12

Page 3

Multiprogramming (First Version)

+ Multiprogramming without Translation or Protection
— Must somehow prevent address overlap between threads

OxFFFFFFFF
Operating
System
Application2 0x00020000
Application1
0x00000000

— Trick: Use Loader/Linker: Adjust addresses while program
loaded into memory (loads, stores, jumps)
» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days
» With this solution, no protection: bugs in any program can

cause other programs to crash or even the OS
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.13

Simple Base and Bounds (CRAY-1)

Base
Virtual
- Address f_l_k :l
PU > $| DRAM
= Physical
Limit Address
No: Error!

» Could use base/limit for dynamic address translation (often
called “segmentation”) — translation happens at execution:

— Alter address of every load/store by adding “base”
— Generate error if address bigger than limit
+ This gives program the illusion that it is running on its own
dedicated machine, with memory starting at 0
— Program gets continuous region of memory

— Addresses within program do not have to be relocated when
program placed in different region of DRAM

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.15

Page 4

Multiprogramming (Version with Protection)

» Can we protect programs from each other without
translation?

OxFFFFFFFF
Operating
System
«——{ LimitAddr=0x10000 |
Application2 | 0x00020000 «—{BaseAddr=0x20000 |
Application1
0x00000000

— Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area
» If user tries to access an illegal address, cause an error
— During switch, kernel loads new base/limit from TCB (Thread
Control Block)
» User not allowed to change base/limit registers

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.14

More FIeX|bIe Segmentation

subroutine stack

symbol
table

sqrt
main
program

logical address

physical

user view of
memory space

+ Logical View: multiple separate segments
— Typical: Code, Data, Stack
— Others: memory sharing, etc

« Each segment is given region of contiguous memory
—Has a base and limit

11/2/2011Can reSIdAe I%n ISN\IJ’]og-:r and on Isowlga S16?©U8£¥all 2011 19.16

Implementation of Multi-Segment Model

Virtual Offset |} offset Error

Address Base0| Limit0 | V
Vv

hysical

Vv Address
| N
| N
Base7| Limit7 | V

+ Segment map resides in processor
— Segment number mapped into base/limit pair
— Base added to offset to generate physical address
— Error check catches offset out of range

+ As many chunks of physical memory as entries
— Segment addressed by portion of virtual address
— However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
+ What is “V/N” (valid / not valid)?

— Can mark segments as invalid; requires check as well
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.17

Issues with simple segmentation method

process 6 process 6 process 6 process 6
process 5 process 5 process 5 process 5

process 9 process 9
process2 | T = = process 10
0os oS 0s 0os

* Fragmentation problem
— Not every process is the same size
— Over time, memory space becomes fragmented
» Hard to do inter-process sharing
— Want to share code segments when possible
— Want to share memory between processes
— Helped by providing multiple segments per process

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.19

Page 5

Example: Four Segments (16 bit addresses)

Seg ID # Base Limit
- Offset] 0(code) |0x4000 |0x0800
15 1413 0 1 (data) 0x4800 | 0x1400

Virtual Address Format 2 (shared) |0xF000 |0x1000
3 (stack) |0x0000 |0x3000

SegID =0

0x0000 0x0000
= 0x4000 i
0x4000 SegD=1l 5 e o0 —— Might
5 be shared
0x5C00
0x8000
Space for
0xC000 Other Apps
0xF000 Shared with
X - Other Apps
Virtual Physical
Address Space Address Space
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.18

Schematic View of Swapping
+ Q: What if not all processes fit in memory?

+ A: Swapping: Extreme form of Context Switch
— In order to make room for next process, some or all of the
previous process is moved to disk
— This greatly increases the cost of context-switching

G
operating [—

system

D swapour | [P

process P,
@ swapin

user =

g backing store

main memory

» Desirable alternative?

— Some way to keep only active portions of a process in
memory at any one time

— Need finer granularity control over physical memory
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.20

Problems with Segmentation
+ Must fit variable-sized chunks into physical memory
+ May move processes multiple times to fit everything
+ Limited options for swapping to disk

+ Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don’t need all memory within allocated chunks

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.21

How to Implement Paging?

Virtual Address: l
.
v:n,w| Physical Address
3 page #3 |V.RW Check Perm
| page #4 | N
»é\:rtgiss [page #5 | VRW) Access
Page Table (One per process) Error

— Resides in physical memory

— Contains physical page and permission for each virtual page
» Permissions include: Valid bits, Read, Write, etc

Virtual address mapping

— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages

— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds and permissions
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.23

Page 6

Paging: Physical Memory in Fixed Size Chunks

+ Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)
— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 ... 110010

» Each bit represents page of physical memory
1=allocated, 0=free

+ Should pages be as big as our previous segments?
— No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
— Consequently: need multiple pages/segment

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.22

5min Break

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.24

What about Sharing?

Virtual Address
(Process A):

age #0 | V.R
age #1 | V.R
| page #2 " V.RW|
#3 | V,RW
ﬁ: # [N Shared
[page #5 | V.R.W Page
PageTablePtrB page #0 | VR
 page #1 [N . .
[page #2 | yRW This physical page
[page #3 N appears in address
[page #4 “[V.R space of both processes
| page #5 | V.R,W|

(Process B):

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.25

Page Table Discussion

+ What needs to be switched on a context switch?
— Page table pointer and limit

+ Analysis

— Pros
» Simple memory allocation
» Easy to Share

— Con: What if address space is sparse?
» E.g. on UNIX, code starts at 0, stack starts at (23'-1).
» With 1K pages, need 4 million page table entries!

— Con: What if table really big?

» Not all pages used all the time = would be nice to have
working set of page table in memory

+ How about combining paging and segmentation?

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.27

Page 7

Simple Page Table Example

Example (4 byte pages)

—— 0000 0000 0x00

0 0001 00003 gx04
0000 1100

i oxos F4—] o0ooo o100 > 1

1

i
P !
‘ 2[7 | —2000010d oxo8 H—
: oxos 1 0000 1_|0°0 Page —> ox0C [
: i
i k

e
Table f
9

_— —> 0x10 L
Virtual 5
Memory c

ld_

Physical
APPSR Memory .o
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.26

Multi-level Translation
+ What about a tree of tables?
— Lowest level page table==memory still allocated with bitmap
— Higher levels often segmented
+ Could have any number of levels. Example (top segment):

Virtual

Offset
Address:
age #0 | V,.R
Base0| Limi age #1_| V.R Offset
Base1| lithit1 | V page #2 LR, .
BaseZ| Limi page #3 | VAW Physical Address
Base3| Limit3{ N page #4 |N
Based4| Limit4

V,R,W,
Base5| Limit5 page #5 (Check Perm]
Base6| Limit6 | N

Base7| Limit7 | V' ccess Access
Error Error
+ What must be saved/restored on context switch?
— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.28

What about Sharing (Complete Segment)?

Process A [offset |
P [page 70

| page #1
Eage#z

gase:) L!mito i page #3

ase E 9

BaseZ| Limit2 | V 2 °§§

Base3| Limit3 | N Lpage 7> |

Based| Limitd | V Shared Segment

Base5| Limit5 | N Basdd Limito

Base6| Limit6 | N Bocdh| T

Base7| Limit7 | V ase ! _-imi

Base3| Limit3
Based4| Limit4
Baseb5| Limit5
Base6)| Limit6
Base7| Limit7

<|zlz|<|z]<|<|<

Process B

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.29

Multi-level Translation Analysis

* Pros:
— Only need to allocate as many page table entries as we need
for application
» In other words, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing

» Share at segment or page level (need additional reference
counting)

+ Cons:
— One pointer per page (typically 4K — 16K pages today)
— Page tables need to be contiguous

» However, previous example keeps tables to exactly one page in
size

— Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.31

Page 8

Another common example: two-level page table

Physical
10bits_10bits _12bits __ piveio Offsey

Virtual

Address:

4KB

PageTablePtr

—> 4 bytes +—

+ Tree of Page Tables
+ Tables fixed size (1024 entries)
— On context-switch: save single
PageTablePtr register
+ Valid bits on Page Table Entries
— Don’t need every 2"d-level table
— Even when exist, 2"-level tables can_, 4 bytes +—
reside on disk if not in use
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.30

Inverted Page Table
+ With all previous examples (“Forward Page Tables”)

— Size of page table is at least as large as amount of virtual
memory allocated to processes

— Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash M

Table

» Answer: use a hash table
— Called an “Inverted Page Table”
— Size is independent of virtual address space
— Directly related to amount of physical memory
— Very attractive option for 64-bit address spaces
+ Cons: Complexity of managing hash changes

— Often in hardware!
11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.32

Communication

» Now that we have isolated processes, how
can they communicate?
— Shared memory: common mapping to physical page

» As long as place objects in shared memory address range,
threads from each process can communicate
» Note that processes A and B can talk to shared memory through
different addresses
» In some sense, this violates the whole notion of protection that
we have been developing
— If address spaces don’t share memory, all inter-address space
communication must go through kernel (via system calls)
» Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout
» Message passing (send/receive): Can use this to build remote
procedure call (RPC) abstraction so that you can have one
program make procedure calls to another

» File System (read/write): File system is shared state!

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.33

Summary (1)

* Memory is a resource that must be multiplexed
— Controlled Overlap: only shared when appropriate

— Translation: Change virtual addresses into physical
addresses

— Protection: Prevent unauthorized sharing of resources

+ Simple Protection through segmentation
— Base+limit registers restrict memory accessible to user
— Can be used to translate as well

+ Full translation of addresses through Memory Management
Unit (MMU)
— Every Access translated through page table
— Changing of page tables only available to user

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.35

Page 9

Closing thought: Protection without Hardware

+ Does protection require hardware support for translation and
dual-mode behavior?
— No: Normally use hardware, but anythin% you can do in
hardware can also do in software (possibly expensive)

+ Protection via Strong Typing
— Restrict programming language so that you can'’t express
program that would trash another program
— Loader needs to make sure that program produced by valid
compiler or all bets are off
— Example languages: LISP, Ada, Modula-3 and Java

» Protection via software fault isolation:

— Language independent approach: have compiler generate
object code that provably can’t step out of bounds
» Compiler puts in checks for every “dangerous” operation (loads,
stores, etc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot do
certain things (Proof Carrying Code)

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.34

Summary (2)
» Page Tables
— Memory divided into fixed-sized chunks of memory
— Virtual page number from virtual address mapped through
page table to physical page number
— Offset of virtual address same as physical address

* Multi-Level Tables
— Virtual address mapped to series of tables
— Permit sparse population of address space

« Inverted page table
— Size of page table related to physical memory size

11/2/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 19.36

