
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 25  
 

Why Systems Fail and  
What We Can Do About It"

November 30, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 25.2!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Goals for Today"
•  Definitions for Fault Tolerance!
•  Causes of system failures!
•  Possible solutions!
•  Staying broad!

!

Note: Some slides and/or pictures in the following are"
adapted from slides from a talk given by Jim Gray at UC
Berkeley on November 9, 2000."

“You know you have a distributed system when the crash of
a computer you’ve never heard of stops you from getting
any work done.” —LESLIE LAMPORT!

Lec 25.3!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Dependability: The 3 ITIES"

•  Reliability / Integrity: ! 
does the right thing. 
 ! (Also large MTBF)!

•  Availability: does it now.  
!(Also small MTTR  

 MTBF+MTTR  
!

•  System Availability: 
if 90% of terminals up & 99% of DB up?  

!(=> 89% of transactions are serviced on time)!

Security Integrity
Reliability

Availability

MTBF or MTTF = Mean Time Between (To) Failure!
MTTR = Mean Time To Repair!

Lec 25.4!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Fault Tolerance versus  
Disaster Tolerance"

•  Fault-Tolerance: mask local faults!
– RAID disks!
– Uninterruptible Power Supplies!
– Cluster Failover !

•  Disaster Tolerance: masks site failures!
– Protects against fire, flood, sabotage,..!
– Redundant system and service at remote site.!
– Use design diversity !

Page 2

Lec 25.5!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

High Availability System Classes  
Goal: Build Class 6 Systems"

Availability

90.%

99.%

99.9%

99.99%

99.999%

99.9999%

99.99999%

System Type

Unmanaged

Managed

Well Managed

Fault Tolerant

High-Availability

Very-High-Availability

Ultra-Availability

Unavailable
(min/year)

50,000

5,000

500

50

5

.5

.05

Availability
Class

1
2
3
4
5
6
7

UnAvailability = MTTR/MTBF"
"can cut it in ½ by cutting MTTR or MTBF"

Lec 25.6!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Case Study – Japan 
“Survey on Computer Security”, Japan Info Dev Corp., March 1986. (trans: Eiichi Watanabe)."

! !Vendor (hardware and software) ! 5 Months!
! !Application software ! ! 9 Months!
! !Communications lines ! !1.5 Years!
! !Operations ! ! ! 2 Years!
! !Environment ! ! ! 2 Years!
! !! ! ! ! " 10 Weeks !!

!1,383 institutions reported (6/84 - 7/85)!
!7,517 outages, MTBF ~ 10 weeks, avg duration ~ 90 MINUTES!

To Get 10 Year MTBF, Must Attack All These Areas"

4 2 %
1 2 %

2 5 %
9 . 3 %

1 1 . 2 %

Vendor

Environment

Operations Application
Software

Telecomm
lines

Lec 25.7!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Case Studies - Tandem Trends   Reported MTBF by Component"

0

50

100

150

200

250

300

350

400

450

1985 1987 1989

software

hardware

maintenance

operations

environment

total

Mean Time to System Failure (years)
by Cause

" " "1985 "1987 "1990"
SOFTWARE " 2 " 53 " 33 "Years"
HARDWARE " 29 " 91 "310 "Years"
MAINTENANCE " 45 "162 "409 "Years"
OPERATIONS " 99 "171 "136 "Years"
ENVIRONMENT "142 "214 "346 "Years"
SYSTEM " 8 "20 "21 "Years"
Problem: Systematic Under-reporting!
! Lec 25.8!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Operations Failures"

RAID Drive 1 failed!!
Replace immediately!

What went wrong??!

Page 3

Lec 25.9!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Operations Failures"
RAID Drive 1 failed!!
Replace immediately!

Lec 25.10!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!
From: http://analysiscasestudy.blogspot.com/ "

Cloud Computing Outages 2011"
Vendor When Duration What Happened & Why

Apple iPhone
4S Siri

November
2011

1 Day Siri loses even the most basic functionality when Apples servers are down. Because Siri
depends on servers to do the heavy computing required for voice recognition, the service is
useless without that connection. Network outages caused the disruption according to Apple.

Blackberry
outage

October
2011

3 Days Outage was caused by a hardware failure (core switch failure) that prompted a "ripple effect" in
RIM's systems. Users in Europe, Middle East, Africa, India, Brazil, China and Argentina initially
experienced email and message delays and complete outages and later the outages spread to
North America too. Main problem is message backlogs and the downtime produced a huge
queue of undelivered messages causing delays and traffic jams.

Google Docs September
2011

1 Hour Google Docs word collaboration application cramp, shutting out millions of users from their
document lists, documents, drawings and Apps Scripts. Outage was caused by a memory
management bug software engineers triggered in a change designed to “improve real time
collaboration within the document list.

Windows Live
services -
Hotmail &
SkyDrive

September
2011

3 Hours Users did not have any data loss during the outage and the interruption was due to an issue in
Domain Name Service (DNS). Network traffic balancing tool had an update and the update did
not work properly which caused the issue.

Amazon’s EC2
cloud &

August
2011

1-2 days Transformer exploded and caught fire near datacenter that resulted in power outage due to
generator failure. Power back up systems at both the data centers failed causing power
outages. Transformer explosion was caused by lightening strike but disputed by local utility
provider.

Microsoft’s
BPOS

August
2011

1-2 days Transformer exploded and caught fire near datacenter that resulted in power outage due to
generator failure. Power back up systems at both the data centers failed causing power
outages. Transformer explosion was caused by lightening strike but disputed by local utility
provider.

Lec 25.11!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Cloud Computing Outages 2011"
Vendor When Duration What Happened & Why

Amazon Web
Services

April, 2011 4 Days During the upgrade, the traffic shift was executed incorrectly and rather than routing the traffic
to the other router on the primary network, the traffic was routed onto the lower capacity
redundant EBS network. This led to Amazon Elastic Block Store (“EBS”) volumes in a single
Availability Zone within the US East Region that became unable to service read and write
operations. It also impacted the Relational Database Service (“RDS”). RDS depends upon
EBS for database and log storage, and as a result a portion of the RDS databases hosted in the
primary affected Availability Zone became inaccessible.

Microsoft
BPOS Outages

May 2011 2 Hours Paying customers' email was delayed by as much as nine hours. Delay as outgoing messages
started getting stuck in the pipeline.

Twitter
Outages

March &
Feb 2011

1-4 Hours Outages due to over capacity and moving operations to new data center.

Intuit Quick
Books Online

March
2011

2
Days

Service failures on human error during scheduled maintenance operations. Inuit changed its
network configuration and inadvertently blocked customer access to a portion of the company’s
servers. A surge in traffic overloaded the servers when connectivity was restored, so the
company opted to restore service.

Google Mail
and Apps
Outage

February
2011

2 Days Google mail and Google Apps users experienced login errors and empty mailboxes. Google
Engineering determined that the root cause was a bug inadvertently introduced in a Gmail
storage software update. The bug caused the affected users’ messages and account settings
to become temporarily unavailable from the datacenters.

From: http://analysiscasestudy.blogspot.com/ "
Lec 25.12!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Cloud Computing Outages 2010"
Vendor When Duration What Happened & Why

Hotmail
Outage

December
2010

3 Days A number of our users reported their email messages and folders were missing from their
Hotmail accounts. Error occurred from a script that was meant to delete dummy accounts
created for automated testing and it mistakenly targeted 17,000 real accounts instead.

Skype Outage December
2010

1 Day

Cluster of support servers responsible for offline instant messaging became overloaded and the
P2P network became unstable and suffered a critical failure. A supernode is important to the
P2P network acting like a directory, supporting other Skype clients, helping to establish
connections between them etc. The failure of 25–30% of supernodes in the P2P network
resulted in an increased load on the remaining supernodes.

Paypal Outage November
2010

3 Hours A network hardware failure was the trigger for an outage. The hardware failure was worsened by
problems in shifting traffic to another data center, resulting in about 90 minutes of downtime.

Facebook
Outage

September
2010

2 ½
Hours

Outage due to an error condition. An automated system for verifying configuration values ended
up causing much more damage than it fixed. Every single client saw the invalid value and
attempted to fix it that led to a query to a database cluster and cluster was overloaded with
thousand of queries per second. Even after fixing problem stream of queries continued.

Microsoft
BPOS Outages

August &
September
2010

2 Hours A design issue in the upgrade that caused unexpected impact, but the issue resulted in a 2-hour
period of intermittent access for BPOS organizations served from North America.

Wikipedia
Outage

July &
March
2010

2-3
Hours

In July, the power failure is understood to have affected Wikimedia's 'pmtpa' cluster. Due to the
temporary unavailability of several critical systems and the large impact on the available
systems capacity, all Wikimedia projects went down.
In March, Wikimedia servers overheated in the organization's European data center and shut
themselves off automatically. Wikimedia then switched all its traffic to its server cluster in
Florida, but the failover process, which involves changing servers' DNS entries, malfunctioned,
knocking the organization's sites offline around the world.

Hosting.com
Outage

June 2010 2 Hours Failure of a Cisco switch at the Newark, N.J., data center caused intermittent network
connectivity. Dedicated switch had failed, the second failover switch had crashed as well and
the problem was caused by a software bug.

Twitter.com
outage

June 2010 5 hours Increased activity on the site, combined with system enhancements and upgrades, have
uncovered networking issues. Incidences of poor site performance and a high number of errors
due to one of the internal sub-networks being over-capacity.

Page 4

Lec 25.13!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Cloud Computing Outages 2009"
Vendor When Duration What Happened & Why

Salesforce.com
Outage

January
2010, 2009

1-2
Hours

Outages were caused by server disruption, when a core network device failed, stopping all data
from being processed in Japan, Europe, and North America. The technical reason for the
outage: a core network device had failed, due to memory allocation errors. The backup plan,
which was supposed to trigger a cut-over to a redundant system, also failed.

Amazon’s EC2 June 2009 4-5
Hours

A lightning storm caused damage to a single Power Distribution Unit (PDU) in a single
Availability Zone

eBay Paypal August
2009

1-4
Hours

Online payments system failed a couple of times led to non completion of transactions. Network
hardware issue is blamed for outage.

Twitter August
2009

½ Day A denial-of-service attack was blamed for the problem

Google Gmail September
2009

2 hours
2 times

Reasons from vendors include routing errors to server maintenance issues.

Microsoft
Sidekick

October
2009

6 days Microsoft’s Danger server farm, that holds the cloud T-Mobile Sidekick subscriber’s data
crashed, depriving users of their calendar, address book, and other key data. Critical data was
lost during outage.

Rackspace.co
m Outage

June 2009

December
2009

1 Day

1 Hour

Power outage and subsequent power generator failures that caused servers to fail. Company
was forced to pay out between $2.5 million and $3.5 million in service credits to customers.
The issues resulted from a problem with a router used for peering and backbone connectivity
located outside the data center at a peering facility, which handles approximately 20% of
Rackspace's Dallas traffic. The router configuration error was part of final testing for data center
integration between the Chicago and Dallas facilities.

From: http://analysiscasestudy.blogspot.com/ "
Lec 25.14!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Fault Model"
•  Failures are independent*  

So, single fault tolerance is a big win !
•  Hardware fails fast (blue-screen, panic, …)!
•  Software fails-fast (or stops responding/hangs)!
•  Software often repaired by reboot: !!

– Heisenbugs – Works On Retry!
– (Bohrbugs – Faults Again On Retry)!

•  Operations tasks: major source of outage!
– Utility operations – UPS/generator maintenance!
– Software upgrades, configuration changes!

Lec 25.15!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Some Fault Tolerance Techniques"
•  Fail fast modules: work or stop!

•  Spare modules: yield instant repair time!
!
•  Process/System pairs: Mask HW and SW faults!

•  Transactions: yields ACID semantics (simple fault
model)!

Lec 25.16!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Fail-Fast is Good, Repair is Needed"

" "
Improving either MTTR or MTBF gives benefit"
Simple redundancy does not help much!

Lifecycle of a module"
"fail-fast gives "
"short fault latency"

"
High Availability "
 is low UN-Availability"
"
Unavailability ~ MTTR " "" " " " " MTBF"

Page 5

Lec 25.17!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Hardware Reliability/Availability  
(how to make HW fail fast)"

Comparitor Strategies: (in recursive pairs, parent knows which is bad)!
!Duplex: !Fail-Fast: fail if either fails (e.g. duplexed CPUs)!
! !vs !Fail-Soft: fail if both fail (e.g. disc, network,...)!
!Triplex: !Fail-Fast: fail if 2 fail (triplexed cpus)!
! ! !Fail-Soft: fail if 3 fail (triplexed FailFast CPUs)!

!

Basic FailFast Designs
Pair Triplex

Recursive Designs

Recursive Availability Designs
Pair & Spare + + Triple Modular Redundancy

Lec 25.18!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Redundant Designs have Worse MTBF!"

THIS IS NOT GOOD: Variance is lower but MTBF is worse!
Simple redundancy does not improve MTBF (sometimes hurts)!

3
work

2
work

1
work

0
work

mttf/3 mttf/2

mttf/1

3
work

2
work

1
work

0
work

mttf/3 mttf/2

5/6*mttf

11/6*mttf

TMR: fail fast

TMR: fail soft

2
work

1
work

0
work

mttf/2

mttf/1

2
work

1
work

0
work

mttf/2

mttf/2

1.5*mttf

Duplex: fail fast

Duplex: fail soft

mttf/1

3
work

2
work

1
work

0
work

0 mttf/2
3/4*mttf

Pair & Spare: fail fast

4
work

mttf/4

mttf

3
work

2
work

1
work

0
work

mttf/2
~2.1*mttf

Pair & Spare: fail soft

4
work

mttf/4 mttf/3

mttf/1 mttf/1

The Airplane Rule:"
A two-engine airplane  

has twice as many engine
problems as a one engine plane"

Lec 25.19!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!19

Add Repair: Get 104 Improvement"

Availability estimates
1 year MTTF modules

 12-hour MTTR
MTTF EQUATION COST

SIMPLEX 1 year MTTF 1
DUPLEX:
FAIL FAST

~0.5
years

- MTTF/2 2+ε

DUPLEX: FAIL
SOFT

~1.5
years

- MTTF(3/2) 2+ε

TRIPLEX:
FAIL FAST

.8 year - MTTF(5/6) 3+ε

TRIPLEX:
FAIL SOFT

1.8
year

- 1.8MTTF 3+ε

Pair and spare:
FAIL-FAST

~.7
year

- MTTF(3/4) 4+ε

TRIPLEX WITH
REPAIR

>105
years

MTTF3/3MTTR
2

3+ε

Duplex fail soft +
REPAIR

>104
years

MTTF2/2MTTR 4+ε

3
work

2
work

1
work

0
work

mttf/3

TMR: fail fas t

2
work

1
work

0
work

mtbf/2

Duplex: fail fast: mttf/2

mttrmttr mttr mttr mttr

10 mttf
4

mttf/1

3
work

2
work

1
work

0
work

mttf/3 mttf/2

TMR: fail soft

mttf/1

2
work

1
work

0
work

Duplex: fail soft

mttrmttrmttrmttrmttr

10 mttf
5

10 mttf
4

mttf/1 mttf/2

mttf/2

mttf/2

Lec 25.20!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Software Techniques:  
Learning from Hardware"

Recall that most outages are not hardware !
Most outages in Fault Tolerant Systems are SOFTWARE!
Fault Avoidance Techniques: Good & Correct design!
After that: Software Fault Tolerance Techniques:!
!Modularity (isolation, fault containment) !
!N-Version Programming: N-different implementations!

 !Programming for Failures: Programming paradigms that
assume failures are common and hide them!
!Defensive Programming: Check parameters and data !
!Auditors: Check data structures in background!
!Transactions: to clean up state after a failure!

Paradox: Need Fail-Fast Software!
!

Page 6

Lec 25.21!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!21

Fail-Fast and High-Availability Execution"
Process Pairs: Instant restart (repair)"
!Use Defensive programming to make a process fail-fast!
!Have restarted process ready in separate environment !
!Second process “takes over” if primary faults!
!!

If software fault (bug) is a Bohrbug, then there is no repair!
!“wait for the next release” or !“get an emergency bug fix” or!
!“get a new vendor”!

If software fault is a Heisenbug, then repair is !
! !“reboot and retry” or “switch to backup process (instant restart)”!

!
Tolerates HW faults too!!
!
Repair time is seconds, !
could be ms if time critical!
!

SESSION
PRIMARY
PROCESS

BACKUP
PROCESS

STATE
INFORMATION

LOGICAL PROCESS = PROCESS PAIR

Lec 25.22!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

SYSTEM PAIRS 
FOR HIGH AVAILABILITY"

•  Programs, Data, Processes Replicated at 2+ sites!
– Pair looks like a single system!

•  System becomes logical concept!
– Like Process Pairs: System Pairs.!

•  Backup receives transaction log (spooled if backup down)!
•  If primary fails or operator switches, backup offers service!

Primary Backup

Lec 25.23!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Add Geographic Diversity to
Reduce Single Points of Failure*"

Lec 25.24!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Administrivia"
•  Final:!

– Thursday, December 15, 8-11am, 155 Dwinelle!
– Closed book, two pages of hand-written notes (both sides)!

•  Topics:!
– 30% first part!
– 70% second part!

•  Review session: Next week TBA!
!
•  Office hours:!

– Anthony: Tuesday Dec 6, 10:30-11:30 am and  
 Wednesday, Dec 7, 12:30-1:30pm!

–  Ion: Tuesday, Dec 6, 9:30-10:30am and !
 Wednesday, 11:30-12:30pm!

•  We will post example questions for the final!
– Look at previous yearsʼ second/third midterms!

Page 7

Lec 25.25!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

5min Break"

Lec 25.26!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

MapReduce"
•  First widely popular programming model for data-

intensive apps on commodity clusters!

•  Published by Google in 2004!
– Processes 20 PB of data / day!

•  Popularized by open-source Hadoop project!
– 40,000 nodes at Yahoo!, 70 PB at Facebook!

•  Programming model!
– Data type: key-value records!

» Map function: (Kin, Vin) è	
 list(Kinter, Vinter)!
» Reduce function: (Kinter, list(Vinter)) è	
 list(Kout, Vout)!

Lec 25.27!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Word Count Execution"

the
quick"
brown

fox"

the fox
ate the
mouse"

how
now"

brown
cow"

Map"

Map"

Map"

Reduce"

Reduce"

brown, 2"
fox, 2"
how, 1"
now, 1"
the, 3"

ate, 1"
cow, 1"
mouse,

1"
quick, 1"

the, 1"
brown, 1"

fox, 1"

quick, 1"

the, 1"
fox, 1"
the, 1"

how, 1"
now, 1"

brown, 1"
ate, 1"

mouse, 1"

cow, 1"

Input" Map" Shuffle & Sort" Reduce" Output"

Lec 25.28!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Fault Tolerance in MapReduce"
1. If a task crashes:!

– Retry on another node!
» OK for a map because it had no dependencies!
» OK for reduce because map outputs are on disk!

–  If the same task repeatedly fails, fail the job!

Ø Note: For the fault tolerance to work,
tasks must be deterministic and side-
effect-free!

Page 8

Lec 25.29!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Fault Tolerance in MapReduce"
2. If a node crashes:!

– Relaunch its current tasks on other nodes!
– Relaunch any maps the node previously ran!

» Necessary because their output files are lost!

Lec 25.30!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Fault Tolerance in MapReduce"
3. If a task is going slowly (straggler):!

– Launch second copy of task on another node!
– Take output of whichever copy finishes first!

•  Critical for performance in large clusters!

Lec 25.31!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Takeaways"
•  By providing a data-parallel programming model,

MapReduce can control job execution in useful ways:!
– Automatic division of job into tasks!
– Placement of computation near data!
– Load balancing!
– Recovery from failures & stragglers!

Lec 25.32!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Issues	
 with	
 MapReduce	

•  Hard to express more complex programs!
– E.g. word count + a sort to find the top words!
– Need to write many different map and reduce functions

that are split up all over the program!
– Must write complex operators (e.g. join) by hand!

•  Acyclic data flow -> poor support for applications that
need to reuse pieces of data!

–  Iterative algorithms (e.g. machine learning, graphs)!
–  Interactive data mining (e.g. Matlab, Python, SQL)!

Page 9

Lec 25.33!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Example: Iterative Apps"

Input"

iteration 1"

iteration 2"

iteration 3"

result 1"

result 2"

result 3"

. . ."

iter. 1" iter. 2" . . ."

Input"
Lec 25.34!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Distributed 
memory"

Input"

iteration 1"

iteration 2"

iteration 3"

. . ."

iter. 1" iter. 2" . . ."

Input"

Goal: Keep Working Set in RAM"

one-time  
processing"

Lec 25.35!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Spark Goals"
•  Support apps with data reuse efficiently:!

– Let them keep data in memory!

•  Retain the fault tolerance and automatic scheduling
benefits of MapReduce!

•  Enhance programmability:!
–  Integrate into Scala programming language!
– Allow interactive use from Scala interpreter!

Lec 25.36!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Key Idea: Resilient Distributed
Datasets (RDDs)"

•  Restricted form of distributed shared memory!
– Read-only, partitioned collections of records!
– Can only be created through deterministic

transformations (map, group-by, join, …)!

•  Allows efficient implementation & recovery!
– Key idea: rebuild lost data using lineage!

Page 10

Lec 25.37!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Distributed 
memory"

Input"

iteration 1"

iteration 2"

iteration 3"

. . ."

iter. 1" iter. 2" . . ."

Input"

RDD Recovery"

one-time  
processing"

Lec 25.38!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Programming Model"

•  Resilient distributed datasets (RDDs)!
–  Immutable, partitioned collections of objects!
– Created through parallel transformations (map, filter,

groupBy, join, …) on data in stable storage!
– Can be cached for efficient reuse!

•  Actions on RDDs!
– Count, reduce, collect, save, …!

Lec 25.39!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Example: Log Mining"

Load error messages from a log into memory,
then interactively search for various patterns!

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()
Block 1"

Block 2"

Block 3"

Worker"

Worker"

Worker"

Driver"

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks"

results"

Cache 1"

Cache 2"

Cache 3"

Base RDD"Transformed RDD"

Action"

Result: full-text search of Wikipedia
in <1 sec (vs 20 sec for on-disk data)"
Result: scaled to 1 TB data in 5-7 sec  

(vs 170 sec for on-disk data)"
Lec 25.40!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

RDD Fault Tolerance"

RDDs maintain lineage information that can be used to
reconstruct lost partitions!

Ex:!
!
!

cachedMsgs = textFile(...).filter(_.contains(“error”))
 .map(_.split(‘\t’)(2))
 .cache()

HdfsRDD"
path: hdfs://…"

FilteredRDD"
func: contains

(...)"

MappedRDD"
func: split(…)" CachedRDD"

Page 11

Lec 25.41!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Apache ZooKeeper"
•  Highly available, scalable, distributed coordination kernel!

– Leader Election, Group Membership, Work Queues, Sharding!
– Event Notifications/workflow, Config, and Cluster Mgmt!

•  Provides:!
– File API without partial reads/writes and no renames!
– Ordered updates and strong persistence guarantees!
– Conditional updates (version), Watches for data changes!

•  API:!
– String create(path, data, acl, flags)‏!
– void delete(path, expectedVersion)‏!
– Stat setData(path, data, expectedVersion)‏!
–  (data, Stat) getData(path, watch)‏!
– Stat exists(path, watch)‏!
– String[] getChildren(path, watch)‏!

Lec 25.42!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

ZooKeeper Service"

•  All servers store a copy of the data (in memory)‏!
•  A leader is elected at startup, or upon current leader failure!
•  Followers service clients, all updates go through leader!
•  Update responses are sent when a majority of servers have

persisted the change!

Server Server Server Server Server Server
Leader

Client Client Client Client Client Client Client

Lec 25.43!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

New CS162"
•  Different emphasis from CS162 in previous years;

beginning in 2011 we shifted to give students a broad
view on how todayʼs systems and services!

– End-to-end system design, rather than OS only!
– More networking, database, and security concepts!
– New projects to reflect this emphasis!
– Better prepare students to design/develop such services!

•  Long term plan: make CS 162 a gateway course for!
– Database class (CS 186)!
– Networking class (EE 122)!
– Security class (CS 161)!
– Software engineering class (CS 169)!
– New OS class (cs16x in Fall 2012 with real OS)!

Lec 25.44!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

New vs. Old CS162"
•  Curriculum: 70% overlap!

− File systems, queuing theory, slightly fewer lectures on
concurrency, caching, and distributed systems!

+ More networking, database transactions, p2p, and cloud
computing!

On-going analysis of what worked and didnʼt work!

•  Different project: emphasize on how a system works end-to-end
rather than focusing on implementing OS concepts in Nachos!

•  What if you want to do an OS project?!
– CS 16x in Fall 2012!
– Undergraduate research projects in the AMP Lab!

»  Akaros, Spartk, or Mesos projects !

!

Page 12

Lec 25.45!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Stay Broad!"
•  Very few influential nerds – never will be!

– Why? !
»  Theyʼre too narrow!
» Real breakthroughs tend to come from people with

breadth. !

•  One of the most important things you should do is to
force yourself to stay broad!

!

Lec 25.46!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Reasons to Stay Broad"
•  Breadth helps depth!

– The more you understand about many different things,
the more youʼll understand about each individual thing !

– Seeing how things in different areas are similar or
different is a very good way of seeing what's important!

•  Breakthroughs often occur when people can cross
traditional boundaries: compilers and architecture,
graphics and VLSI, etc.!

•  Computers are tools: they serve people!
– To create effective tools, must understand the

capabilities of computers, the capabilities of people, and
the needs of the application areas where they'll be used!

Lec 25.47!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

More Reasons to Stay Broad"
•  Technology is changing fast!

–  If you get cubby-holed, youʼll get left behind. !
!
•  Why is there a shortage of 25-year-old engineers and a

surplus of 45-year-old ones? !
– Companies encourage new graduates to get so narrow

(short-term focus) that theyʼre instantly obsolete!

•  If you donʼt keep up, youʼll be left behind…!

Lec 25.48!11/30/2011! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2011!

Solutions"
•  Continuing education!

– Try always to be learning in whatever you do!
– Donʼt let your education stop when you leave Berkeley.!
– Consider getting a Masters degree or a PhD !

•  Explore new areas, both inside and outside Computer
Science!

– Amazon AWS makes it easy to experiment!
– Everything you learn will someday be helpful, no matter

how unlikely it seems – English, art, hobbies, all things
are helpful!

•  Bottom line: you are going to change the world! !
– You might not realize it yet, but the people in this

classroom are going to do it!

