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Recap: Segmentation vs. Paging

« Segmentation:

Address Base0| Limit0 | V
Basel1| Limit1 | V
Base%
Base3| Limit3 hysical
Address
- Paging
Virtual
Address 1

- Offset I

Physical Address

- Note: paging is equivalent to segmentation when a segment
maps onto a page!

— The offset of the first address in a page is O
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Review: Address Segmentation

Virtual memory view

1111 1111

Physical memory view

1111 0ooo | Stack
1 stack 11110 0000
11 1011 0000 1 0000
I 10 0111 0000 11000 _
/ 01 0101 0000 | 10 0000
heap
1000 0000 00 0001 0000 10 0000 hea
P 10111 0000
0101 0000
0100 0000
code
e 0001 0000
0000 0000 0000 0000
L J
T 1
seg # offset
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Review: Address Segmentation

Virtual memory view Physical memory view
1111 1111
stack
1110 0000 stack 1110 0000
4 _ Seqg # | base limit
What happens if 11 1011 0000 | 10000

stack grows to

10 0111 0000 11000
1110 00007 u
\_ J 01 0101 0000 10 0000

-

hea
1000 0000 P 00 0001 0000 | 10 0000 e
P 10111 0000
0101 0000
0100 0000
code
code 0001 0000
Q00 0000 0000 0000

BB Y
seg # offset
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Review: Address Segmentation

Virtual memory view Physical memory view
1111 1111
stack
1110 0000 1 stack |1110 0000
1100 0000 Seg # | base limit
11 1011 0000 10000
I 10 0111 0000 11 \ N\
/ 01 0101 0000 | 10d No room to grow!!

1000 0000 |__ €8P 00 |ooo1o000 | 10 Bufferoverflow erroror
resize segment and )00
move segments around
to make room 00

0100 0000

. code

.0000 0000

BB Y
seg # offset
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Review: Paging

_ _ Page Table
Virtual memory view 11 1101 (777 Physical memory view
1111 1111 otack | 11110/ 11100 07777
1111 0000 i 1101| nul \
11100| null ——stack—
11011| null =t 1110 0000
11010| null
11001| null
1100 0000 11000| null
10111| null
10110| null
10101| null
10100/ null
— \10011 null
ea 10010| 10000
1000 0000 - %10001 01111
10000| 01110 0111 000
01111 null
01110 null
01101| null 0101 000

01100| null
01011| 01101
01010/ 01100
01001| 01011

01000/ 01010
00111| null
00110| null / 0001 0000
00101| null
0000 0000 eEd L 00000000
— 00011| 00101

page # offset 00010 00100

00001| 00011 .
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Virtual memory view

Review: Paging

Page Table

11111

1111 1111

j’/’,’:———/:ﬁﬁo

11101

1110 0000

stack grows to
\1 110 00007

11100
11011
11010
11001

-
What happens if

11000

10111

10110

10101

10100

10011

1000 0000

heap
D

10010

I

10001

10000

01111

0100 0000

01110
01101
01100
01011
01010

01001

01000

00111

00110

00101

0000 0000

00100

4
page # offset

11/7

00011
00010
00001

0

00000

11101
11100
null
null
null
null
null
null
null
null
null
null
null
10000
01111
01110
null
null
null
null
01101
01100
01011
01010
null
null
null
null
00101
00100
00011
00010

Physical memory view

/

——stack 1110 0000

0111 000

0101 000

o
«
¢

0001 0000

0000 0000

\\
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Review: Paging

Page Table
11111 | 11101

611110 11100
stack _.‘11101 10111

11100 10110 AN\, =~ J}— -

1110 0000 1011] nul 1110 0000
l 11010 null

11001| null

1100 0000 11000| null

10111| null

10110 null
10101| null '/
10100| null
100111 nul Allocate new

10010| 10000 pages where
10001| 01111 R

10000/ 01110  room!
01111 null
01110| null
01101( null
01100( null
01011| 01101
01010| 01100
01001| 01011
01000| 01010
00111| null
00110 null
00101( null
00100| null
00011| 00101
00010 00100

00001| 00011 _
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Virtual memory view

Physical memory view
1111 1111

1000 0000

[T

0101 000

0100 0000

0001 0000
0000 0000

0000 0000

4
page # offset
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1111 1111

1110 0000

1100 0000

1000 0000

0100 0000 -

page2 #
OOOEIBOOO

Review: Two-Level Paging

Virtual memory view

—stack—

i

@)
@)
Q
@

pagel # offset

11/7

Page Tables Physical memory view
e ]
11| 11101
10| 11100 ——stack—11110 0000
01| 10111
00| 10110
(level 1) - stack—
11| o 11| null
110 null 10| 10000 _
101| null 01| 01111
- 00| & 00| 01110 \
011| null
010 @
001| null | ——— 0111 000
000| @& 11| 01101
10| 01100
01| 01011 0101 000
00| 01010
11| 00101
10| 00100 /
01| 00011
00| 00010 0001 0000
_oooo 0000
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Virtual memory view

1001 0000

11/7

Review: Two-Level Paging

—stack—

|

D
Ay
O

9)
@)
Q.
@
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Page Tables
(level 2)
11| 11101
10| 11100
01| 10111
00| 10110

Page Table

(level 1)

11| @ 11| null

110 null (301770000 ]

101| null 01| 01111
00| 01110

011/ null

010| @

001| null

ooo| © 11| 01101
10| 01100
01| 01011
00| 01010
11| 00101
10| 00100
01| 00011
00| 00010

Physical memory view

1110 0000

1000 0000

0001 0000
0000 0000
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Virtual memory view

1111 1111

1110 0000

1100 0000

1000 0000

0100 0000

0000 0000
4

Review: Inverted Table

—stack—

!

I/

!&

(@)
@)
(@)
(q))

page # offset

11/7
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Inverted Table

hash(virt. page #) =
physical page #

11111 | 11101
11110| 11100
11101| 10111
11100| 10110
10010{ 10000
10001| 01111
10000 01110
01011| 01101
01010 01100
01001| 01011
10000| 01010

00011| 00101
00010| 00100
00001| 00011
00000( 00010

A/ Wl

Physical memory view

11110 0000

0111 000

0101 000

0001 0000

e 0000 0000
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Address Translation Comparison

Advantages Disadvantages
Segmentation | Fast context External fragmentation
switching: Segment
mapping
maintained by CPU
Paging No external Large size: Table size ~
(single-level |fragmentation virtual memory
page)
Paged Table size ~ # of Multiple memory
segmentation | pages in virtual references per page
Two-level memaory aCCessS
pages
Inverted Table | Table size ~ # of Hash function more
pages in physical complex
memory




Goals for Today

+ Caching
— Misses
— Organization
+ Translation Look aside Buffers (TLBs)

Note: Some slides and/or pictures in the following are adapted
from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides
generated from lecture notes by Kubiatowicz.
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Caching Concept

Cache: a repo\“\sitory for copies that can be accessed more
quickly than the original

— Make frequent case fast and infrequent case less dominant

Caching underlies many of the techniques that are used today
to make computers fast

— Can cache: memory locations, address translations, pages, file
blocks, file names, network routes, etc...

Only good if:
— Frequent case frequent enough and
— Infrequent case not too expensive

Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Example

- Data in memory, no cache:
Main
Memory
Processor |€— ) — (DRAM)
Access time =
100ns
100ns
- Data in memory, 10ns cache: Second o
Level
Memory
Processor |¢ >|Cache |&e—>}
(SRAM) (IR
Average Access time = ™ 100ns

(Hit Rate x HitTime) + (Miss Rate x MissTime)
- HitRate + MissRate = 1

- HitRate = 909% -> Average Access Time = 19ns
- HitRate = 99% —> Average Access Time = 10.9ns
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Review: Memory Hierarchy

- Take advantage of the principle of locality to:
— Present as much memory as in the cheapest technology
— Provide access at speed offered by the fastest technology

Processor
Control Tertiary
Secondary
/ Storage Storage
= = Second| | Main (Disk) (Tape)
® & 5 Level Memory
Datapath % S5 Cache (DRAM)
3 L (SRAM)
1 o
o
\—
\
Speed (ns): 1s 10s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks-Ms Ms Gs Ts
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Why Does Caching Help? Locality!

Probability
of reference

0 Address Space 2" -1

- Temporal Locality (Locality in Time):

— Keep recently accessed data items closer to processor
- Spatial Locality (Locality in Space):

— Move contiguous blocks to the upper levels

Lower Level

To Processor | Upper Level Memory
Memory
Blk X

From Processor R BIK Y

11/7 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2011 Lec 20.17



Review: Sources of Cache Misses

Compulsory (cold start): first reference to a block
— “Cold” fact of life: not a whole lot you can do about it

— Note: When running “billions” of instruction, Compulsory Misses
are insignificant

Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size
Conflict (collision):
— Multiple memory locations mapped to same cache location
— Solutions: increase cache size, or increase associativity
Two others:

— Coherence (Invalidation): other process (e.g., I/0) updates
memory

— Policy: Due to non-optimal replacement policy
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Direct Mapped Cache

« Cache index selects a cache block

- “Byte select” selects byte within cache block
— Example: Block Size=32B blocks

- Cache tag fully identifies the cached data
- Data with same “cache index” shares the same cache entry

— Conflict misses
31

8

4

0

Cache Tag

Cache Ind

ex Byte Select

Ex: 0x01

>

Hit
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Set Associative Cache

- N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel

- Example: Two-way set associative cache
— Two tags in the set are compared to input in parallel
— Data is selected based on the tag result

31 8 4 0
Cache Tag Cache Index Byte Select
]
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
i by il itttk (s Aalalallieleltl S - B -1,
, |
- ¥V 1 -
I I
D_&Sell L—ajux ¢ SelO,/_C
()
OR
N\
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Fully Associative Cache

- Fully Associative: Every block can hold any line

— Address does not include a cache index

— Compare Cache Tags of all Cache Entries in Parallel
- Example: Block Size=32B blocks

— We need N 27-bit comparators

— Still have byte select to choose from within block

31 4 0
Cache Tag (27 bits long) I Byte Select
Ex: 0x01
Cache Tag Valid Bit  Cache Data j

Byte 31| °° |Bytel | Byte 0

|

Byte 63| °° | Byte 33| Byte 32

|

11918
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Where does a Block Get Placed in a

Cache?
- Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901
Direct mapped: Set associative: Fully associative:
block 12 (01100) block 12 can go block 12 can go
can go only into anywhere in set 0 anywhere
block 4 (12 mod 8) (12 mod 4)
Block 01234567 Block 01234567 Block 01234567
no. no. no.

Set Set Set Set
0 1 2 3

tag index ta index taﬂ
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Which block should be replaced on a
miss?

- Easy for Direct Mapped: Only one possibility
- Set Associative or Fully Associative:

— Random
— LRU (Least Recently Used)

2-way 4-way 8-way
Size L RU Random LRU Random LRU Random
16 KB 52% 57% 47% 53% 44% 5.0%
64 KB 1.9% 20% 15% 1.7% 14% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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What happens on a write?

- Write through: The information is written both to the block in
the cache and to the block in the lower-level memory

. Writhe back: The information is written only to the block in the
cache.

— Modified cache block is written to main memory only when it is
replaced

— Question is block clean or dirty?
- Pros and Cons of each?

— WT:

» PRO: read misses cannot result in writes

» CON: processor held up on writes unless writes buffered
— WB:

» PRO: repeated writes not sent to DRAM

processor not held up on writes

» CON: More complex
Read miss may require writeback of dirty data
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Announcements

Project 2 code due tomorrow: Tuesday, November 8,
11:59

Project 3
— EC2
— Authentication
— DB backend used for authentication, recording moves
— Recovery from game server failure
Exam regrades have been entered
I'll be away November 8-17
— No office hours next week

— Samsung Forum (Seoul, Korea)
— HotNets (MIT)
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5min Break
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Caching Applied to Address Translation

by TLB Physical
Address|  Cached?
Yes ™2 Ms} Physical
No 4 Memory
SRS
1 62@90
Translate
(MMU)

Data Read or Write
(untranslated)

 Question is one of page locality: does it exist?

— Instruction accesses spend a lot of time on the same page
(since accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...

- Can we have a TLB hierarchy?

— Sure: multiple levels at different sizes/s(geeds
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What Actually Happens on a TLB Miss?

- Hardware traversed page tables:

— On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows

» |f PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

- Software traversed Page tables
— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE

» |f PTE valid, fills TLB and returns from fault
» [f PTE marked as invalid, internally calls Page Fault handler

« Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults since
they use translation for many things
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What happens on a Context Switch?

* Need to do something, since TLBs map virtual addresses to
physical addresses

— Address Space just changed, so TLB entries no longer valid!

« Options?
— Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?

— Include ProcessID in TLB
» This is an architectural solution: needs hardware

- What if translation tables change?
— For example, to move page from memory to disk or vice versa...

— Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
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What TLB organization makes sense?

‘— TLB [—1Cache [—{Memory

* Needs to be really fast

— Critical path of memory access

— Seems to argue for Direct Mapped or Low Associativity
- However, needs to have very few conflicts!

— With TLB, the Miss Time extremely high!

— This argues that cost of Conflict (Miss Time) is much higher than
slightly increased cost of access (Hit Time)

» Thrashing: continuous conflicts between accesses

— What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

— What if use high order bits as index?
» TLB mostly unused for small programs
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TLB organization: include protection

* How big does TLB actually have to be?
—Usually small: 128-512 entries
—Not very big, can support higher associativity

- TLB usually organized as fully-associative cache
—Lookup is by Virtual Address
—Returns Physical Address + other info

- What happens when fully-associative is too slow?
—Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”

* When does TLB lookup occur?
—Before cache lookup?
—In parallel with cache lookup?
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Reducing translation time further

+ As described, TLB lookup is in serial with cache lookup:

Virtual Address
4—10—»

V page no. offset
I

TLB Lookup

/ v

< Access
V ’Rights | PA

/) Y

f ‘

\ 4

P page no. offset

—10—

Physical Address

- Machines with TLBs go one step further: they overlap TLB
lookup with cache access.

— Works because offset available early
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Overlapping TLB & Cache Access (1/2)

 Main idea:

— Offset in virtual address exactly covers the “cache index”
and “byte select”

— Thus can select the cached byte(s) in parallel to perform
address translation

virtual address - Offset |

physical address | tag/page # | index | byte |
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Overlapping TLB & Cache Access (1/2)

- Here is how this might work with a 4K cache:

| assoc
lookup i
32 |TLB ‘ NEEX 1 4K Cache 1K
! 20 10 2 4 bytes— .
page # disp |00
Hit/ :
PA (3 PA Data Hit/
! | v Miss

- What if cache size is increased to 8KB?
— Overlap not complete
— Need to do something else. See CS152/252
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Putting Everything Together: Address

Translation Physical
Virtual Address: Memory:
PageTabIePtr Ph\sic -

Page Table
(15t level)

Page Table
(2nd level)
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Putting Everything Together: TLB

Virtual Address:

PageTablfPtr p—"]

N\

Page Table
(15t level)

TLB:

Page Table
(2nd level)

Physic

11/7
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Physical
Memory:
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Putting Everything Together: Cache

Physical
Memory:

Physic ressg:
Offset

11/7 Anthony D. Joseph and lon Stoica C5162 ©UCB Spring 2011 Lec 20.37



Summary (1/2)

* The Principle of Locality:

— Program likely to access a relatively small portion of the address
space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

- Three (+1) Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Conflict Misses: increase cache size and/or associativity
— Capacity Misses: increase cache size

— Coherence Misses: Caused by external processors or I/0
devices
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Summary (2/2)

« Cache Organizations:
— Direct Mapped: single block per set
— Set associative: more than one block per set
— Fully associative: all entries equivalent

» TLB is cache on address translations
— Fully associative to reduce conflicts
— Can be overlapped with cache access
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