
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 21  
 

Page Allocation and Replacement"

November 9, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

21.2!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Goals for Today"
•  Page Replacement Policies!

– FIFO, LRU!
– Clock Algorithm !!

•  Working Set/Thrashing!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz."

21.3!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Review: Caching Applied to Address Translation"
•  Problem: address translation expensive (especially multi-level)!
•  Solution: cache address translation (TLB)!

–  Instruction accesses spend a lot of time on the same page (since
accesses sequential)!

– Stack accesses have definite locality of reference!
– Data accesses have less page locality, but still some…!

Data Read or Write"
(untranslated)"

CPU" Physical"
Memory"

TLB"

Translate"
(MMU)"

No"

Virtual"
Address" Physical"

Address"Yes"
Cached?"

Sav
e"

Res
ult"

21.4!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

•  Here is how this might work with a 4K cache: !

•  What if cache size is increased to 8KB?!
– Overlap not complete!
– Need to do something else. See CS152/252 !

•  Another option: Virtual Caches!
– Tags in cache are virtual addresses!
– Translation only happens on cache misses!

TLB" 4K Cache"

10" 2"
00"

4 bytes"

index" 1 K"

page #" disp"
20"

assoc"
lookup"

32"

Hit/"
Miss"

PA" Data" Hit/"
Miss"

="PA"

Overlapping TLB & Cache Access"

Page 2

21.5!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Review: Paging & Address Translation"

Physical Address:!
Offset!Physical!

Page #!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

PageTablePtr!

Page Table !
(1st level)!

Page Table !
(2nd level)!

Physical !
Memory:!

21.6!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Page Table !
(2nd level)!

PageTablePtr!

Page Table !
(1st level)!

Review: Translation Look-aside Buffer"

Offset!Physical!
Page #!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

Physical !
Memory:!

Physical Address:!

…!

TLB:!

21.7!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Page Table !
(2nd level)!

PageTablePtr!

Page Table !
(1st level)!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

…!

TLB:!

Review: Cache"

Offset!

Physical !
Memory:!

Physical Address:!
Physical!
Page #!

…

tag:! block:!
cache:!

index! byte!tag!

21.8!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Demand Paging"
•  Modern programs require a lot of physical memory!

– Memory per system growing faster than 25%-30%/year!
•  But they donʼt use all their memory all of the time!

– 90-10 rule: programs spend 90% of their time in 10% of their
code!

– Wasteful to require all of userʼs code to be in memory!
•  Solution: use main memory as cache for disk!

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

Caching"

Page 3

21.9!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Demand Paging is Caching"
•  Since Demand Paging is Caching, must ask:!

– What is block size?!
»  1 page!

– What is organization of this cache (i.e. direct-mapped, set-
associative, fully-associative)?!

»  Fully associative: arbitrary virtual→physical mapping!
– How do we find a page in the cache when look for it?!

»  First check TLB, then page-table traversal!
– What is page replacement policy? (i.e. LRU, Random…)!

»  This requires more explanation… (kinda LRU)!
– What happens on a miss?!

» Go to lower level to fill miss (i.e. disk)!
– What happens on a write? (write-through, write back)!

» Definitely write-back. Need a “dirty” bit (D)!!

21.10!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

•  PTE helps us implement demand paging!
– Valid ⇒ Page in memory, PTE points at physical page!
– Not Valid ⇒ Page not in memory; use info in PTE to find it on

disk when necessary!
•  Suppose user references page with invalid PTE?!

– Memory Management Unit (MMU) traps to OS!
» Resulting trap is a “Page Fault”!

– What does OS do on a Page Fault?:!
» Choose an old page to replace !
»  If old page modified (“D=1”), write contents back to disk!
» Change its PTE and any cached TLB to be invalid!
»  Load new page into memory from disk!
» Update page table entry, invalidate TLB for new entry!
» Continue thread from original faulting location!

– TLB for new page will be loaded when thread continued!!
– While pulling pages off disk for one process, OS runs another

process from ready queue!
»  Suspended process sits on wait queue!

Demand Paging Mechanisms"

21.11!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Steps in Handling a Page Fault"

21.12!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Demand Paging Example"
•  Since Demand Paging like caching, can compute average

access time! (“Effective Access Time”)!
–  EAT = Hit Rate x Hit Time + Miss Rate x Miss Time!

•  Example:!
–  Memory access time = 200 nanoseconds!
–  Average page-fault service time = 8 milliseconds!
–  Suppose p = Probability of miss, 1-p = Probably of hit!
–  Then, we can compute EAT as follows:!

! !EAT != (1 – p) x 200ns + p x 8 ms!
! != (1 – p) x 200ns + p x 8,000,000ns!

 = 200ns + p x 7,999,800ns!
•  If one access out of 1,000 causes a page fault, then EAT =

8.2 μs:!
–  This is a slowdown by a factor of 40!!

•  What if want slowdown by less than 10%?!
–  200ns x 1.1 < EAT ⇒ p < 2.5 x 10-6!

–  This is about 1 page fault in 400,000 !!

Page 4

21.13!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

What Factors Lead to Misses?"
•  Compulsory Misses: !

– Pages that have never been paged into memory before!
– How might we remove these misses?!

»  Prefetching: loading them into memory before needed!
» Need to predict future somehow! More later.!

•  Capacity Misses:!
– Not enough memory. Must somehow increase size.!
– Can we do this?!

» One option: Increase amount of DRAM (not quick fix!)!
»  Another option: If multiple processes in memory: adjust percentage

of memory allocated to each one!!
•  Conflict Misses:!

– Technically, conflict misses donʼt exist in virtual memory, since it
is a “fully-associative” cache!

•  Policy Misses:!
– Caused when pages were in memory, but kicked out prematurely

because of the replacement policy!
– How to fix? Better replacement policy!

21.14!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Page Replacement Policies"
•  Why do we care about Replacement Policy? !!

– Replacement is an issue with any cache!
– Particularly important with pages!

»  The cost of being wrong is high: must go to disk!
» Must keep important pages in memory, not toss them out!

•  FIFO (First In, First Out)!
– Throw out oldest page. Be fair – let every page live in memory

for same amount of time.!
– Bad, because throws out heavily used pages instead of

infrequently used pages!
•  MIN (Minimum): !

– Replace page that wonʼt be used for the longest time !
– Great, but canʼt really know future…!
– Makes good comparison case, however!

•  RANDOM:!
– Pick random page for every replacement!
– Typical solution for TLBʼs. Simple hardware!
– Unpredictable!

21.15!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Replacement Policies (Conʼt)"
•  LRU (Least Recently Used):!

– Replace page that hasnʼt been used for the longest time!
– Programs have locality, so if something not used for a while,

unlikely to be used in the near future.!
– Seems like LRU should be a good approximation to MIN.!

•  How to implement LRU? Use a list!!

– On each use, remove page from list and place at head!
– LRU page is at tail!

•  Problems with this scheme for paging?!
– List operations complex!

» Many instructions for each hardware access!
•  In practice, people approximate LRU (more later)!

Page 6" Page 7" Page 1" Page 2"Head"

Tail (LRU)"

21.16!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

•  Suppose we have 3 page frames, 4 virtual pages, and
following reference stream: !

– A B C A B D A D B C B!
•  Consider FIFO Page replacement:!

– FIFO: 7 faults. !
– When referencing D, replacing A is bad choice, since need A

again right away!

Example: FIFO"

C"

B"

A"

D"

C"

B"

A"

B"C"B"D"A"D"B"A"C"B"A"

3"

2"

1"

Ref:"
Page:"

Page 5

21.17!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

•  Suppose we have the same reference stream: !
– A B C A B D A D B C B!

•  Consider MIN Page replacement:!

– MIN: 5 faults !
– Look for page not referenced farthest in future.!

•  What will LRU do?!
– Same decisions as MIN here, but wonʼt always be true!!

Example: MIN"

C"

D"C"

B"

A"

B"C"B"D"A"D"B"A"C"B"A"

3"

2"

1"

Ref:"
Page:"

21.18!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

•  Consider the following: A B C D A B C D A B C D!
•  LRU Performs as follows (same as FIFO here):!

– Every reference is a page fault!!
•  MIN Does much better:!

D"

When will LRU perform badly?"

C"

B"

A"

D"

C"

B"

A"

D"

C"

B"

A"

C"B"A"D"C"B"A"D"C"B"A" D"

3"

2"

1"

Ref:"
Page:"

B"

C"

D"C"

B"

A"

C"B"A"D"C"B"A"D"C"B"A" D"

3"

2"

1"

Ref:"
Page:"

21.19!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Graph of Page Faults Versus The Number of Frames"

•  One desirable property: When you add memory the miss rate
goes down!

– Does this always happen?!
– Seems like it should, right?!

•  No: Beladyʼs anomaly !
– Certain replacement algorithms (FIFO) donʼt have this obvious

property!!
21.20!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Adding Memory Doesnʼt Always Help Fault Rate"
•  Does adding memory reduce number of page faults?!

– Yes for LRU and MIN!
– Not necessarily for FIFO! (Called Beladyʼs anomaly)!

•  After adding memory:!
– With FIFO, contents can be completely different!
–  In contrast, with LRU or MIN, contents of memory with X pages

are a subset of contents with X+1 Page!

D"
C"

E"

B"
A"

D"

C"
B"

A"

D"C"B"A
"

E"B"A"D"C"B"A" E"

3"
2"
1"

Page:"

C"D"4"

E"
D"

B"
A"

E"

C"
B"

A"

D"C"B"A"E"B"A"D"C"B"A" E"

3"
2"
1"

Page:"

Page 6

21.21!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Administrivia"
•  Project 3 specification posted!

– Using EC2, Authentication, DB backend used for auth and
recording moves, Recovery from game server failure!

•  Back from Washington, NYC and Seoul!
– Washington, DC: UCB TRUST NSF Science and Technology

Center in Cybersecurity – summer research opportunities for
undergraduates !

– New York City, NY: Association for Computing Machinery
Council meeting!

» Consider joining: conferences, student magazine, !
– Seoul, Korea:!

»  Security in the Cloud forum with SK congressmen, industry, and
academics!

»  Berkeley Club of Korea!

21.22!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

5min Break"

21.23!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Implementing LRU & Second Chance"
•  Perfect:!

– Timestamp page on each reference!
– Keep list of pages ordered by time of reference!
– Too expensive to implement in reality for many reasons!

•  Second Chance Algorithm: !
– Approximate LRU!

» Replace an old page, not the oldest page!
– FIFO with “use” bit!

•  Details!
– A “use” bit per physical page!
– On page fault check page at head of queue!

»  If use bit=1 à clear bit, and move page at tail (give the page
second chance!)!

»  If use bit=0 à replace page !
– Moving pages to tail still complex !

21.24!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Clock Algorithm"
•  Clock Algorithm: more efficient implementation of second

chance algorithm!
– Arrange physical pages in circle with single clock hand!

•  Details:!
– On page fault:!

» Check use bit: 1→used recently; clear and leave it alone  
 0→selected candidate for replacement!

»  Advance clock hand (not real time)!
– Will always find a page or loop forever?!

•  What if hand moving slowly?!
– Good sign or bad sign?!

» Not many page faults and/or find page quickly!
•  What if hand is moving quickly?!

– Lots of page faults and/or lots of reference bits set!

Page 7

21.25!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
!

B	
 u:0	

first	
 loaded	

page	

A	
 u:1	
 D	
 u:0	
 C	
 u:0	

last	
 loaded	

page	

21.26!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!

B	
 u:0	

first	
 loaded	

page	

A	
 u:1	
 D	
 u:0	
 C	
 u:0	

last	
 loaded	

page	

21.27!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!

A	
 u:1	

first	
 loaded	

page	

D	
 u:0	
 C	
 u:0	
 F	
 u:0	

last	
 loaded	

page	

21.28!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

A	
 u:1	

first	
 loaded	

page	

D	
 u:1	
 C	
 u:0	
 F	
 u:0	

last	
 loaded	

page	

Page 8

21.29!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

D	
 u:1	

first	
 loaded	

page	

C	
 u:0	
 F	
 u:0	
 A	
 u:0	

last	
 loaded	

page	

21.30!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

C	
 u:0	

first	
 loaded	

page	

F	
 u:0	
 A	
 u:0	
 D	
 u:0	

last	
 loaded	

page	

E	
 u:0	

21.31!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!

B	
 u:
0	

21.32!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A! B	
 u:

0	

A	
 u:
0	

Page 9

21.33!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!

B	
 u:
0	

A	
 u:
1	

D	
 u:
0	

21.34!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!

B	
 u:
0	

A	
 u:
1	

D	
 u:
0	

C	
 u:
0	

21.35!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

B	
 u:
0	

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!

F	
 u:0	

A	
 u:
1	

D	
 u:
0	

C	
 u:
0	

21.36!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

C	
 u:
0	

E	
 u:
0	

•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

A	
 u:
1	

A	
 u:
0	

D	
 u:
1	

D	
 u:
0	

Clock Replacement Illustration"

F	
 u:0	

Page 10

21.37!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Nth Chance version of Clock Algorithm"
•  Nth chance algorithm: Give page N chances!

– OS keeps counter per page: # sweeps!
– On page fault, OS checks use bit:!

»  1⇒clear use and also clear counter (used in last sweep)!
»  0⇒increment counter; if count=N, replace page!

– Means that clock hand has to sweep by N times without page
being used before page is replaced!

•  How do we pick N?!
– Why pick large N? Better approx to LRU!

»  If N ~ 1K, really good approximation!
– Why pick small N? More efficient!

» Otherwise might have to look a long way to find free page!
•  What about dirty pages?!

– Takes extra overhead to replace a dirty page, so give dirty
pages an extra chance before replacing?!

– Common approach:!
» Clean pages, use N=1!
» Dirty pages, use N=2 (and write back to disk when N=1)!

21.38!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Clock Algorithms: Details"
•  Which bits of a PTE entry are useful to us?!

– Use: Set when page is referenced; cleared by clock algorithm!
– Modified: set when page is modified, cleared when page

written to disk!
– Valid: ok for program to reference this page!
– Read-only: ok for program to read page, but not modify!

»  For example for catching modifications to code pages!!
•  Do we really need hardware-supported “modified” bit?!

– No. Can emulate it (BSD Unix) using read-only bit!
»  Initially, mark all pages as read-only, even data pages!
» On write, trap to OS. OS sets software “modified” bit, and marks

page as read-write.!
» Whenever page comes back in from disk, mark read-only!

21.39!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Clock Algorithms Details (contʼd)"

•  Do we really need a hardware-supported “use” bit?!

– No. Can emulate it using “invalid” bit:!
» Mark all pages as invalid, even if in memory!
» On read to invalid page, trap to OS!
» OS sets use bit, and marks page read-only!

– When clock hand passes by, reset use bit and mark page as
invalid again!

 !

21.40!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Thrashing"

•  If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:!

–  low CPU utilization!
– operating system spends most of its time swapping to disk!

•  Thrashing ≡ a process is busy swapping pages in and out!
•  Questions:!

– How do we detect Thrashing?!
– What is best response to Thrashing?!

Page 11

21.41!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

•  Program Memory Access
Patterns have temporal and
spatial locality

– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

•  Not enough memory for
Working Set⇒Thrashing

– Better to swap out process?

Locality In A Memory-Reference Pattern

21.42!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Working-Set Model"

•  Δ ≡ working-set window ≡ fixed number of page references !
– Example: 10,000 instructions!

•  WSi (working set of Process Pi) = total set of pages
referenced in the most recent Δ (varies in time)!

–  if Δ too small will not encompass entire locality!
–  if Δ too large will encompass several localities!
–  if Δ = ∞ ⇒ will encompass entire program!

•  D = Σ|WSi| ≡ total demand frames !
•  if D > memory ⇒ Thrashing!

– Policy: if D > memory, then suspend/swap out processes!
– This can improve overall system behavior by a lot!!

21.43!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

What about Compulsory Misses?"
•  Recall that compulsory misses are misses that occur the

first time that a page is seen !!
– Pages that are touched for the first time!
– Pages that are touched after process is swapped out/swapped

back in!
•  Clustering:!

– On a page-fault, bring in multiple pages “around” the faulting
page!

– Since efficiency of disk reads increases with sequential reads,
makes sense to read several sequential pages!

•  Working Set Tracking:!
– Use algorithm to try to track working set of application!
– When swapping process back in, swap in working set!

21.44!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Summary (1/2)"
•  Demand Paging:!

– Treat memory as cache on disk!
– Cache miss ⇒ get page from disk!

•  Transparent Level of Indirection!
– User program is unaware of activities of OS behind

scenes!
– Data can be moved without affecting application

correctness!

•  Replacement policies!
– FIFO: Place pages on queue, replace page at end!
– MIN: Replace page that will be used farthest in future!
– LRU: Replace page used farthest in past !

Page 12

21.45!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Summary (2/2)"

•  Clock Algorithm: Approximation to LRU!
– Arrange all pages in circular list!
– Sweep through them, marking as not “in use”!
–  If page not “in use” for one pass, than can replace!

•  Second-Chance List algorithm: Yet another approx LRU!
– Divide pages into two groups, one of which is truly LRU and

managed on page faults!

•  Working Set:!
– Set of pages touched by a process recently!

•  Thrashing: a process is busy swapping pages in and out!
– Process will thrash if working set doesnʼt fit in memory!
– Need to swap out a process!

