Distributed Systems are
Everywhere!

CS162 + We need (want?) to share physical devices (e.g., printers) and

Operating Systems and information (e.g., files)

SyStems Programming Many applications are distributed in nature (e.g., ATM
Lecture 22 machines, airline reservations) e

Client-Server + Many large problems can be solved by decomposing smaller

problems that run in parallel (e.g., MapReduce, SETI@home)
November 14, 2011

Anthony D. Joseph and lon Stoica - Next four capstone lectures cover four distributed system
http://inst.eecs.berkeley.edu/~cs162 models

— Client-server, Multimedia content delivery, Peer-to-peer, and
Cloud (cluster) computing

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 222

Client-Server Message Passing

+ One or more clients interacting with one or more servers
providing a service, e.g.,

- Web

— E-mail, chat

— Printer

— Airline reservation

— On-line shopping

— Store/streaming video, audio, and/or photos

+ Process A (e.g., client) sends a packet to process B (e.g.,
server)

» Internet
* In this lecture
— End-to-end message communication
— Remote Procedure Calls 16.25.31.10
— World Wide Web
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 223 11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 224

Page 1

Message Passing Details

128.15.11.12
Proc. A Proc. B
port 10)) "[data | (port 7)

Transport |[data [10]7] [aata [10[7 | Transport

Network data |10 [7 [16.25.31.10[128.15.11.12] [data [10 [7 [16.25.31.10[128.15.11.12] | Network

Datalink

From Message Passing to Remote
Procedure Call

+ Raw messaging is a bit too low-level for programming
+ Another option: Remote Procedure Call (RPC)
— Looks like a local procedure call on client

— Translated automatically into a procedure call on remote
machine (server)

RPC’s can be used to communicate between address
spaces on different machines or the same machine

— Services can be run wherever it’s most appropriate

— Access to local and remote services looks the same
+ Examples of modern RPC systems:
— CORBA (Common Object Request Broker Architecture)
— DCOM (Distributed COM)

— RMI (Java Remote Method Invocation)
Implementation:

— Uses request/response message passing “under the covers”

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.6

Datalink
Physical Physical
16.25.31.10 Internet 128151112
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 225
Example: Local Procedure Call
Machine
Process
sum(i, j)
inti, j;
n =sum(4,7); return (i+);
) }
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 227

Remote Procedure Call

« Transparently invoke a procedure (services) implemented in
a different address space either on the same machine or a
different machine

— Services can be run wherever it's most appropriate
— Access to local and remote services looks the same

+ Challenges:

— Argument (parameter) passing, potentially across different
architectures

— Discover where the service is located
— Handle failures transparently

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 228

RPC: Argument Passing

+ Client and server use “stubs” to glue pieces together
— Client-side stub is responsible for “marshalling” arguments and
“unmarshalling” the return values
— Server-side stub is responsible for “unmarshalling” arguments
and “marshalling” the return values

+ Marshalling involves (depending on system) converting
values to a canonical form, serializing objects, copying
arguments passed by reference, etc.

— Needs to account for cross-language and cross-platform
issues

+ Technique: compiler generated stubs
— Input: interface definition language (IDL)
» Contains, among other things, types of arguments/return
— Output: stub code in the appropriate source language

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 229
Example: Remote Procedure Call
Stubs
Client / Server
Proces Proces

sum(i, j)

: messag messag inti, j;

n =sum(4, 7); {
. 4 return (i+j);
- ’

0s

0os ‘

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.11

Page 3

RPC Information Flow

bundle
args
LD . call E send
i I') Client Client Packet
=" B! (caller) Stub - Handler
<= return receive
unbundie
. ret vals
Machine A %‘ E
.. g
Machine B Z o
bundle 2| |z
ret vals
D return
W) Server ServerSend Packet
=~ |(callee Stub - Handle
"@ () call receive
unbundle
args
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.10

Client and Server Stubs

+ Principle of RPC between a client and server program.

Wait for result

A

Call remote
procedure

Client

X

Return
from call

Request Reply

Call local procedure
and return results

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 2212

Encoding

+ Server and client may encode arguments differently, e.g.,
— Big-endian: store from most-to-least significant byte
— Little-endian: store from least-to-most significant byte

| w
S
[

=)
o
-
[}

i~
=3
fon
S
e

i

e

[l
hall
bl
|
=

(@ () ©
a)Original message on x86 (e.g., little endian)
b) The message after receipt on the SPARC (e.g., big endian)

¢) The message after being inverted. (The little numbers in
boxes indicate the address of each byte)
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 2213

Service Discovery: RPC Binding

+ How does client know which machine to send RPC?
— Need to translate name of remote service into network endpoint
(e.g., host:port)
— Binding: the process of converting a user-visible name into a
network endpoint
» Static: fixed at compile time
» Dynamic: performed at runtime

+ Dynamic Binding
— Most RPC systems use dynamic binding via name service
— Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.15

Page 4

Parameter Specification and Stub

Generation
foobar's local
a) A procedure variables
b) The corresponding message. \ X
y
5
Z[0]
Z[1]
foobar(char x; float y; int z[5]) Z[2]
{ Z[3]
} Z[4]
(@) (b)
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 2214

Example of RPC Binding
« Distributed Computing Environment (DCE) framework
+ DCE daemon:
— Allow local services to record their services locally
— Resolve service name to local end-point (i.e., port)

+ Directory machine: resolve service name to DCE daemon
(host:port’) on machine running the service

Directory machine

Directory
server || ’)
3. Look up server 2. Register service

Server machine

Client machine

/MPC/* Server
Client [

™ pee &

daemon

1. Register endpoint

Al

4. Ask for endpoint

Endpoint
table

RPC Semantics in the Presence of

Failures

» The client is unable to locate the server

+ The request message from the client to server is lost

+ The reply message from the server is lost

+ The server crashes after receiving a request

+ The client crashes after sending a request

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 2217
Lost Request Message
- Easiest to deal with
+ Just retransmit the message!
+ If multiple message are lost then
— “client is unable to locate server” error
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.19

Page 5

Client is Unable to Locate Server

+ Causes: server down, different version of server binary, ...

+ Fixes
— Return (-1) to indicate failure (in Unix use errno to indicate
failure type)
» What if (-1) is a legal return value?
— Use exceptions
» Transparency is lost

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.18

Lost Reply Message

« Far more difficult to deal with: client doesn’t know what
happened at server

— Did server execute the procedure or not?

+ Possible fixes
— Retransmit the request

» Only works if operation is idempotent: it's fine to execute it
twice

— What if operation not idempotent?
» Assign unique sequence numbers to every request

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.20

Server Crashes

« Three cases
— Crash after execution
— Crash before execution
— Crash during the execution

+ Three possible semantics
— At least once semantics
» Client keeps trying until it gets a reply
— At most once semantics
» Client gives up on failure
— Exactly once semantics
» Can this be correctly implemented?

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.21

Client Crashes: Possible Solutions

+ Extermination:
— Client keeps a log, reads it when reboots, and kills the orphan
— Disadvantage: high overhead to maintain the log
+ Reincarnation:
— Divide times in epochs
— Client broadcasts epoch when reboots
— Upon hearing a new epoch servers kills the orphans
— Disadvantage: doesn’t solve problem when network partitioned
+ Expiration:
— Each RPC is given a lease T to finish computation
— If it does not, it needs to ask for another lease
— If client reboots after T sec all orphans are gone
— Problem: what is a good value of T?

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.23

Page 6

Client Crashes

+ Let’ s the server computation orphan

« Orphans can
— Waste CPU cycles
— Lock files
— Client reboots and it gets the old reply immediately

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 2222

RPC Semantics: Discussion

+ The original goal: provide the same semantics as a local
call

+ Impossible to achieve in a distributed system

— Dealing with remote failures fundamentally affects
transparency

+ Ideal interface: balance the easy of use with making
visible the errors to users

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.24

Asynchronous RPC (1)

Client Wait for result

A

Call remote
procedure

X

Return
from call

Server

Call local procedure 1M —%»
and return results

@

a) The interconnection between client and server in a

traditional RPC
b) The interaction using asynchronous RPC

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

22.25

Administrivia
+ Prof. Joseph'’s office hours this week
» Monday 2:30-3:30pm
» Tuesday 1-2pm

+ Prof. Joseph will not have office hours next week

» Final exam — Thu Dec 15 8-11am 155 Dwinelle
+ Comprehensive
+ Closed book, one double-sided handwritten notes sheet
+ Let us know any conflicts ASAP

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011

22.27

Page 7

Asynchronous RPC (2)

+ A client and server interacting through two
asynchronous RPCs

Wait for Interrupt client
acceptance
Client eptar \|
« >
Call remote Return Rt
rocedure from call eturn
P results Acknowledge
Accept
Request request
Server --------------- v T
Call local procedure \ Time >
Call client with
one-way RPC
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 2226

How about trying undergraduate research?

e Work at cutting edge of EECS

* Meet profs, grad students outside
class

e See if you'd enjoy graduate school
* Make résumé more competitive

Prof. Armando Fox will give an
informal presentation on “getting
started in undergrad research” on

Tuesday, Nov. 15, 5:30pm in the Woz
(he’s the one on the left)

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall

11/14/2011

5min Break

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.29

11/14/2011

The Web — History (l)

* 1945: Vannevar Bush, Memex:

e "a device in which an individual
stores all his books, records, and
communications, and which is
mechanized so that it may be
consulted with exceeding speed
and flexibility"

(See http://www.iath.virginia.edu/elab/hfl0051.html)

Memex Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.31

Page 8

Microkernel operating systems

+ Example: split kernel into application-level servers.
— File system looks remote, even though on same machine

windows
App| | App| | App App :",':
file system Windowing RPC address
VM Networking . sg aces
Threads e

Monolithic Structure Microkernel Structure

» Why split the OS into separate domains?
— Fault isolation: bugs are more isolated (build a firewall)
— Enforces modularity: allows incremental upgrades of pieces of
software (client or server)
— Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can be on a

separate machine from X server; Neither has to run on the machine
with the frame buffer.

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.30

The Web — History (ll)

* 1967, Ted Nelson, Xanadu:

— A world-wide publishing network that
would allow information to be stored
not as separate files but as
connected literature

— Owners of documents would be
automatically paid via electronic
means for the virtual copying of their

documents
Ted Nelson + Coined the term “Hypertext”
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.32

The Web — History (lll)

+ World Wide Web (WWW): a distributed
database of “pages” linked through
Hypertext Transport Protocol (HTTP)

— First HTTP implementation - 1990

» Tim Berners-Lee at CERN
—HTTP/0.9 — 1991

» Simple GET command for the Web
—HTTP/1.0 -1992

» Client/Server information, simple caching
—HTTP/1.1 - 1996

Tim Berners-Lee

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.33

Uniform Record Locator (URL)

protocol://host-name:port/directory-path/resource

+ Extend the idea of hierarchical namespaces to include anything in
a file system
— ftp://www.cs.berkeley.edu/~adj/publications.html

+ Extend to program executions as well...

— http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%40B
%40Bulk&Msgld=2604 1744106 29699 1123 1261 0 28917 3552

1289957100&Search=&Nhead=f&YY=31454&order=down&sort=date
&pos=0&view=a&head=b
— Server side processing can be incorporated in the name

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.35

Page 9

The Web

+ Core components:
— Servers: store files and execute remote commands
— Browsers: retrieve and display “pages”

— Uniform Resource Locators (URLs): way to refer to
pages

+ A protocol to transfer information between clients and
servers

~HTTP

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.34

Hyper Text Transfer Protocol (HTTP)

» Client-server architecture

» Synchronous request/reply protocol
— Runs over TCP, Port 80

« Stateless

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.36

Big Picture

Client Server
{ TCP Syn

Establish TCP syn + ack

connection

Client TC
request | Pack + HTTP Gy
Request .

response \

Close __~
connection

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.37

Response Codes

+ 1x informational

+ 2X success

+ 3x redirection

* 4x client error in request

+ 5x server error; can’t satisfy the request

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.39

Page 10

Hyper Text Transfer Protocol Commands

+ GET — transfer resource from given URL

+ HEAD - GET resource metadata (headers) only
+ PUT — store/modify resource under given URL

+ DELETE - remove resource

+ POST - provide input for a process identified by the
given URL (usually used to post CGl parameters)

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.38

Client Request

+ Steps to get the resource:

http://www.eecs.berkeley.edu/index.html

1. Use DNS to obtain the IP address of
www.eecs.berkeley.edu

2. Send to an HTTP request:
GET /index.html HTTP/1.0

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.40

Server Response HTTP/1.0 Example

HTTP/1.0 200 OK
Content-Type: text/html

Content-Length: 1234 Client Server
Last-Modified: Mon, 19 Nov Request image 1
2001 15:31:20 GMT Transfer image 1
<HTML> R
<HEAD> €quest image 2
<TITLE>EECS Home Page</TITLE> Transfer image 2
</HEAD>
Request text
</BODY> Transfer text
</HTML> Finish display
page 1
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.41 11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.42
HTTP/1.0 Performance HTTP/1.0 Caching Support

« A modifier to the GET request:

- — return a “not modified” response if resource was not
modified since specified time

+ Create a new TCP connection for each resource
— Large number of embedded objects in a web page
— Many short lived connections

TCP transf + Aresponse header:
o - — specify to the client for how long it is safe to cache the resource
— Too slow for small object

— It takes time to ramp-up (i.e., exit slow-start phase) . A request directive:

- —ignore all caches and get resource directly from server
+ Connections may be set up in parallel (5 is default in

most browsers
) + These features can be best taken advantage of with HTTP

proxies
— Locality of reference increases if many clients share a proxy

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.43 11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.44

Page 11

HTTP/1.1 (1996)

« Performance:
— Persistent connections
— Pipelined requests/responses

+ Efficient caching support
— Network Cache assumed more explicitly in the design

— Gives more control to the server on how it wants data
cached

+ Support for virtual hosting
— Allows to run multiple web servers on the same machine

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.45

Pipelined Requests/Responses

i Server
- Buffer requests and responses o~ Clien
reduce the number of packets Request 4
€quest 2
) i Request 3
+ Multiple requests can be contained
in one TCP segment
qransfer 1
nsfer 2
+ Note: order of responses has to be Tral T
P Transfe
maintained
11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.47

Page 12

Persistent Connections

+ Allow multiple transfers over one connection
+ Avoid multiple TCP connection setups

+ Avoid multiple TCP slow starts (i.e., TCP ramp ups)

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.46

Caching and Replication

* Problem: You are a web content provider
— How do you handle millions of web clients?

— How do you ensure that all clients experience good
performance?

— How do you maintain availability in the presence of
server and network failures?

+ Solutions:

— Add more servers at different locations - If you are
CNN this might work!

— Client-side and/or server-side Caching
— Content Distribution Networks (Replication)

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.48

WWW Caching

+ Use client-side caching to reduce number of
interactions between clients and servers and/or reduce
the size of the interactions:

— Time-to-Live (TTL) fields — HTTP “Expires” header from
server

— Client polling — HTTP “lf-Modified-Since” request
headers from clients

— Server refresh — HTML “META Refresh tag” causes
periodic client poll

+ What is the polling frequency for clients and servers?

— Could be adaptive based upon a page’s age and its rate
of change

+ Server load is still significant!

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.49

Reverse Caches

+ Cache documents close to server > decrease server load
» Typically done by content providers
+ Offloads busy server machines

Server ﬁ

Reverse caches

Clients ==

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.51

Page 13

“Base-line”

+ Many clients transfer same information
— Generate unnecessary server and network load
— Clients experience unnecessary latency

Clients [

11/14/2011

Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.50

Forward Proxies

« Cache documents close to clients - reduce network traffic
and decrease latency

+ Typically done by ISPs or corporate LANs

Server @

Reverse caches

Forward caches

Clients

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.52

Content Distribution Networks
(CDNs)

+ Integrate forward and reverse caching functionalities
into one overlay network (usually) administrated by one
entity

— Example: Akamai

» Documents are cached both
— As a result of clients’ requests (pull)
— Pushed in the expectation of a high access rate

+ Beside caching do processing, e.g.,
— Handle dynamic web pages
— Transcoding

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.53

Example: Akamai

. ww.nhe. , , akamai.net .
rrﬁ_ www.nhc.noaa.gov DNS servers Akamai servers store/

“Akamaizes” its
Akamaizes” its 1, cache secondary
content. /1
S content for
lookup

al28.g.akamai.net

DNS server for
nhc.noaa.gov

get
http://www.nhc.noaa.gov

= local
DNS server

“Akamaized” response object has inline
URL:s for secondary content at
al28.g.akamai.net and other Akamai-
managed DNS names.

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.55

“Akamaized” services.

Page 14

Example: Akamai

« Akamai creates new domain names for each client
content provider.

—e.g., a128.g.akamai.net

+ The CDN’ s DNS servers are authoritative for the
new domains

+ The client content provider modifies its content so
that embedded URLSs reference the new domains.

— “Akamaize” content, e.g.: htip.//www.cnn.com/image-of-the-
day.gif becomes hiip:/a128.g.akamai.net/image-of-the-day.gif.

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.54

54

Caching Challenges

+ Caching static traffic easy, but only ~40% of traffic
» Dynamic and multimedia is harder

— Multimedia is a big win: Megabytes versus Kilobytes
» Same cache consistency problems as before

+ Caching is changing the Internet architecture
— Places functionality at higher levels of comm. protocols

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.56

Summary

+ Remote Procedure Call (RPC): Call procedure
(service) on remote machine
— Provides same interface as local procedure call
— Automatic packing and unpacking of arguments without
user programming (in stub)

+ Hypertext Transport Protocol: request-response
— Use DNS to locate server
—HTTP 1.1 vs. 1.0: added support for persistent
connections and pipeline to improve performance
— Caching: key to increase scalability

11/14/2011 Anthony D. Joseph and lon Stoica CS162 ©UCB Fall 2011 22.57

Page 15

