
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 22  
 

Client-Server"

November 14, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

22.2!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Distributed Systems are
Everywhere!"

•  We need (want?) to share physical devices (e.g., printers) and
information (e.g., files)!

•  Many applications are distributed in nature (e.g., ATM
machines, airline reservations)!

•  Many large problems can be solved by decomposing smaller
problems that run in parallel (e.g., MapReduce, SETI@home)!

•  Next four capstone lectures cover four distributed system
models!

– Client-server, Multimedia content delivery, Peer-to-peer, and
Cloud (cluster) computing!

22.3!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Client-Server"
•  One or more clients interacting with one or more servers

providing a service, e.g.,!
– Web!
– E-mail, chat!
– Printer!
– Airline reservation!
– On-line shopping!
– Store/streaming video, audio, and/or photos!
– …!

•  In this lecture!
– End-to-end message communication!
– Remote Procedure Calls!
– World Wide Web!

22.4!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Message Passing"

•  Process A (e.g., client) sends a packet to process B (e.g.,
server)!

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Proc. B
(port 7)

Internet

Page 2

22.5!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Message Passing Details"

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Internet
Proc. B
(port 7)

Transport
Network
Datalink
Physical

Proc. A
(port 10)

Proc. B
(port 7)

Transport
Network
Datalink
Physical

data

16.25.31.10 128.15.11.12 data 10 7

data 10 7

16.25.31.10 128.15.11.12

data

data

data

10 7

10 7

Internet 16.25.31.10 128.15.11.12

22.6!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

From Message Passing to Remote
Procedure Call"

•  Raw messaging is a bit too low-level for programming!
•  Another option: Remote Procedure Call (RPC)!

– Looks like a local procedure call on client!
– Translated automatically into a procedure call on remote

machine (server)!
•  RPCʼs can be used to communicate between address

spaces on different machines or the same machine!
– Services can be run wherever itʼs most appropriate!
– Access to local and remote services looks the same!

•  Examples of modern RPC systems:!
– CORBA (Common Object Request Broker Architecture)!
– DCOM (Distributed COM)!
– RMI (Java Remote Method Invocation)!

•  Implementation:!
– Uses request/response message passing “under the covers”!

22.7!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example: Local Procedure Call"

."

."

."
n = sum(4, 7);"

."

."

."

sum(i, j)"
int i, j;"
{"
 return (i+j);"
}"

Machine"

Process"

22.8!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Remote Procedure Call"
•  Transparently invoke a procedure (services) implemented in

a different address space either on the same machine or a
different machine!

– Services can be run wherever itʼs most appropriate!
– Access to local and remote services looks the same!

!
•  Challenges:!

– Argument (parameter) passing, potentially across different
architectures!

– Discover where the service is located!
– Handle failures transparently"

Page 3

22.9!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

RPC: Argument Passing"
•  Client and server use “stubs” to glue pieces together!

– Client-side stub is responsible for “marshalling” arguments and
“unmarshalling” the return values!

– Server-side stub is responsible for “unmarshalling” arguments
and “marshalling” the return values!

•  Marshalling involves (depending on system) converting
values to a canonical form, serializing objects, copying
arguments passed by reference, etc.!

– Needs to account for cross-language and cross-platform
issues !

!
•  Technique: compiler generated stubs!

–  Input: interface definition language (IDL)!
» Contains, among other things, types of arguments/return!

– Output: stub code in the appropriate source language!

22.10!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

RPC Information Flow"

Client"
(caller)"

Server"
(callee)"

Packet"
Handler"

Packet"
Handler"

call"

return"

send"

receive"

send"

receive"

return"

call"

N
etw

ork"N
et

w
or

k"

Client"
Stub"

bundle"
args"

bundle"
ret vals"

unbundle"
ret vals"

Server"
Stub"

unbundle"
args"

Machine A"
Machine B"

22.11!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example: Remote Procedure Call"

."

."

."
n = sum(4, 7);"

."

."

."

sum(i, j)"
int i, j;"
{"
 return (i+j);"
}"

Client"

Process"

sum"
4"
7"

message"

OS"

Server"

Process"

sum"
4"
7"

message"

OS"

Stubs "

22.12!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Client and Server Stubs"
•  Principle of RPC between a client and server program.!

Page 4

22.13!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Encoding"
•  Server and client may encode arguments differently, e.g.,!

– Big-endian: store from most-to-least significant byte!
– Little-endian: store from least-to-most significant byte!

!
a) Original message on x86 (e.g., little endian)!
b) The message after receipt on the SPARC (e.g., big endian)!
c) The message after being inverted. (The little numbers in

boxes indicate the address of each byte)!
22.14!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Parameter Specification and Stub
Generation"

a)  A procedure!
b)  The corresponding message.!

22.15!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Service Discovery: RPC Binding"
•  How does client know which machine to send RPC?!

– Need to translate name of remote service into network endpoint
(e.g., host:port)!

– Binding: the process of converting a user-visible name into a
network endpoint!

»  Static: fixed at compile time!
» Dynamic: performed at runtime!

•  Dynamic Binding!
– Most RPC systems use dynamic binding via name service!
– Why dynamic binding?!

»  Access control: check who is permitted to access service!
»  Fail-over: If server fails, use a different one!

22.16!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example of RPC Binding"
•  Distributed Computing Environment (DCE) framework!

•  DCE daemon: !
– Allow local services to record their services locally!
– Resolve service name to local end-point (i.e., port) !

•  Directory machine: resolve service name to DCE daemon
(host:portʼ) on machine running the service !

Page 5

22.17!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

RPC Semantics in the Presence of
Failures"

•  The client is unable to locate the server!

•  The request message from the client to server is lost!

•  The reply message from the server is lost!

•  The server crashes after receiving a request!

•  The client crashes after sending a request!

22.18!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Client is Unable to Locate Server"

•  Causes: server down, different version of server binary, …!

•  Fixes!
– Return (-1) to indicate failure (in Unix use errno to indicate

failure type)!
» What if (-1) is a legal return value?!

– Use exceptions!
»  Transparency is lost!

22.19!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Lost Request Message"

•  Easiest to deal with!

•  Just retransmit the message!!

•  If multiple message are lost then!
– “client is unable to locate server” error!

22.20!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Lost Reply Message"

•  Far more difficult to deal with: client doesnʼt know what
happened at server!

– Did server execute the procedure or not?!

•  Possible fixes!
– Retransmit the request!

» Only works if operation is idempotent: itʼs fine to execute it
twice!

– What if operation not idempotent?!
»  Assign unique sequence numbers to every request!

Page 6

22.21!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Server Crashes"

•  Three cases!
– Crash after execution!
– Crash before execution!
– Crash during the execution!

•  Three possible semantics!
– At least once semantics!

» Client keeps trying until it gets a reply!
– At most once semantics!

» Client gives up on failure!
– Exactly once semantics!

» Can this be correctly implemented?!

22.22!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Client Crashes"

•  Let’s the server computation orphan"

•  Orphans can!
– Waste CPU cycles!
– Lock files !
– Client reboots and it gets the old reply immediately!

22.23!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Client Crashes: Possible Solutions"
•  Extermination: !

– Client keeps a log, reads it when reboots, and kills the orphan!
– Disadvantage: high overhead to maintain the log!

•  Reincarnation: !
– Divide times in epochs!
– Client broadcasts epoch when reboots !
– Upon hearing a new epoch servers kills the orphans!
– Disadvantage: doesnʼt solve problem when network partitioned !

•  Expiration:!
– Each RPC is given a lease T to finish computation!
–  If it does not, it needs to ask for another lease!
–  If client reboots after T sec all orphans are gone !
– Problem: what is a good value of T?!

22.24!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

RPC Semantics: Discussion"

•  The original goal: provide the same semantics as a local
call!

•  Impossible to achieve in a distributed system!
– Dealing with remote failures fundamentally affects

transparency!

•  Ideal interface: balance the easy of use with making
visible the errors to users!

Page 7

22.25!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Asynchronous RPC (1)"

a)  The interconnection between client and server in a
traditional RPC!

b)  The interaction using asynchronous RPC!

2-12

22.26!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Asynchronous RPC (2)"
•  A client and server interacting through two

asynchronous RPCs!

22.27!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Administrivia"
•  Prof. Josephʼs office hours this week!

•  Monday 2:30-3:30pm!
•  Tuesday 1-2pm!

•  Prof. Joseph will not have office hours next week!

•  Final exam – Thu Dec 15 8-11am 155 Dwinelle!
•  Comprehensive!
•  Closed book, one double-sided handwritten notes sheet!
•  Let us know any conflicts ASAP!

22.28!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

How	 about	 trying	 undergraduate	 research?	
• Work	 at	 cu+ng	 edge	 of	 EECS	
• Meet	 profs,	 grad	 students	 outside	
class	

• See	 if	 you’d	 enjoy	 graduate	 school	
• Make	 résumé	 more	 compe@@ve	

Prof.	 Armando	 Fox	 will	 give	 an	
informal	 presenta7on	 on	 “ge8ng	
started	 in	 undergrad	 research”	 on	

Tuesday,	 Nov.	 15,	 5:30pm	 in	 the	 Woz	
(he’s	 the	 one	 on	 the	 le7)	

Page 8

22.29!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

5min Break"

22.30!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Microkernel operating systems"
•  Example: split kernel into application-level servers.!

– File system looks remote, even though on same machine!

•  Why split the OS into separate domains?!
– Fault isolation: bugs are more isolated (build a firewall)!
– Enforces modularity: allows incremental upgrades of pieces of

software (client or server)!
– Location transparent: service can be local or remote!

»  For example in the X windowing system: Each X client can be on a
separate machine from X server; Neither has to run on the machine
with the frame buffer.!

App" App"

file system" Windowing"
Networking"VM"

Threads"

App"

Monolithic Structure"

App" File"
sys" windows"

RPC" address"
spaces"

threads"

Microkernel Structure"

22.31!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Web – History (I)"

•  1945: Vannevar Bush, Memex: !

•  "a device in which an individual
stores all his books, records, and
communications, and which is
mechanized so that it may be
consulted with exceeding speed
and flexibility"

Vannevar Bush (1890-1974) "

Memex"

(See http://www.iath.virginia.edu/elab/hfl0051.html)"

22.32!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Web – History (II)"

•  1967, Ted Nelson, Xanadu:!
– A world-wide publishing network that

would allow information to be stored
not as separate files but as
connected literature!

– Owners of documents would be
automatically paid via electronic
means for the virtual copying of their
documents !

•  Coined the term “Hypertext”!Ted Nelson

Page 9

22.33!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Web – History (III)"

•  World Wide Web (WWW): a distributed
database of “pages” linked through
Hypertext Transport Protocol (HTTP)!

– First HTTP implementation - 1990 !
»  Tim Berners-Lee at CERN!

– HTTP/0.9 – 1991!
»  Simple GET command for the Web!

– HTTP/1.0 –1992!
» Client/Server information, simple caching!

– HTTP/1.1 - 1996 !

Tim Berners-Lee"

22.34!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

The Web"
•  Core components:!

– Servers: store files and execute remote commands!
– Browsers: retrieve and display “pages” !
– Uniform Resource Locators (URLs): way to refer to

pages!

•  A protocol to transfer information between clients and
servers!

– HTTP !

22.35!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Uniform Record Locator (URL)"

protocol://host-name:port/directory-path/resource

•  Extend the idea of hierarchical namespaces to include anything in
a file system!
–  ftp://www.cs.berkeley.edu/~adj/publications.html !

•  Extend to program executions as well…!
–  http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%40B

%40Bulk&MsgId=2604_1744106_29699_1123_1261_0_28917_3552_
1289957100&Search=&Nhead=f&YY=31454&order=down&sort=date
&pos=0&view=a&head=b!

–  Server side processing can be incorporated in the name!

22.36!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Hyper Text Transfer Protocol (HTTP)"

•  Client-server architecture!

•  Synchronous request/reply protocol !
– Runs over TCP, Port 80!

•  Stateless!

Page 10

22.37!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Big Picture"

Client" Server"
TCP Syn"

TCP syn + ack "

TCP ack + HTTP GET"

."."."

Establish"
connection"

Request"
response"

Client "
request"

Close"
connection"

22.38!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Hyper Text Transfer Protocol Commands"

•  GET – transfer resource from given URL!

•  HEAD – GET resource metadata (headers) only!

•  PUT – store/modify resource under given URL!

•  DELETE – remove resource!

•  POST – provide input for a process identified by the
given URL (usually used to post CGI parameters)!

22.39!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Response Codes"
•  1x informational!
•  2x success!
•  3x redirection!
•  4x client error in request!
•  5x server error; canʼt satisfy the request!

22.40!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Client Request"

•  Steps to get the resource:  
 
http://www.eecs.berkeley.edu/index.html !

1.  Use DNS to obtain the IP address of
www.eecs.berkeley.edu!

2.  Send to an HTTP request:!
! GET /index.html HTTP/1.0

Page 11

22.41!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Server Response"

HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1234
Last-Modified: Mon, 19 Nov
2001 15:31:20 GMT
<HTML>
<HEAD>
<TITLE>EECS Home Page</TITLE>
</HEAD>
…
</BODY>
</HTML>

22.42!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

HTTP/1.0 Example"

Client" Server"
Request image 1"

Transfer image 1"

Request image 2"

Transfer image 2"

Request text"

Transfer text"
Finish display"
page "

22.43!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

HTTP/1.0 Performance"
•  Create a new TCP connection for each resource!

– Large number of embedded objects in a web page!
– Many short lived connections!

•  TCP transfer!
– Too slow for small object!
–  It takes time to ramp-up (i.e., exit slow-start phase)!

•  Connections may be set up in parallel (5 is default in
most browsers)!

22.44!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

HTTP/1.0 Caching Support"
•  A modifier to the GET request:!

–  If-modified-since – return a “not modified” response if resource was not
modified since specified time !

•  A response header:!
–  Expires – specify to the client for how long it is safe to cache the resource!

•  A request directive: !
– No-cache – ignore all caches and get resource directly from server!

•  These features can be best taken advantage of with HTTP
proxies!

–  Locality of reference increases if many clients share a proxy!

Page 12

22.45!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

HTTP/1.1 (1996)"
•  Performance: !

– Persistent connections !
– Pipelined requests/responses!
– …!

•  Efficient caching support!
– Network Cache assumed more explicitly in the design!
– Gives more control to the server on how it wants data

cached!

•  Support for virtual hosting!
– Allows to run multiple web servers on the same machine !

22.46!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Persistent Connections"

•  Allow multiple transfers over one connection!

•  Avoid multiple TCP connection setups!

•  Avoid multiple TCP slow starts (i.e., TCP ramp ups)!

22.47!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Pipelined Requests/Responses"

•  Buffer requests and responses to
reduce the number of packets!

•  Multiple requests can be contained
in one TCP segment!

•  Note: order of responses has to be
maintained!

Client" Server"

Request 1"Request 2"Request 3"

Transfer 1"

Transfer 2"

Transfer 3"

22.48!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Caching and Replication"

•  Problem: You are a web content provider !
– How do you handle millions of web clients?!
– How do you ensure that all clients experience good

performance?!
– How do you maintain availability in the presence of

server and network failures?!

•  Solutions:!
– Add more servers at different locations à If you are

CNN this might work!!
– Client-side and/or server-side Caching!
– Content Distribution Networks (Replication)!

Page 13

22.49!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

WWW Caching"
•  Use client-side caching to reduce number of

interactions between clients and servers and/or reduce
the size of the interactions:!

– Time-to-Live (TTL) fields – HTTP “Expires” header from
server!

– Client polling – HTTP “If-Modified-Since” request
headers from clients!

– Server refresh – HTML “META Refresh tag” causes
periodic client poll!

•  What is the polling frequency for clients and servers? !
– Could be adaptive based upon a pageʼs age and its rate

of change!
•  Server load is still significant!!

22.50!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

“Base-line”"

•  Many clients transfer same information !
– Generate unnecessary server and network load!
– Clients experience unnecessary latency!

Server"

Clients"

Backbone ISP"
ISP-1" ISP-2"

22.51!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Reverse Caches"
•  Cache documents close to server à decrease server load!
•  Typically done by content providers!
•  Offloads busy server machines!

Clients"

Backbone ISP"

ISP-1" ISP-2"

Server"

Reverse caches"

22.52!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Forward Proxies"
•  Cache documents close to clients à reduce network traffic

and decrease latency!
•  Typically done by ISPs or corporate LANs!

Clients"

Backbone ISP"

ISP-1" ISP-2"

Server"

Reverse caches"

Forward caches"

Page 14

22.53!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Content Distribution Networks
(CDNs)"

•  Integrate forward and reverse caching functionalities
into one overlay network (usually) administrated by one
entity!

– Example: Akamai!

•  Documents are cached both !
– As a result of clients’ requests (pull)!
– Pushed in the expectation of a high access rate!

•  Beside caching do processing, e.g.,!
– Handle dynamic web pages!
– Transcoding !
! ! !!

22.54!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011! 54

Example: Akamai"

•  Akamai creates new domain names for each client
content provider.!

– e.g., a128.g.akamai.net!

•  The CDN’s DNS servers are authoritative for the
new domains!

•  The client content provider modifies its content so
that embedded URLs reference the new domains.!

– “Akamaize” content, e.g.: http://www.cnn.com/image-of-the-
day.gif becomes http://a128.g.akamai.net/image-of-the-day.gif.!

22.55!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Example: Akamai"

get
http://www.nhc.noaa.gov

a

DNS server for
nhc.noaa.gov

b

c

local
DNS server

www.nhc.noaa.gov
“Akamaizes” its

content.

“Akamaized” response object has inline
URLs for secondary content at
a128.g.akamai.net and other Akamai-
managed DNS names.

akamai.net
DNS servers

lookup
a128.g.akamai.net

Akamai servers store/
cache secondary

content for
“Akamaized” services.

22.56!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Caching Challenges"
•  Caching static traffic easy, but only ~40% of traffic!
•  Dynamic and multimedia is harder!

– Multimedia is a big win: Megabytes versus Kilobytes!
•  Same cache consistency problems as before!

•  Caching is changing the Internet architecture!
– Places functionality at higher levels of comm. protocols!

Page 15

22.57!11/14/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Fall 2011!

Summary"
•  Remote Procedure Call (RPC): Call procedure

(service) on remote machine!
– Provides same interface as local procedure call!
– Automatic packing and unpacking of arguments without

user programming (in stub)!

•  Hypertext Transport Protocol: request-response!
–  Use DNS to locate server!
– HTTP 1.1 vs. 1.0: added support for persistent

connections and pipeline to improve performance!
– Caching: key to increase scalability!

