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Review: Caching Applied to Address Translation

+ Problem: address translation expensive (especially multi-level)
+ Solution: cache address translation (TLB)

— Instruction accesses spend a lot of time on the same page (since
accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...
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Goals for Today

+ Page Replacement Policies
— FIFO, LRU
— Clock Algorithm

+ Working Set/Thrashing

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.
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Overlapping TLB & Cache Access

+ Here is how this might work with a 4K cache:
| assoc |
lookup

32 |TLB index 1K

]—' 4K Cache

20 10 2 —— 4 bytes—
[page# [ disp [oo]
Hit/
Miss
PA ©) PA Data Hit/
i Miss

+ What if cache size is increased to 8KB?

— Overlap not complete

— Need to do something else. See CS152/252
+ Another option: Virtual Caches

—Tags in cache are virtual addresses

— Translation only happens on cache misses
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Review: Cache i
Phusical Demand Paging
Memory: » Modern programs require a lot of physical memory
— Memory per system growing faster than 25%-30%/year
+ But they don’t use all their memory all of the time
—90-10 rule: programs spend 90% of their time in 10% of their
code
Physic ress: — Wasteful to require all of user’s code to be in memory
Offset + Solution: use main memory as cache for disk
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Demand Paging is Caching

+ Since Demand Paging is Caching, must ask:

— What is block size?
» 1 page

— What is organization of this cache (i.e. direct-mapped, set-

associative, fully-associative)?

» Fully associative: arbitrary virtual—physical mapping

— How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal

— What is page replacement policy? (i.e. LRU, Random...)
» This requires more explanation... (kinda LRU)

— What happens on a miss?
» Go to lower level to fill miss (i.e. disk)

— What happens on a write? (write-through, write back)
» Definitely write-back. Need a “dirty” bit (D)!
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Steps in Handling a Page Fault
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Demand Paging Mechanisms

+ PTE helps us implement demand paging

— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on
disk when necessary

+ Suppose user references page with invalid PTE?

— Memory Management Unit (MMU) traps to OS "
» Resulting trap is a “Page Fault”
— What does OS do on a Page Fault?: |
» Choose an old page to replace
» If old page modified (“D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
— TLB for new page will be loaded when thread continued!
— While pulling pages off disk for one process, OS runs another
process from ready queue
» Suspended process sits on wait queue
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Demand Paging Example
Since Demand Paging like caching, can compute average
access time! (“Effective Access Time”)
— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
Example:
— Memory access time = 200 nanoseconds
— Average page-fault service time = 8 milliseconds
— Suppose p = Probability of miss, 1-p = Probably of hit
— Then, we can compute EAT as follows:

EAT =(1-p)x200ns+px8ms
=(1—-p) x200ns + p x 8,000,000ns
=200ns + p x 7,999,800ns
g 8ne access out of 1,000 causes a page fault, then EAT =
.2 Us:

— This is a slowdown by a factor of 40!
What if want slowdown by less than 10%?
— 200nsx 1.1 <EAT=p<2.5x10°%
— This is about 1 page fault in 400,000 !
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What Factors Lead to Misses?

+ Compulsory Misses:
— Pages that have never been paged into memory before
— How might we remove these misses?
» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later.
+ Capacity Misses:
— Not enough memory. Must somehow increase size.
— Can we do this?
» One option: Increase amount of DRAM (not quick fix!)

» Another option: If multiple processes in memory: adjust percentage
of memory allocated to each one!

+ Conflict Misses:
— Technically, conflict misses don’t exist in virtual memory, since it
is a “fully-associative” cache
» Policy Misses:
— Caused when pages were in memory, but kicked out prematurely
because of the replacement policy

— How to fix? Better replacement policy
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Replacement Policies (Con’t)

+ LRU (Least Recently Used):
— Replace page that hasn’t been used for the longest time

— Programs have locality, so if something not used for a while,
unlikely to be used in the near future.

— Seems like LRU should be a good approximation to MIN.
+ How to implement LRU? Use a list!

Head Page Page 7 Page 1 Page 2

Tail (LRU)
—On each use, remove page from list and place at head
— LRU page is at tail
+ Problems with this scheme for paging?
— List operations complex
» Many instructions for each hardware access
+ In practice, people approximate LRU (more later)
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Page Replacement Policies

+ Why do we care about Replacement Policy?
— Replacement is an issue with any cache
— Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
« FIFO (First In, First Out)
— Throw out oldest page. Be fair — let every page live in memory
for same amount of time.
— Bad, because throws out heavily used pages instead of
infrequently used pages
MIN (Minimum):
— Replace page that won’t be used for the longest time
— Great, but can’t really know future...
— Makes good comparison case, however
+ RANDOM:
— Pick random page for every replacement
— Typical solution for TLB’s. Simple hardware
— Unpredictable
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Example: FIFO

» Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:

-ABCABDADBCB
» Consider FIFO Page replacement:

Ref:]A (B [C |[A |B |D |A |D |[B [C (B
Page:
1 A D C
2 B A
3 C B
— FIFO: 7 faults.

— When referencing D, replacing A is bad choice, since need A
again right away
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Example: MIN

« Suppose we have the same reference stream:
-ABCABDADBCB
+ Consider MIN Page replacement:

Ref:]A |[B |[C |[A |[B |[D |[A |[D |[B |C |B
Page:
1 A (]
2 B
3 C D
— MIN: 5 faults

— Look for page not referenced farthest in future.
+ What will LRU do?
— Same decisions as MIN here, but won’t always be true!
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Graph of Page Faults Versus The Number of Frames
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+ One desirable property: When you add memory the miss rate
goes down
— Does this always happen?
— Seems like it should, right?
* No: Belady’s anomaly
— Certain replacement algorithms (FIFO) don’t have this obvious
property!
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When will LRU perform badly?
+ Consider the following: ABCDABCDABCD
+ LRU Performs as follows (same as FIFO here):
Ref:]A |[B |[C (D |[A |[B |[C |[D |[A |[B [C |D
Page:
1 A D c B
2 B A D c

3 (] B A D

— Every reference is a page fault!
* MIN Does much better:

Ref:]A |[B |[C |[D |A B |[C |[D |[A |[B |[C |D
Page:
1 A B
2 B C
1" 3 Anthol c D

Adding Memory Doesn’t Always Help Fault Rate

+ Does adding memory reduce number of page faults?
—Yes for LRU and MIN
— Not necessarily for FIFO! (Called Belady’s anomaly)

Page:]A |B |C (D |A |[B [E |A |B [C |D E

1 A D E
2 B A Cc
3 C B D
Page:]A |B |[C (D |A |[B [E |A |B [C |D |E

w(N| =
@
>
m

Cc B
4 D C
+ After adding memory:
— With FIFO, contents can be completely different
— In contrast, with LRU or MIN, contents of memory with X pages

are a subset of contents with X+1 Page
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Administrivia
+ Project 3 specification posted

— Using EC2, Authentication, DB backend used for auth and
recording moves, Recovery from game server failure

+ Back from Washington, NYC and Seoul

— Washington, DC: UCB TRUST NSF Science and Technology
Center in Cybersecurity — summer research opportunities for
undergraduates

— New York City, NY: Association for Computing Machinery
Council meeting

» Consider joining: conferences, student magazine,
— Seoul, Korea:

» Security in the Cloud forum with SK congressmen, industry, and
academics

» Berkeley Club of Korea
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Implementing LRU & Second Chance

* Perfect:
— Timestamp page on each reference
— Keep list of pages ordered by time of reference
— Too expensive to implement in reality for many reasons

+ Second Chance Algorithm:
— Approximate LRU
» Replace an old page, not the oldest page
— FIFO with “use” bit

* Details
— A “use” bit per physical page
— On page fault check page at head of queue
» If use bit=1 - clear bit, and move page at tail (give the page
second chance!)
» If use bit=0 = replace page
— Moving pages to tail still complex
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5min Break
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Clock Algorithm

Clock Algorithm: more efficient implementation of second
chance algorithm
— Arrange physical pages in circle with single clock hand
Details:
— On page fault:
» Check use bit: 1—used recently; clear and leave it alone
0—selected candidate for replacement
» Advance clock hand (not real time)
— Will always find a page or loop forever?

What if hand moving slowly?
— Good sign or bad sign?
» Not many page faults and/or find page quickly
What if hand is moving quickly?
— Lots of page faults and/or lots of reference bits set
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Second Chance lllustration

+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives

first loaded last loaded
page page

B u:0[<—A u:l D u:0 Cu:0
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Second Chance lllustration
+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
first loaded last loaded
page l page
Au:l D u:0 Cu:0[<—{Fu:0
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Second Chance lllustration

+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives

first loaded last loaded
page page
B u:0 Au:l D u:0 Cu:0
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Second Chance lllustration
+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
—Access page D
—Page E arrives
first loaded last loaded
page l page
A u:l D u:1j¢—>{C u:0[¢<—>[F u:0
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Second Chance lllustration

+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
—Access page D
—Page E arrives

first loaded last loaded
page l page

D u:1<—|Cu:0[<—>|F u:0[<—>A u:0
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Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
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Second Chance lllustration

+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
—Access page D
—Page E arrives

first loaded last loaded
page page

Cu:0 Fu:0[<—A u:0 B u:0
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Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives
—Access page A Bu:
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Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives

— Access page A B u:
. 0
—Page D arrives I
1
Du:
0
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Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives

— Access page A Buh
. 0"
—Page D arrives T
—Page C arrives ((): u: _>? u
—Page F arrives
Du:
0
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Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives
—Access page A Bu:

—Page D arrives T
—Page C arrives Cu Au
0 1
D u:
0
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Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives

—Access page A F u:0
—Page D arrives T
—Page C arrives Eu

. 0 0
—Page F arrives J,
—Access page D Du:

. 0
—Page E arrives
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Nt Chance version of Clock Algorithm

« N chance algorithm: Give page N chances
— OS keeps counter per page: # sweeps
— On page fault, OS checks use bit:
» 1=>clear use and also clear counter (used in last sweep)
» O=sincrement counter; if count=N, replace page
— Means that clock hand has to sweep by N times without page
being used before page is replaced
+ How do we pick N?
— Why pick large N? Better approx to LRU
» If N ~ 1K, really good approximation
— Why pick small N? More efficient
» Otherwise might have to look a long way to find free page
+ What about dirty pages?
— Takes extra overhead to replace a dirty page, so give dirty
pages an extra chance before replacing?
— Common approach:
» Clean pages, use N=1

» Dirty pages, use N=2 (and write back to disk when N=1)
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Clock Algorithms Details (cont’d)

» Do we really need a hardware-supported “use” bit?

— No. Can emulate it using “invalid” bit:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

— When clock hand passes by, reset use bit and mark page as
invalid again
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Clock Algorithms: Details

+ Which bits of a PTE entry are useful to us?
— Use: Set when page is referenced; cleared by clock algorithm
— Modified: set when page is modified, cleared when page
written to disk
— Valid: ok for program to reference this page
— Read-only: ok for program to read page, but not modify
» For example for catching modifications to code pages!
+ Do we really need hardware-supported “modified” bit?
—No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages
» On write, trap to OS. OS sets software “modified” bit, and marks

page as read-write.
» Whenever page comes back in from disk, mark read-only
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Thrashing

thrashing

CPU utilization

degree of multiprogramming
+ If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:

— low CPU utilization

— operating system spends most of its time swapping to disk
+ Thrashing = a process is busy swapping pages in and out
+ Questions:

— How do we detect Thrashing?

— What is best response to Thrashing?
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Locality In A Memory-Reference Pattern

s P ™ P S —— =

* Program Memory Access N
Patterns have temporal and of——

spatial locality Lﬁ S| 11 12l ¥ 7 50 S T

— Group of Pages accessed

along a given time slice [
called the “Working Set” T

— Working Set defines g
minimum number of pages ¢
needed for process to
behave well

 Not enough memory for Rffs ST {1l

Working Set=Thrashing ...l _

b

— Better to swap out process? 0 3 ‘ L
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Working-Set Model

page reference table
...26157777516283412344434344413234443444. ..
A | A
t t
WS(t,) = {1,2,5,6,7} WS(t,) = (3.4}

+ A = working-set window = fixed number of page references
— Example: 10,000 instructions

+ WS; (working set of Process P) = total set of pages
referenced in the most recent A (varies in time)

—if A too small will not encompass entire locality
—if A too large will encompass several localities
—if A = o = will encompass entire program
+ D =ZIWS] = total demand frames
+ if D> memory = Thrashing
— Policy: if D> memory, then suspend/swap out processes
— This can improve overall system behavior by a lot!
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What about Compulsory Misses?

* Recall that compulsory misses are misses that occur the
first time that a page is seen

— Pages that are touched for the first time

— Pages that are touched after process is swapped out/swapped
back in

+ Clustering:

— On a page-fault, bring in multiple pages “around” the faulting
page

— Since efficiency of disk reads increases with sequential reads,
makes sense to read several sequential pages

+ Working Set Tracking:
— Use algorithm to try to track working set of application
— When swapping process back in, swap in working set
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Summary (1/2)

* Demand Paging:
— Treat memory as cache on disk
— Cache miss = get page from disk

+ Transparent Level of Indirection
— User program is unaware of activities of OS behind
scenes
— Data can be moved without affecting application
correctness

* Replacement policies
— FIFO: Place pages on queue, replace page at end
— MIN: Replace page that will be used farthest in future
— LRU: Replace page used farthest in past
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Summary (2/2)

+ Clock Algorithm: Approximation to LRU
— Arrange all pages in circular list
— Sweep through them, marking as not “in use”
— If page not “in use” for one pass, than can replace

+ Second-Chance List algorithm: Yet another approx LRU

— Divide pages into two groups, one of which is truly LRU and
managed on page faults

+ Working Set:
— Set of pages touched by a process recently

+ Thrashing: a process is busy swapping pages in and out
— Process will thrash if working set doesn't fit in memory
— Need to swap out a process
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