11/30/11

(Private) Cloud Computing with
Mesos at Twitter

Benjamin Hindman
@benh

what is cloud computing?

scalable

virtualized self-service

utility

managed elastic

economic

pay-as-you-go

what is cloud computing?

e “cloud” refers to large Internet services running on 10,000s of
machines (Amazon, Google, Microsoft, etc)

+ “cloud computing” refers to services by these companies that
let external customers rent cycles and storage

— Amazon EC2: virtual machines at 8.5¢/hour, billed hourly
— Amazon S3: storage at 15¢/GB/month

— Google AppEngine: free up to a certain quota

- XVli)?dows Azure: higher-level than EC2, applications use

what is cloud computing?
cheap nodes, commodity networking

self-service (use personal credit card) and pay-as-
you-go

virtualization

— from co-location, to hosting providers running
the web server, the database, etc and having you
just FTP your files ... now you do all that yourself
again!

economic incentives
— provider: sell unused resources
— customer: no upfront capital costs building data

11/30/11

“cloud computing”

¢ infinite scale ...

From:

To

e Benjamin Hindman <benh @EECS Berkekey. U >; I
Sent: Wed May 05 12:31:24 2010
Subject: Re: Queston on recent AWS usage
Hi I

Hope things are well with you. Im not sure if anybody from the RAD Lab has been in touch with you about this, but a big paper deadiine is
Coming up and several pojecis i e RAD Lab are using EC2 extensivel fr esearch experiments and wo are hilig our T The-—
deadiine is Friday and Im wondering if we can get the limit increased temporarily until Friday. | think our limit may currently be 500
instances, could we get it increased to a 1000 or 2000?

I
CS Graduate Student
UC Berkeley

“cloud computing”

+ always available ...

bwitter) (55

% @4sqSupport
|

We're down due to the current Amazon
+EC2 outage. Please bear with us!
CoTweet ¢ Favorte <= Ratwaat Ry

Retweeted by cjschiis and 39 others

FERETNE R zEmELss

Amazon ROS (1. vaghi 2 © o ¢ °©o e @

challenges in the cloud environment

+ cheap nodes fail, especially when you have many
— mean time between failures for 1 node = 3 years
— mean time between failures for 1000 nodes =1 day

— solution: new programming models (especially those
where you can efficiently “build-in” fault-tolerance)

» commodity network = low bandwidth
— solution: push computation to the data

moving target

infrastructure as a service (virtual machines)
=> software/platforms as a service

why?
* programming with failures is hard
* managing lots of machines is hard

11/30/11

moving target

infrastructure as a service (virtual machines)
=> software/platforms as a service

why?
* programming with failures is hard
* managing lots of machines is hard

programming with failures is
hard

* analogy: concurrency/parallelism

— imagine programming with threads that
randomly stop executing

— can you reliably detect and differentiate
failures?

* analogy: synchronization

— imagine programming where communicating
between threads might fail (or worse, take a
very long time)

—how might you change your code?

problem:
distributed systems are hard

solution:
abstractions (higher-level
frameworks)

11/30/11

MapReduce

* Restricted data-parallel programming
model for clusters (automatic fault-
tolerance)

* Pioneered by Google
— Processes 20 PB of data per day

* Popularized by Apache Hadoop project
— Used by Yahoo!, Facebook, Twitter, ...

beyond MapReduce

* many other frameworks follow
MapReduce’ s example of restricting the
programming model for efficient execution
on clusters

— Dryad (Microsoft): general DAG of tasks

— Pregel (Google): bulk synchronous processing
— Percolator (Google): incremental computation
— S4 (Yahoo!): streaming computation

— Piccolo (NYU): shared in-memory state

— DryadLINQ (Microsoft): language integration
— Spark (Berkeley): resilient distributed datasets

everything else

* web servers (apache, nginx, etc)
* application servers (rails)

* databases and key-value stores (mysql,
cassandra)

* caches (memcached)
+ all our own twitter specific services ...

managing lots of machines is hard

* getting efficient use of out a machine is
non-trivial (even if you' re using virtual
machines, you still want to get as much
performance as possible)

Hadoo Hadoo
Uﬁﬁﬂ e Unﬁﬁﬁﬂ N

11/30/11

managing lots of machines is hard

* getting efficient use of out a machine is
non-trivial (even if you' re using virtual
machines, you still want to get as much
performance as possible)

Hadoo

mﬂﬁﬂﬁlﬁm

problem:
lots of frameworks and services
... how should we allocate
resources (i.e., parts of a
machine) to each?

idea:
can we treat the datacenter as one
big computer and multiplex
applications and services across
available machine resources?

solution: mesos

+ common resource sharing layer
— abstracts resources for frameworks

R i e
g nnng: Mesos
e oy

______ i _———_—_-

uniprograming multiprograming

11/30/11

(not a provider)

has lots of programmers

twitter and the cloud

* owns private datacenters (not a consumer)
— commodity machines, commodity networks

not selling excess capacity to third parties

has lots of services (especially new ones)

wants to reduce CAPEX and OPEX

twitter and mesos

* use mesos to get cloud like properties
from datacenter (private cloud) to enable
“self-service” for engineers

(but without virtual machines)

computation model: frameworks

* A framework (e.g., Hadoop, MPI) manages one
or more jobs in a computer cluster

* A job consists of one or more tasks

* Atask (e.g., map, reduce) is implemented by

0ne or more processes running on a single

itasks 1,2,3,4

Job 2:tasks 5, 6, 7

Executor | _ _ _ _| Executor | _ _ _
i) = Y
i h _ m \\\ Framework
: (Executor le - - - ~Brecutor :? SC]}(:;d"El:C“k(eel:)gl,
: h m (eg, Taskp ' T
A 1

two-level scheduling

Organization
policies :> Mesos Framework Task
hedule
Master Scheduler sc
Resource Fwk
availability :> schedule

* Advantages:

— Simple = easier to scale and make resilient

— Easy to port existing frameworks, support new
ones

* Disadvantages:

— Distributed scheduling decision = not optimal

11/30/11

resource offers

* Unit of allocation: resource offer
— Vector of available resources on a node
— E.g., nodel: <1CPU, 1GB>, node2: <4CPU, 16GB>

* Master sends resource offers to frameworks

* Frameworks select which offers to accept and
which tasks to run

Push task scheduling to frameworks

Mesos Architecture: Example

Slaves continuously
send status updates

about resources

Framework executors Framework scheduler
launch tasks and may selects resources and
persist across tasks provides tasks

[task 1 Kecutor

Pluggable scheduler to
pick framework to
send an offer to

16CPU, 16GB

twitter applications/services
.

R

development lifecycle

1. gather requirements

2. write a bullet-proof service (server)
load test
capacity plan
allocate & configure machines
package artifacts
write deploy scripts
setup monitoring
other boring stuff (e.g., sarbanes-oxley)

3. resume reading timeline (waiting for
machines to get allocated)

11/30/11

development lifecycle with
mesos

1. gather requirements

2. write a bullet-proof service (server)
load test

1 to-& £ hi

package artifacts
write depley configuration scripts

other boring stuff (e.g., sarbanes-oxley)

t.co
* launch on mesos!

CRUD via command line:

$ scheduler create t_co t_co.mesos
Creating job t_co
OK (4 tasks pending for job t_co)

3. resumereading-timeline
t.co t.co

* launch on mesos!

CI_ Executor _____ Executor | _ _ _
. . ’ N

CRUD via command line: ' task 1 s [task2]| :
| | eSS 5| AN

$ scheduler create t_co t_co.mesos : — - e ST

Creating job tic‘o . : n = le - Executor |):

OK (4 tasks pending for job t_co) : ‘ - = 'I
N .

tasks represent shards

11/30/11

t.co

* is it running? (“top” via a browser)

Cron jobs

what it means for devs?

* write your service to be run anywhere in
the cluster

* anticipate ‘kill -9’
* treat local disk like /tmp

bad practices avoided

* machines fail; force programmers to focus
on shared-nothing (stateless) service shards
and clusters, not machines
— hard-coded machine names (IPs) considered

harmful
— manually installed packages/files considered
harmful

— using the local filesystem for persistent data
considered harmful

level of indirection #ftw

Mesos e > ;
oy &

@DEVOPS_BORAT

11/30/11

level of indirection #ftw

@DEVOPS_BORAT

level of indirection #ftw

example from operating systems?

isolation

Executor what happens when task 5

executes: while (true) {}

isolation

* leverage linux kernel containers

container 1 container 2

|
| CPU RAM

10

11/30/11

software dependencies

t.co + malware

DS

1. package everything into a single artifact
2. download it when you run your task

(might be a bit expensive for some services,
working on next generation solution)

t.co + malware t.co + malware

* a malware service already exists ... but * amalware service already exists ... but
how do we use it? how do we use it?

A Executor | _ _ _ _ Executor | _ _ _ _ CL Executor | _ _ _ _ Executor | _ _ _ _
'n M [task2]| N y A [task2]| N
L Geel .

oy

o

218

2l

3

]
o

s

a

I
=30

Sh

\

N

e

&

S

o

8

s

o

[

Q
= | o
G o
B
&l 2
\
\
1
\
o
&
o
I3
Sh
=i
\

N
do
&
S
o
Q
=
7";

.

1

11/30/11

t.co + malware

* a malware service already exists ... but
how do we use it?

Cl_ Executor | _ _ _ _ Executor | _ _ _ _
'h M [task2]| N
[task5 | GEeel .

= \
Executor _ == Scheduler
l€ =~ ~ " | Executor |,]
M : LI
= 1
| Gask !
\ S

how do we name the malware service?

naming part 1

service discovery via ZooKeeper
zookeeper.apache.org

servers register, clients discover

we have a Java library for this

twitter.github.com/commons

naming part 2

naive clients via proxy

Res
Naive [

Client

= Proxy [I—1 Service

Req
serviceA. role.cluster.

service.twitter.com

route to
translate

shards

host-> sarvice

naming

* PIDs
* /var/local/myapp/pid

12

11/30/11

t.co + malware
* okay, now for a redeploy! (CRUD)

$ scheduler update t_co t_co.config
Updating job t_co

Restarting shards ...

Getting status ...

Failed Shards = []

rolling updates ...

-

Yes

No
{Job, Update Configy —- ’

{Success, Failure}

datacenter operating system

Mesos
+ Twitter specific scheduler
+ service proxy (naming)
+updater
+ dependency manager

datacenter operating system (private cloud)

Thanks!

13

