
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 24  
 

Peer-to-Peer Networks"

November 21, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 23.2!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

How Did it Start?"

•  A killer application: Napster (1999)!
– Free music over the Internet!

•  Key idea: share the storage and bandwidth of individual
(home) users!

!

Internet!

Lec 23.3!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Model"
•  Each user stores a subset of files!
•  Each user has access (can download) files from all

users in the system!

A!
B!

C!

D!

E!
F!

Lec 23.4!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Main Challenge"

•  Find nodes storing a specified file!

A!
B!

C!

D!

E!
F!

E?!

Page 2

Lec 23.5!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Other Challenges"
•  Scale: up to hundred of thousands or millions of

machines !
•  Dynamicity: machines can come and go at any time!

Lec 23.6!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Napster"
•  Assume a centralized lookup/directory service that maps

files (songs) to machines that are alive!

•  How to find a file (song)?!
– Query the lookup service return a machine that stores the

required file!
» Ideally this is the closest/least-loaded machine!

– Download (ftp) the file!

•  Advantages: !
– Simplicity, easy to implement sophisticated search engines on

top of a centralized lookup service!
•  Disadvantages:!

– Robustness, scalability (?)!

Lec 23.7!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Napster: Example"

A!
B!

C!

D!

E!

F!

m1!
m2!

m3!

m4!

m5!

m6!

A m1!
B m2!
C m3!
D m4!
E m5!
F m6!

E?!
m5!

E?! E!

Lec 23.8!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

The Aftermath"
•  “Recording Industry Association of America (RIAA)

Sues Music Startup Napster for $20 Billion” –
December 1999!

•  “Napster ordered to remove copyrighted material”
– March 2001!

•  Main legal argument: "
– Napster owns the lookup service, so it is directly

responsible for disseminating copyrighted material"

Page 3

Lec 23.9!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Gnutella (2000)"

•  Distribute file location !
•  Idea: broadcast the request!
•  How to find a file?!

– Send request to all neighbors!
– Neighbors recursively multicast the request!
– Eventually a machine that has the file receives the

request, and it sends back the answer!
•  Advantages:!

– Totally decentralized, highly robust!
•  Disadvantages:!

– Not scalable; the entire network can be swamped with
requests (to alleviate this problem, each request has a
TTL) !

Lec 23.10!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Gnutella: Example"

•  Assume: m1’s neighbors are m2 and m3; m3’s
neighbors are m4 and m5;…!

A!
B!

C!

D!

E!

F!

m1!
m2!

m3!

m4!

m5!

m6!

E?!

E?!

E?!
E?!

E!

Lec 23.11!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Two-Level Hierarchy"
•  KaZaa, subsequent versions of Gnutella!
•  Leaf nodes are connected to a small number of

ultrapeers (suppernodes)!

Ultrapeer nodes

Leaf nodes

Lec 23.12!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Two-Level Hierarchy"
•  Query!

– A leaf sends query to its ultrapeers!
–  If ultrapeers don’t know the answer, they flood the query

to other ultrapeers!

Ultrapeer nodes

Leaf nodes

Page 4

Lec 23.13!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Example: Oct 2003 Crawl on Gnutella"

Ultrapeer nodes
Leaf nodes

Lec 23.14!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Skype (2003)"

•  Peer-to-peer Internet
Telephony!

•  Two-level hierarchy like
KaZaa!

– Ultrapeers used to route
traffic between NATed end-
hosts…!

– … plus a login server to !
»  authenticate users!
»  ensure that names are

unique across network!

login server!

A!

B!

Messages!
exchanged!
to login server!

Data traffic!

(Note*: probable protocol; Skype !
protocol is not published)!

Lec 23.15!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

BitTorrent (2001)"

•  Allow fast downloads even when sources have low up-
link capacity!

•  How does it work?!
– Seed (origin) – site storing the file to be downloaded!
– Tracker – server maintaining the list of peers in system!
– Split each file into pieces (~ 256 KB each), and each

piece into sub-pieces (~ 16 KB each)!
– The loader loads one piece at a time!
– Within one piece, the loader can load up to five sub-

pieces in parallel"

Lec 23.16!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

BitTorrent: Join Procedure"

Seed (origin!
server)!Tracker!

join"

peer "
List "
(m1,m2,m5)"

1)  Peer contacts tracker responsible for file it wants to
download!

2)  Tracker returns a list of peer (20-50) downloading same file!
3)  Peer connects to peers in the list!

m2!

m1!

m5!

m3!

m4! m7!

m6!

Page 5

Lec 23.17!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

BitTorrent: Download Algorithm"

•  Download consists of three phases:!

•  Start: get a piece as soon as possible!
– Select a random piece !

•  Middle: spread all pieces as soon as possible!
– Select rarest piece next!

•  End: avoid getting stuck with a slow source, when
downloading the last sub-pieces!

– Request in parallel the same sub-piece!
– Cancel slowest downloads once a sub-piece has been

received !
!!

(For details see: http://bittorrent.org/bittorrentecon.pdf)!

Lec 23.18!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Bittorrent: Handling Freeriders"
•  Freeriders: peers that use the network without

contributing (with the upstream bandwidth)!

•  Solution: chocking, a variant of Tit-for-Tat!
– Each peer has a limited number of upload slots!
– When a peer's upload bandwidth is saturated, it

exchanges upload bandwidth for download bandwidth!
–  If peer U downloads from peer C and doesnʼt upload in

return, C chokes download to U!

C

U

C

U

chock!

Lec 23.19!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Distributed Hash Tables (DHTs)"
•  Goal: make sure an item (file) identified is always

found!

•  Abstraction: a distributed hash-table data structure !
–  insert(id, item); !
–  item = query(id);!
– Note: item can be anything: a data object, document, file,

pointer to a file…!

•  Proposals!
– CAN, Chord, Kademlia, Pastry, Viceroy, Tapestry, etc!

Lec 23.20!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

m1!

m2!
m3!

m4!

DHTs"
•  Partition hash table across nodes!

id1! item1!
id2! item2!
id5! item5!
id8! item8!
id9! item9!
id11! item11!
id13! item13!
id16! item16!
id18! item18!

Page 6

Lec 23.21!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

DHT: Insertion"
•  Call insert(id4, item14) at m1!

– Find node responsible for id4, i.e., node m3!
–  Insert (id14, item14) at m3 !

insert(id14, item14)!

id16! item16!
id18! item18!

id11! item11!
id13! item13!
id14! item14!

id5! item5!
id8! item8!
id9! item9!

id1! item1!
id2! item2!

m1!

m2!
m3!

m4!

Lec 23.22!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

DHT: Query"
•  Call query(id4) at m4!

– Find node responsible for id4, i.e., m3!
– Return (id14, item14) to m4 !

id16! item16!
id18! item18!

id11! item11!
id13! item13!
id14! item14!

id5! item5!
id8! item8!
id9! item9!

id1! item1!
id2! item2!

query(id14)!

item14!

m1!

m2!
m3!

m4!

Lec 23.23!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

DHT: Lookup Service"
•  Key primitive: lookup service!

– Given an ID, map it to a host!

•  Challenges!
–  Scalability: hundreds of thousands or millions of machines !
–  Instability!

» Changes in routes, congestion, availability of machines !
– Heterogeneity!

»  Latency: 1ms to 1000ms!
»  Bandwidth: 32Kb/s to 100Mb/s!
» Nodes stay in system from 10s to a year!

–  Trust!
»  Selfish users!
» Malicious users!

Lec 23.24!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Content Addressable Network
(CAN)"

•  Associate to each node and item a unique id in an d-
dimensional space, e.g., torus!

•  Properties !
– Routing table size O(d), i.e., each node needs to know

about O(d)!
– Guarantees that a file is found in at most d*n1/d steps,

where n is the total number of nodes!
 !

Page 7

Lec 23.25!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

CAN Example: Two Dimensional
Space"

•  Space divided between nodes!
•  All nodes cover the entire space!
•  Each node covers either a square or a

rectangular area of ratios 1:2 or 2:1!
•  Example: !

–  Assume space size (8 x 8)!
–  Node n1:(1, 2) first node that joins

cover the entire space!

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1"

Lec 23.26!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

CAN Example: Two Dimensional
Space"

•  Node n2:(4, 2) joins space is
divided between n1 and n2!

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

Lec 23.27!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

CAN Example: Two Dimensional
Space"

•  Node n2:(4, 2) joins space is
divided between n1 and n2!

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

n3"

Lec 23.28!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

CAN Example: Two Dimensional
Space"

•  Nodes n4:(5, 5) and n5:(6,6) join!

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

n3" n4"
n5"

Page 8

Lec 23.29!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

CAN Example: Two Dimensional
Space"

•  Nodes: n1:(1, 2); n2:(4,2); n3:(3, 5);
n4:(5,5);n5:(6,6)!

•  Items: f1:(2,3); f2:(5,0); f3:(2,1); f4:
(7,5);!

1 2 3 4 5 6 7 0

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

n3" n4"
n5"

f1"

f2"

f3"

f4"

Lec 23.30!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

CAN Example: Two Dimensional
Space"

•  Each item is stored by the node
who owns its mapping in the
space !

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

n3" n4"
n5"

f1"

f2"

f3"

f4"

Lec 23.31!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

CAN: Query Example"

•  Each node knows its neighbors in the
d-space!

•  Forward query to the neighbor that is
closest to the query id!

•  Example: assume n1 queries f4!

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

n3" n4"
n5"

f1"

f2"

f3"

f4"

Lec 23.32!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

5min Break"

Page 9

Lec 23.33!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Chord"

•  Associate to each node and item a unique id in an uni-
dimensional space 0..2m-1!

•  Key design decision!
– Decouple correctness from efficiency!

•  Properties !
– Routing table size O(log(N)) , where N is the total number

of nodes!
– Guarantees that a file is found in O(log(N)) steps!

Lec 23.34!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Identifier to Node Mapping Example"

•  Node 8 maps [5,8]!
•  Node 15 maps [9,15]!
•  Node 20 maps [16, 20]!
•  …!
•  Node 4 maps [59, 4]!

•  Each node maintains a
pointer to its successor!

4

20

32 35

8

15

44

58

Lec 23.35!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Lookup"

•  Each node maintains its
successor !

•  Route packet (ID, data) to
the node responsible for
ID using successor
pointers!

4"

20"

32"35"

8"

15"

44"

58"

lookup(37)"

node=44"

Lec 23.36!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Stabilization Procedure"
•  Periodic operation performed by each node N to handle

joins !
N: periodically:!

send GET_PRED to N.successor;!
!

M: upon receiving GET_PRED from N:!
!reply PRED(M.predecessor) to N;!

!
N: upon receiving PRED(Mʼ) !
!if (Mʼ between (N, N.successor))!
! !N.successor = Mʼ;!
!send NOTIFY to N.successor;!

!
M: upon receiving NOTIFY from N:!

if ((N between (Mpredecessor, M)) || M.predecessor = NULL)!
predecessor = N; !

Page 10

Lec 23.37!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  Node with id=50
joins the ring!

  Node 50 needs to
know at least one
node already in the
system!
-  Assume known

node is 15!
! !
!!

succ=4"
pred=44"

succ=nil"
pred=nil"

succ=58"
pred=35"

Lec 23.38!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  Node 50: send join
(50) to node 15 !

  Node 44: returns its
successor, i.e., node
58 !

  Node 50 updates its
successor to 58!

join(50)"

succ=58"

succ=4"
pred=44"

succ=nil"
pred=nil"

succ=58"
pred=35"

58"

Lec 23.39!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  Node 50: ask its
successor (node
58) for its
predecessor!

  Node 58: reply with
its predecessor,
i.e., node 44!

  Node 50: doesnʼt
do anything as 44
not in (50,58)!

succ=58"
pred=nil"

succ=58"
pred=35"

get_pred()"pr
ed

(4
4)
"

succ=4"
pred=44"

Lec 23.40!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  Node 50: send
NOTIFY to 58!

  Node 58: update
its predecessor
to 50 as 50 is in
(44, 58) !

succ=58"
pred=nil"

succ=58"
pred=35"

notify()"

pred=50"
succ=4"
pred=44"

Page 11

Lec 23.41!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation (contʼd)"

4"

20"

32"35"

8"

15"

44"

58"

50"

  Node 44: ask its
successor (node 58)
for its predecessor!

  Node 58: reply with
its predecessor, i.e.,
node 50!

  Node 44: update its
successor to 50, as
50 in (44, 58)!

succ=58"
get_pred()"

pr
ed

(5
0)
"

succ=50"

pred=50"
succ=4"

pred=nil"

succ=58"
pred=35"

Lec 23.42!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation (contʼd)"

4"

20"

32"35"

8"

15"

44"

58"

50"

  Node 44: send NOTIFY to its
successor, i.e., node 50!

  Node 50: update its
predecessor to 44 !

succ=58"

succ=50"

notify(44)"
pred=44"

pred=50"

pred=35"

succ=4"

pred=nil"

Lec 23.43!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation (contʼd)"

4"

20"

32"35"

8"

15"

44"

58"

50"

  This completes the joining
operation!!

succ=58"

succ=50"

pred=44"

pred=50"

Lec 23.44!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Achieving Efficiency: finger tables!

80 + 20"
80 + 21"

80 + 22"
80 + 23"

80 + 24"

80 + 25"
(80 + 26) mod 27 = 16"

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min+

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

45 80

20
112

96

Page 12

Lec 23.45!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Achieving Robustness"
•  To improve robustness each node maintains the k (> 1)

immediate successors instead of only one successor!

•  In the pred() reply message, node A can send its k-1
successors to its predecessor B!

•  Upon receiving pred() message, B can update its
successor list by concatenating the successor list
received from A with its own list!

Lec 23.46!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Iterative vs. Recursive Queries"

•  Iteratively: !
– Example: node 4

issue query(31)!

!
•  Recursively!

– Example: node 4
issue query(31)!

!

4!

8!

15!

32!
35!

50!

58!

44!
25!

25!

32!
4!

8!

15!

32!
35!

50!

58!

44!
25!32!

Lec 23.47!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Performance"

•  Routing in the overlay network can be more expensive than in
the underlying network !

– Because usually there is no correlation between node ids and their
locality; !

»  A query can repeatedly jump from Europe to North America, though
both the initiator and the node that store the item are in Europe!!

•  Solutions: CAN and Chord maintain multiple copies for each
entry in their routing tables and choose the closest in terms of
network distance!

Lec 23.48!11/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Conclusions"

•  The key challenge of building wide area P2P systems is
a scalable and robust directory service!

•  Solutions covered in this lecture!
– Naptser: centralized location service!
– Gnutella: broadcast-based decentralized location service!
– CAN, Chord, Tapestry, Pastry: intelligent-routing

decentralized solution !
» Guarantee correctness!
»  Tapestry, Pastry provide efficient routing, but more complex !

