CS162 Operating Systems and Systems Programming Lecture 20

Caches and TLBs

November 7, 2011
Anthony D. Joseph and Ion Stoica
http://inst.eecs.berkeley.edu/~cs162

Recap: Segmentation vs. Paging

Segmentation:

- Note: paging is equivalent to segmentation when a segment maps onto a page!
 - The offset of the first address in a page is 0

Review: Address Segmentation

Review: Address Segmentation

Review: Address Segmentation

Review: Paging

Review: Paging

Review: Paging

Review: Two-Level Paging

Review: Two-Level Paging

Review: Inverted Table

Address Translation Comparison

	Advantages	Disadvantages
Segmentation	Fast context switching: Segment mapping maintained by CPU	External fragmentation
Paging (single-level page)	No external fragmentation	Large size: Table size ~ virtual memory
Paged segmentation	Table size ~ # of pages in virtual	Multiple memory references per page
Two-level pages	memory	access
Inverted Table	Table size ~ # of pages in physical memory	Hash function more complex

Goals for Today

- Caching
 - Misses
 - Organization
- Translation Look aside Buffers (TLBs)

Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides generated from lecture notes by Kubiatowicz.

Caching Concept

- Cache: a repository for copies that can be accessed more quickly than the original
 - Make frequent case fast and infrequent case less dominant
- Caching underlies many of the techniques that are used today to make computers fast
 - Can cache: memory locations, address translations, pages, file blocks, file names, network routes, etc...
- Only good if:
 - Frequent case frequent enough and
 - Infrequent case not too expensive
- Important measure: Average Access time =

(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Example

Data in memory, no cache:

Data in memory, 10ns cache:

Average Access time =

(Hit Rate x HitTime) + (Miss Rate x MissTime)

- HitRate + MissRate = 1
- HitRate = 90% → Average Access Time = 19ns
- HitRate = 99% → Average Access Time = 10.9ns
 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011

Review: Memory Hierarchy

- Take advantage of the principle of locality to:
 - Present as much memory as in the cheapest technology
 - Provide access at speed offered by the fastest technology

Why Does Caching Help? Locality!

- Temporal Locality (Locality in Time):
 - Keep recently accessed data items closer to processor
- Spatial Locality (Locality in Space):
 - Move contiguous blocks to the upper levels

Review: Sources of Cache Misses

- Compulsory (cold start): first reference to a block
 - "Cold" fact of life: not a whole lot you can do about it
 - Note: When running "billions" of instruction, Compulsory Misses are insignificant

Capacity:

- Cache cannot contain all blocks access by the program
- Solution: increase cache size
- Conflict (collision):
 - Multiple memory locations mapped to same cache location
 - Solutions: increase cache size, or increase associativity

Two others:

- Coherence (Invalidation): other process (e.g., I/O) updates memory
- Policy: Due to non-optimal replacement policy

Direct Mapped Cache

- Cache index selects a cache block
- "Byte select" selects byte within cache block
 - Example: Block Size=32B blocks
- · Cache tag fully identifies the cached data
- Data with same "cache index" shares the same cache entry
 - Conflict misses

Set Associative Cache

- N-way set associative: N entries per Cache Index
 - N direct mapped caches operates in parallel
- Example: Two-way set associative cache
 - Two tags in the set are compared to input in parallel
 - Data is selected based on the tag result

Fully Associative Cache

- Fully Associative: Every block can hold any line
 - Address does not include a cache index
 - Compare Cache Tags of all Cache Entries in Parallel
- Example: Block Size=32B blocks
 - We need N 27-bit comparators
 - Still have byte select to choose from within block

Where does a Block Get Placed in a Cache?

• Example: Block 12 placed in 8 block cache 32-Block Address Space:

Block

11122222222233

no. 01234567890123456789012345678901

Direct mapped:

block 12 (01100) can go only into block 4 (12 mod 8)

Block 01234567 no.

Set associative:

block 12 can go anywhere in set 0 (12 mod 4)

01234567 Block no.

Set Set Set Set

Fully associative:

block 12 can go anywhere

01234567 Block no.

01100

Which block should be replaced on a miss?

- Easy for Direct Mapped: Only one possibility
- Set Associative or Fully Associative:
 - Random
 - LRU (Least Recently Used)

	2-way		4-way		8-way	
Size	LRU	Random	LRU F	Random	LRU F	Random
16 KB	5.2%	5.7%	4.7%	5.3%	4.4%	5.0%
64 KB	1.9%	2.0%	1.5%	1.7%	1.4%	1.5%
256 KB	1.15%	1.17%	1.13%	1.13%	1.12%	1.12%

What happens on a write?

- Write through: The information is written both to the block in the cache and to the block in the lower-level memory
- Write back: The information is written only to the block in the cache.
 - Modified cache block is written to main memory only when it is replaced
 - Question is block clean or dirty?
- Pros and Cons of each?
 - WT:
 - » PRO: read misses cannot result in writes
 - » CON: processor held up on writes unless writes buffered
 - WB:
 - » PRO: repeated writes not sent to DRAM processor not held up on writes
 - » CON: More complex Read miss may require writeback of dirty data

Announcements

- Project 2 code due tomorrow: Tuesday, November 8, 11:59
- Project 3
 - **EC2**
 - Authentication
 - DB backend used for authentication, recording moves
 - Recovery from game server failure
- Exam regrades have been entered
- I'll be away November 8-17
 - No office hours next week
 - Samsung Forum (Seoul, Korea)
 - HotNets (MIT)

5min Break

Caching Applied to Address Translation

- Question is one of page locality: does it exist?
 - Instruction accesses spend a lot of time on the same page (since accesses sequential)
 - Stack accesses have definite locality of reference
 - Data accesses have less page locality, but still some...
- Can we have a TLB hierarchy?
 - Sure: multiple levels at different sizes/speeds
 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011

What Actually Happens on a TLB Miss?

- Hardware traversed page tables:
 - On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk multiple levels)
 - » If PTE valid, hardware fills TLB and processor never knows
 - » If PTE marked as invalid, causes Page Fault, after which kernel decides what to do afterwards
- Software traversed Page tables
 - On TLB miss, processor receives TLB fault
 - Kernel traverses page table to find PTE
 - » If PTE valid, fills TLB and returns from fault
 - » If PTE marked as invalid, internally calls Page Fault handler
- Most chip sets provide hardware traversal
 - Modern operating systems tend to have more TLB faults since they use translation for many things

What happens on a Context Switch?

- Need to do something, since TLBs map virtual addresses to physical addresses
 - Address Space just changed, so TLB entries no longer valid!
- Options?
 - Invalidate TLB: simple but might be expensive
 - » What if switching frequently between processes?
 - Include ProcessID in TLB
 - » This is an architectural solution: needs hardware
- What if translation tables change?
 - For example, to move page from memory to disk or vice versa...
 - Must invalidate TLB entry!
 - » Otherwise, might think that page is still in memory!

What TLB organization makes sense?

- Needs to be really fast
 - Critical path of memory access
 - Seems to argue for Direct Mapped or Low Associativity
- However, needs to have very few conflicts!
 - With TLB, the Miss Time extremely high!
 - This argues that cost of Conflict (Miss Time) is much higher than slightly increased cost of access (Hit Time)
- Thrashing: continuous conflicts between accesses
 - What if use low order bits of page as index into TLB?
 - » First page of code, data, stack may map to same entry
 - » Need 3-way associativity at least?
 - What if use high order bits as index?
 - » TLB mostly unused for small programs

TLB organization: include protection

- How big does TLB actually have to be?
 - -Usually small: 128-512 entries
 - -Not very big, can support higher associativity
- TLB usually organized as fully-associative cache
 - Lookup is by Virtual Address
 - -Returns Physical Address + other info
- What happens when fully-associative is too slow?
 - -Put a small (4-16 entry) direct-mapped cache in front
 - -Called a "TLB Slice"
- When does TLB lookup occur?
 - -Before cache lookup?
 - In parallel with cache lookup?

Reducing translation time further

As described, TLB lookup is in serial with cache lookup:

Virtual Address

Physical Address

- Machines with TLBs go one step further: they overlap TLB lookup with cache access.
 - Works because offset available early

Overlapping TLB & Cache Access (1/2)

Main idea:

- Offset in virtual address exactly covers the "cache index" and "byte select"
- Thus can select the cached byte(s) in parallel to perform address translation

Overlapping TLB & Cache Access (1/2)

Here is how this might work with a 4K cache:

- What if cache size is increased to 8KB?
 - Overlap not complete
 - Need to do something else. See CS152/252

Putting Everything Together: Address Translation Physical Memory: Virtual Address: Virtual Offset PageTablePtr Physical Address: Offset Page Table (1st level) Page Table (2nd level)

11/7

Putting Everything Together: TLB

Putting Everything Together: Cache

Summary (1/2)

- The Principle of Locality:
 - Program likely to access a relatively small portion of the address space at any instant of time.
 - » Temporal Locality: Locality in Time
 - » Spatial Locality: Locality in Space

- Three (+1) Major Categories of Cache Misses:
 - Compulsory Misses: sad facts of life. Example: cold start misses.
 - Conflict Misses: increase cache size and/or associativity
 - Capacity Misses: increase cache size
 - Coherence Misses: Caused by external processors or I/O devices

Summary (2/2)

- Cache Organizations:
 - Direct Mapped: single block per set
 - Set associative: more than one block per set
 - Fully associative: all entries equivalent
- TLB is cache on address translations
 - Fully associative to reduce conflicts
 - Can be overlapped with cache access