
Page 1 

CS162  
Operating Systems and 
Systems Programming 

Lecture 21  
 

Page Allocation and Replacement"

November 9, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

21.2!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Goals for Today"
•  Page Replacement Policies!

– FIFO, LRU!
– Clock Algorithm !!

•  Working Set/Thrashing!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz."
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Review: Caching Applied to Address Translation"
•  Problem: address translation expensive (especially multi-level)!
•  Solution: cache address translation (TLB)!

–  Instruction accesses spend a lot of time on the same page (since 
accesses sequential)!

– Stack accesses have definite locality of reference!
– Data accesses have less page locality, but still some…!
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•  Here is how this might work with a 4K cache: !

•  What if cache size is increased to 8KB?!
– Overlap not complete!
– Need to do something else.  See CS152/252 !

•  Another option: Virtual Caches!
– Tags in cache are virtual addresses!
– Translation only happens on cache misses!

TLB" 4K Cache"

10" 2"
00"

4 bytes"

index" 1 K"

page #" disp"
20"

assoc"
lookup"

32"

Hit/"
Miss"

PA" Data" Hit/"
Miss"

="PA"

Overlapping TLB & Cache Access"



Page 2 

21.5!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Review: Paging & Address Translation"
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Demand Paging"
•  Modern programs require a lot of physical memory!

– Memory per system growing faster than 25%-30%/year!
•  But they donʼt use all their memory all of the time!

– 90-10 rule: programs spend 90% of their time in 10% of their 
code!

– Wasteful to require all of userʼs code to be in memory!
•  Solution: use main memory as cache for disk!
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Demand Paging is Caching"
•  Since Demand Paging is Caching, must ask:!

– What is block size?!
»  1 page!

– What is organization of this cache (i.e. direct-mapped, set-
associative, fully-associative)?!

»  Fully associative: arbitrary virtual→physical mapping!
– How do we find a page in the cache when look for it?!

»  First check TLB, then page-table traversal!
– What is page replacement policy? (i.e. LRU, Random…)!

»  This requires more explanation… (kinda LRU)!
– What happens on a miss?!

» Go to lower level to fill miss (i.e. disk)!
– What happens on a write? (write-through, write back)!

» Definitely write-back.  Need a “dirty” bit (D)!!
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•  PTE helps us implement demand paging!
– Valid ⇒ Page in memory, PTE points at physical page!
– Not Valid ⇒ Page not in memory; use info in PTE to find it on 

disk when necessary!
•  Suppose user references page with invalid PTE?!

– Memory Management Unit (MMU) traps to OS!
» Resulting trap is a “Page Fault”!

– What does OS do on a Page Fault?:!
» Choose an old page to replace !
»  If old page modified (“D=1”), write contents back to disk!
» Change its PTE and any cached TLB to be invalid!
»  Load new page into memory from disk!
» Update page table entry, invalidate TLB for new entry!
» Continue thread from original faulting location!

– TLB for new page will be loaded when thread continued!!
– While pulling pages off disk for one process, OS runs another 

process from ready queue!
»  Suspended process sits on wait queue!

Demand Paging Mechanisms"
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Steps in Handling a Page Fault"
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Demand Paging Example"
•  Since Demand Paging like caching, can compute average 

access time! (“Effective Access Time”)!
–  EAT = Hit Rate x Hit Time + Miss Rate x Miss Time!

•  Example:!
–  Memory access time = 200 nanoseconds!
–  Average page-fault service time = 8 milliseconds!
–  Suppose p = Probability of miss, 1-p = Probably of hit!
–  Then, we can compute EAT as follows:!

! !EAT != (1 – p) x 200ns + p x 8 ms!
!        != (1 – p)  x 200ns + p x 8,000,000ns!

              = 200ns + p x 7,999,800ns!
•  If one access out of 1,000 causes a page fault, then EAT = 

8.2 μs:!
–  This is a slowdown by a factor of 40!!

•  What if want slowdown by less than 10%?!
–  200ns x 1.1 < EAT ⇒ p < 2.5 x 10-6!

–  This is about 1 page fault in 400,000 !!
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What Factors Lead to Misses?"
•  Compulsory Misses: !

– Pages that have never been paged into memory before!
– How might we remove these misses?!

»  Prefetching: loading them into memory before needed!
» Need to predict future somehow!  More later.!

•  Capacity Misses:!
– Not enough memory. Must somehow increase size.!
– Can we do this?!

» One option: Increase amount of DRAM (not quick fix!)!
»  Another option:  If multiple processes in memory: adjust percentage 

of memory allocated to each one!!
•  Conflict Misses:!

– Technically, conflict misses donʼt exist in virtual memory, since it 
is a “fully-associative” cache!

•  Policy Misses:!
– Caused when pages were in memory, but kicked out prematurely 

because of the replacement policy!
– How to fix? Better replacement policy!
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Page Replacement Policies"
•  Why do we care about Replacement Policy? !!

– Replacement is an issue with any cache!
– Particularly important with pages!

»  The cost of being wrong is high: must go to disk!
» Must keep important pages in memory, not toss them out!

•  FIFO (First In, First Out)!
– Throw out oldest page.  Be fair – let every page live in memory 

for same amount of time.!
– Bad, because throws out heavily used pages instead of 

infrequently used pages!
•  MIN (Minimum): !

– Replace page that wonʼt be used for the longest time !
– Great, but canʼt really know future…!
– Makes good comparison case, however!

•  RANDOM:!
– Pick random page for every replacement!
– Typical solution for TLBʼs.  Simple hardware!
– Unpredictable!
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Replacement Policies (Conʼt)"
•  LRU (Least Recently Used):!

– Replace page that hasnʼt been used for the longest time!
– Programs have locality, so if something not used for a while, 

unlikely to be used in the near future.!
– Seems like LRU should be a good approximation to MIN.!

•  How to implement LRU? Use a list!!

– On each use, remove page from list and place at head!
– LRU page is at tail!

•  Problems with this scheme for paging?!
– List operations complex!

» Many instructions for each hardware access!
•  In practice, people approximate LRU (more later)!

Page 6" Page 7" Page 1" Page 2"Head"

Tail (LRU)"
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•  Suppose we have 3 page frames, 4 virtual pages, and 
following reference stream: !

– A B C A B D A D B C B!
•  Consider FIFO Page replacement:!

– FIFO: 7 faults. !
– When referencing D, replacing A is bad choice, since need A 

again right away!

Example: FIFO"
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•  Suppose we have the same reference stream: !
– A B C A B D A D B C B!

•  Consider MIN Page replacement:!

– MIN: 5 faults !
– Look for page not referenced farthest in future.!

•  What will LRU do?!
– Same decisions as MIN here, but wonʼt always be true!!

Example: MIN"
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•  Consider the following: A B C D A B C D A B C D!
•  LRU Performs as follows (same as FIFO here):!

– Every reference is a page fault!!
•  MIN Does much better:!
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Graph of Page Faults Versus The Number of Frames"

•  One desirable property: When you add memory the miss rate 
goes down!

– Does this always happen?!
– Seems like it should, right?!

•  No: Beladyʼs anomaly !
– Certain replacement algorithms (FIFO) donʼt have this obvious 

property!!
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Adding Memory Doesnʼt Always Help Fault Rate"
•  Does adding memory reduce number of page faults?!

– Yes for LRU and MIN!
– Not necessarily for FIFO!  (Called Beladyʼs anomaly)!

•  After adding memory:!
– With FIFO, contents can be completely different!
–  In contrast, with LRU or MIN, contents of memory with X pages 

are a subset of contents with X+1 Page!
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Administrivia"
•  Project 3 specification posted!

– Using EC2, Authentication, DB backend used for auth and  
recording moves, Recovery from game server failure!

•  Back from Washington, NYC and Seoul!
– Washington, DC: UCB TRUST NSF Science and Technology 

Center in Cybersecurity – summer research opportunities for 
undergraduates !

– New York City, NY: Association for Computing Machinery 
Council meeting!

» Consider joining: conferences, student magazine, !
– Seoul, Korea:!

»  Security in the Cloud forum with SK congressmen, industry, and 
academics!

»  Berkeley Club of Korea!
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5min Break"
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Implementing LRU & Second Chance"
•  Perfect:!

– Timestamp page on each reference!
– Keep list of pages ordered by time of reference!
– Too expensive to implement in reality for many reasons!

•  Second Chance Algorithm: !
– Approximate LRU!

» Replace an old page, not the oldest page!
– FIFO with “use” bit!

•  Details!
– A “use” bit per physical page!
– On page fault check page at head of queue!

»  If use bit=1 à clear bit, and move page at tail (give the page 
second chance!)!

»  If use bit=0 à replace page !
– Moving pages to tail still complex !
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Clock Algorithm"
•  Clock Algorithm: more efficient implementation of second 

chance algorithm!
– Arrange physical pages in circle with single clock hand!

•  Details:!
– On page fault:!

» Check use bit: 1→used recently; clear and leave it alone  
                        0→selected candidate for replacement!

»  Advance clock hand (not real time)!
– Will always find a page or loop forever?!

•  What if hand moving slowly?!
– Good sign or bad sign?!

» Not many page faults and/or find page quickly!
•  What if hand is moving quickly?!

– Lots of page faults and/or lots of reference bits set!
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Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
!
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Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
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Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
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Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!
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Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!
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Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!
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Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!

B	
  u:
0	
  

21.32!11/9/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A! B	
  u:

0	
  
A	
  u:
0	
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Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
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Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
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B	
  u:
0	
  

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
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C	
  u:
0	
  
E	
  u:
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•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!
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Clock Replacement Illustration"
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Nth Chance version of Clock Algorithm"
•  Nth chance algorithm: Give page N chances!

– OS keeps counter per page: # sweeps!
– On page fault, OS checks use bit:!

»  1⇒clear use and also clear counter (used in last sweep)!
»  0⇒increment counter; if count=N, replace page!

– Means that clock hand has to sweep by N times without page 
being used before page is replaced!

•  How do we pick N?!
– Why pick large N? Better approx to LRU!

»  If N ~ 1K, really good approximation!
– Why pick small N? More efficient!

» Otherwise might have to look a long way to find free page!
•  What about dirty pages?!

– Takes extra overhead to replace a dirty page, so give dirty 
pages an extra chance before replacing?!

– Common approach:!
» Clean pages, use N=1!
» Dirty pages, use N=2 (and write back to disk when N=1)!
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Clock Algorithms: Details"
•  Which bits of a PTE entry are useful to us?!

– Use: Set when page is referenced; cleared by clock algorithm!
– Modified: set when page is modified, cleared when page 

written to disk!
– Valid: ok for program to reference this page!
– Read-only: ok for program to read page, but not modify!

»  For example for catching modifications to code pages!!
•  Do we really need hardware-supported “modified” bit?!

– No.  Can emulate it (BSD Unix) using read-only bit!
»  Initially, mark all pages as read-only, even data pages!
» On write, trap to OS. OS sets software “modified” bit, and marks 

page as read-write.!
» Whenever page comes back in from disk, mark read-only!
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Clock Algorithms Details (contʼd)"

•  Do we really need a hardware-supported “use” bit?!

– No. Can emulate it using “invalid” bit:!
» Mark all pages as invalid, even if in memory!
» On read to invalid page, trap to OS!
» OS sets use bit, and marks page read-only!

– When clock hand passes by, reset use bit and mark page as 
invalid again!

 !
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Thrashing"

•  If a process does not have “enough” pages, the page-fault 
rate is very high.  This leads to:!

–  low CPU utilization!
– operating system spends most of its time swapping to disk!

•  Thrashing ≡ a process is busy swapping pages in and out!
•  Questions:!

– How do we detect Thrashing?!
– What is best response to Thrashing?!
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•  Program Memory Access 
Patterns have temporal and 
spatial locality 

– Group of Pages accessed 
along a given time slice 
called the “Working Set” 

– Working Set defines 
minimum number of pages 
needed for process to 
behave well 

•  Not enough memory for 
Working Set⇒Thrashing 

– Better to swap out process? 

Locality In A Memory-Reference Pattern 
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Working-Set Model"

•  Δ ≡ working-set window ≡ fixed number of page references !
– Example:  10,000 instructions!

•  WSi (working set of Process Pi) = total set of pages 
referenced in the most recent Δ (varies in time)!

–  if Δ too small will not encompass entire locality!
–  if Δ too large will encompass several localities!
–  if Δ = ∞ ⇒ will encompass entire program!

•  D = Σ|WSi| ≡ total demand frames !
•  if D > memory ⇒ Thrashing!

– Policy: if D > memory, then suspend/swap out processes!
– This can improve overall system behavior by a lot!!
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What about Compulsory Misses?"
•  Recall that compulsory misses are misses that occur the 

first time that a page is seen !!
– Pages that are touched for the first time!
– Pages that are touched after process is swapped out/swapped 

back in!
•  Clustering:!

– On a page-fault, bring in multiple pages “around” the faulting 
page!

– Since efficiency of disk reads increases with sequential reads, 
makes sense to read several sequential pages!

•  Working Set Tracking:!
– Use algorithm to try to track working set of application!
– When swapping process back in, swap in working set!
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Summary (1/2)"
•  Demand Paging:!

– Treat memory as cache on disk!
– Cache miss ⇒ get page from disk!

•  Transparent Level of Indirection!
– User program is unaware of activities of OS behind 

scenes!
– Data can be moved without affecting application 

correctness!

•  Replacement policies!
– FIFO: Place pages on queue, replace page at end!
– MIN: Replace page that will be used farthest in future!
– LRU: Replace page used farthest in past !
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Summary (2/2)"

•  Clock Algorithm: Approximation to LRU!
– Arrange all pages in circular list!
– Sweep through them, marking as not “in use”!
–  If page not “in use” for one pass, than can replace!

•  Second-Chance List algorithm: Yet another approx LRU!
– Divide pages into two groups, one of which is truly LRU and 

managed on page faults!

•  Working Set:!
– Set of pages touched by a process recently!

•  Thrashing: a process is busy swapping pages in and out!
– Process will thrash if working set doesnʼt fit in memory!
– Need to swap out a process!


