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Recap: ATM Bank Server"

•  ATM server problem:!
– Service a set of requests!
– Do so without corrupting database!
– Donʼt hand out too much money!
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Recap: Challenge of Threads"
•  Speed up server by using multiple threads (one per request)!

– Can use multi-processor, or overlap comp and I/O!

•  Requests proceeds to completion, blocking as required:!
  Deposit(acctId, amount) { 
   acct = GetAccount(actId); /* May use disk I/O */ 
   acct->balance += amount; 
   StoreAccount(acct);   /* Involves disk I/O */ 
 }!

•  Unfortunately, shared state can get corrupted: 
! !Thread 1 ! !Thread 2  
!!load r1, acct->balance 
   load r1, acct->balance 
   add r1, amount2 
   store r1, acct->balance 
 add r1, amount1 
 store r1, acct->balance 
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Recap: Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so 

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! !    x = y+1; !   y = y*2;!

– What are the possible values of x?   !
!                     Thread A !Thread B!
! !x = 1; !!
! !    x = y+1; !!

                                                             y = 2;!
                                                             y = y*2!

x=13" Preemption can occur !
at any time!!
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•  Most of the time, threads are working on separate data, so 
scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! !    x = y+1; !   y = y*2;!

– What are the possible values of x?   !
!                     Thread A !Thread B!
!!                                                                      y = 2; !!
!!                                                                      y = y*2; !!

               x = 1;!
               x = y+1;!

x=5"

Recap: Problem is at the lowest level"

Preemption can occur !
at any time!!
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•  Most of the time, threads are working on separate data, so 
scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! !    x = y+1; !   y = y*2;!

– What are the possible values of x?   !
!                     Thread A !Thread B!
!!                                                                      y = 2; !!
! !  x = 1; !!

               x = y+1;!
                                                             y= y*2;!

x=3"

Recap: Problem is at the lowest level"

Preemption can occur !
at any time!!
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Goals for Today"

•  Concurrency examples and sharing!

•  Synchronization!

•  Hardware Support for Synchronization!
!

Note: Some slides and/or pictures in the following are adapted from slides 
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D. 
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric 
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.!
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•  Threaded programs must work for all interleavings of thread 
instruction sequences!

– Cooperating threads inherently non-deterministic and non-
reproducible!

– Really hard to debug unless carefully designed!!
•  Example: Therac-25!

– Machine for radiation therapy!
»  Software control of electron  

accelerator and electron beam/ 
Xray production!

»  Software control of dosage!
– Software errors caused  

overdoses and the death of  
several patients!

»  A series of race conditions on  
shared variables and poor  
software design!

»  “They determined that data entry speed during editing was the 
key factor in producing the error condition: If the prescription data 
was edited at a fast pace, the overdose occurred.”!

Correctness Requirements"
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Space Shuttle Example"
•  Original Space Shuttle launch aborted 20 minutes before 

scheduled launch!
•  Shuttle has five computers:!

– Four run the “Primary Avionics  
Software System” (PASS)!

»  Asynchronous and real-time!
» Runs all of the control systems!
» Results synchronized and compared 440 times per second!

– The Fifth computer is the “Backup Flight System” (BFS)!
»  Stays synchronized in case it is needed!
» Written by completely different team than PASS!

•  Countdown aborted because BFS disagreed with PASS!
– A 1/67 chance that PASS was out of sync one cycle!
– Bug due to modifications in initialization code of PASS!

»  A delayed init request placed into timer queue!
»  As a result, timer queue not empty at expected time to force use 

of hardware clock!
– Bug not found during extensive simulation!

PASS 

BFS 
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Atomic Operations"
•  To understand a concurrent program, we need to know what 

the underlying atomic operations are!!
•  Atomic Operation: an operation that always runs to completion 

or not at all!
–  It is indivisible: it cannot be stopped in the middle and state 

cannot be modified by someone else in the middle!
– Fundamental building block – if no atomic operations, then have 

no way for threads to work together!

•  On most machines, memory references and assignments (i.e. 
loads and stores) of words are atomic!

•  Many instructions are not atomic!
– Double-precision floating point store often not atomic!
– VAX and IBM 360 had an instruction to copy a whole array!
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Concurrency Challenges"
•  Multiple computations (threads) executing in parallel to !

– share resources, and/or!
– share data!

•  Fine grain sharing: !
⇑  increase concurrency à better performance!
⇓  more complex!

•  Coarse grain sharing:!
⇑  Simpler to implement!
⇓  Lower performance!

•  Examples:!
•  Sharing CPU for 10ms vs. 1min!
•  Sharing a database at the row vs. table granularity!

Lec 4.12!9/16/13! Anthony D. Joseph and John Canny       CS162        ©UCB Fall 2013!

Motivation: “Too much milk”"
•  Great thing about OSʼs – analogy between 

problems in OS and problems in real life!
– Help you understand real life problems better!
– But, computers are much stupider than people!

•  Example: People need to coordinate:!

Arrive home, put milk away"3:30"
Buy milk"3:25"
Arrive at store"Arrive home, put milk away"3:20"
Leave for store"Buy milk"3:15"

Leave for store"3:05"
Look in Fridge. Out of milk"3:00"

Look in Fridge. Out of milk"Arrive at store"3:10"

Person B"Person A"Time"
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Definitions"
•  Synchronization: using atomic operations to ensure 

cooperation between threads!
– For now, only loads and stores are atomic!
– Weʼll show that is hard to build anything useful with only 

reads and writes!

•  Critical Section: piece of code that only one thread can 
execute at once!

•  Mutual Exclusion: ensuring that only one thread executes 
critical section!

– One thread excludes the other while doing its task!
– Critical section and mutual exclusion are two ways of 

describing the same thing!
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More Definitions"
•  Lock: prevents someone from doing something!

– Lock before entering critical section and  
before accessing shared data!

– Unlock when leaving, after accessing shared data!
– Wait if locked!

»  Important idea: all synchronization involves waiting!
•  Example: fix the milk problem by putting a lock on refrigerator!

– Lock it and take key if you are going to go buy milk!
– Fixes too much (coarse granularity): roommate angry if only 

wants orange juice!

!
– Of Course – We donʼt know how to make a lock yet!

#$@%@#$@ 
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Too Much Milk: Correctness Properties"
•  Need to be careful about correctness of concurrent 

programs, since non-deterministic!
– Always write down desired behavior first!
–  Impulse is to start coding first, then when it doesnʼt work, 

pull hair out!
–  Instead, think first, then code!

•  What are the correctness properties for the “Too much 
milk” problem?!

– Never more than one person buys!
– Someone buys if needed!

•  Restrict ourselves to use only atomic load and store 
operations as building blocks!
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Too Much Milk: Solution #1"
•  Use a note to avoid buying too much milk:!

– Leave a note before buying (kind of “lock”)!
– Remove note after buying (kind of “unlock”)!
– Donʼt buy if note (wait)!

•  Suppose a computer tries this (remember, only memory read/
write are atomic):!
 
   if (noMilk) { 
      if (noNote) { 
         leave Note; 
         buy milk; 
         remove note; 
      } 
  } 

•  Result?  !
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Too Much Milk: Solution #1"    
•  Still too much milk but only occasionally!!
    Thread A               Thread B   
  if (noMilk)           
    if (noNote) { 
                         if (noMilk)           
                           if (noNote) { 
      leave Note; 

 buy milk; 
      remove note; 
    } 
  }!
                             leave Note; 

                        buy milk; 
                             … 
•  Thread can get context switched after checking milk and note 

but before leaving note!!
•  Solution makes problem worse since fails intermittently!

– Makes it really hard to debug…!
– Must work despite what the thread dispatcher does!!
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Too Much Milk: Solution #1½ "
•  Clearly the Note is not quite blocking enough!

– Letʼs try to fix this by placing note first!
•  Another try at previous solution:!
!

   leave Note; 
   if (noMilk) { 
      if (noNote) { 
         buy milk; 
      } 
  } 

   remove Note; 
 

•  What happens here?!
– Well, with human, probably nothing bad!
– With computer: no one ever buys milk!
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Too Much Milk Solution #2"
•  How about labeled notes?  !

– Now we can leave note before checking!

•  Algorithm looks like this:!
!!
! !Thread A ! !Thread B!
  leave note A;  leave note B; 

 if (noNote B) {  if (noNote A) { 
    if (noMilk) {     if (noMilk) { 
       buy Milk;        buy Milk; 
    }     } 
 }   } 
 remove note A;  remove note B; 

•  Does this work?!
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Too Much Milk Solution #2"
•  Possible for neither thread to buy milk!!
! ! !Thread A ! !Thread B!
  leave note A;   
                                  leave note B; 

                           if (noNote A) { 
                              if (noMilk) { 
                                buy Milk; 
      } 
   } 

         if (noNote B) { 
            if (noMilk) { 
              buy Milk;              
              … 
                                  remove note B;!
•  Really insidious: !

– Unlikely that this would happen, but will at worse possible 
time!
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Too Much Milk Solution #2: 
problem!"

•  Iʼm not getting milk, Youʼre getting milk!
•  This kind of lockup is called “starvation!”!
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Administrivia"
•  Section assignments posted on Piazza!

– Most groups were assigned 1st or 2nd preference!
– Attend assigned sections THIS week!

•  Nachos Project I begins tomorrow (Threads)!
– Start reading walkthrough and code NOW!
– Download Nachos tar file!
– Set up Java environment, Eclipse, version control!
– More details in sections!

•  Sections will have weekly quizzes!
– New grade breakdown: 50% projects, 40% exams, 5% 

participation (lectures/sections/Piazza), 5% quizzes!
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5min Break"
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Too Much Milk Solution #3"
•  Here is a possible two-note solution:!
! ! !Thread A ! !Thread B!
  leave note A;  leave note B; 

 while (note B) {\\X  if (noNote A) {\\Y 
    do nothing;     if (noMilk) { 
 }         buy milk; 
 if (noMilk) {     } 
    buy milk;  } 
 }   remove note B; 
 remove note A;!

•  Does this work? Yes. Both can guarantee that: !
–  It is safe to buy, or!
– Other will buy, ok to quit!

•  At X: !
–  if no note B, safe for A to buy, !
– otherwise wait to find out what will happen!

•  At Y: !
–  if no note A, safe for B to buy!
– Otherwise, A is either buying or waiting for B to quit!
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Solution #3 discussion"
•  Our solution protects a single “Critical-Section” piece of code 

for each thread:!
   if (noMilk) {   
        buy milk;   

  }   !
•  Solution #3 works, but itʼs really unsatisfactory!

– Really complex – even for this simple an example!
» Hard to convince yourself that this really works!

– Aʼs code is different from Bʼs – what if lots of threads?!
» Code would have to be slightly different for each thread!

– While A is waiting, it is consuming CPU time!
»  This is called “busy-waiting”!

•  Thereʼs a better way!
– Have hardware provide better (higher-level) primitives than 

atomic load and store!
– Build even higher-level programming abstractions on this new 

hardware support!
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High-Level Picture"
•  The abstraction of threads is good:!

– Maintains sequential execution model !
– Allows simple parallelism to overlap I/O and computation!

•  Unfortunately, still too complicated to access state shared 
between threads !

– Consider “too much milk” example!
–  Implementing a concurrent program with only loads and stores 

would be tricky and error-prone!
•  Weʼll implement higher-level operations on top of atomic 

operations provided by hardware!
– Develop a “synchronization toolbox”!
– Explore some common programming paradigms!
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Too Much Milk: Solution #4"
•  Suppose we have some sort of implementation of a lock 

(more in a moment)!
– Lock.Acquire() – wait until lock is free, then grab!
– Lock.Release() – unlock, waking up anyone waiting!
– These must be atomic operations – if two threads are waiting 

for the lock, only one succeeds to grab the lock!

•  Then, our milk problem is easy:!
!  milklock.Acquire(); 
  if (nomilk) 
     buy milk; 
  milklock.Release(); 

•  Once again, section of code between Acquire() and 
Release() called a “Critical Section”!
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How to Implement Lock?"
•  Lock: prevents someone from accessing something!

– Lock before entering critical section (e.g., before accessing 
shared data)!

– Unlock when leaving, after accessing shared data!
– Wait if locked!

»  Important idea: all synchronization involves waiting!
»  Should sleep if waiting for long time!

•  Hardware lock instructions!
–  Is this a good idea?!
– What about putting a task to sleep?!

» How do handle interface between hardware and scheduler?!
– Complexity?!

»  Each feature makes hardware more complex and slower!
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•  How can we build multi-instruction atomic operations?!
– Recall: dispatcher gets control in two ways. !

»  Internal: Thread does something to relinquish the CPU!
»  External: Interrupts cause dispatcher to take CPU!

– On a uniprocessor, can avoid context-switching by:!
»  Avoiding internal events (although virtual memory tricky)!
»  Preventing external events by disabling interrupts!

•  Consequently, naïve Implementation of locks:!
! !LockAcquire { disable Ints; } 
  LockRelease { enable Ints; }!

Naïve use of Interrupt Enable/Disable"
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•  Canʼt let user do this! Consider following:!
 LockAcquire(); 
While(TRUE) {;} 

•  Real-Time system—no guarantees on timing! !
– Critical Sections might be arbitrarily long!

•  What happens with I/O or other important events? !!
–  “Reactor about to meltdown. Help?”!

Naïve use of Interrupt Enable/Disable: 
Problems"
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Better Implementation of Locks by Disabling 
Interrupts"

•  Key idea: maintain a lock variable and impose mutual 
exclusion only during operations on that variable!
  

int value = FREE; 
 
Acquire() { 
 disable interrupts; 
 if (value == BUSY) { 
  put thread on wait queue; 
  Go to sleep(); 
  // Enable interrupts? 
 } else { 
  value = BUSY; 
 } 
 enable interrupts; 

} 

 
 
Release() { 
 disable interrupts; 
 if (anyone on wait queue) { 
  take thread off wait queue 
  Put at front of ready queue 
 } else { 
  value = FREE; 
 } 
 enable interrupts; 

} 
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New Lock Implementation: Discussion"
•  Disable interrupts: avoid interrupting between checking and 

setting lock value!
– Otherwise two threads could think that they both have lock!

!
•  Note: unlike previous solution, critical section very short!

– User of lock can take as long as they like in their own critical 
section!

– Critical interrupts taken in time!

Acquire() { 
 disable interrupts; 
 if (value == BUSY) { 
  put thread on wait queue; 
  Go to sleep(); 
  // Enable interrupts? 
 } else { 
  value = BUSY; 
 } 
 enable interrupts; 

} 

Critical 
Section 
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Interrupt re-enable in going to sleep"
•  What about re-enabling ints when going to sleep?!

•  Before putting thread on the wait queue?!
– Release can check the queue and not wake up thread!

•  After putting the thread on the wait queue!
– Release puts the thread on the ready queue, but the thread still 

thinks it needs to go to sleep!
– Misses wakeup and still holds lock (deadlock!)!

•  Want to put it after sleep(). But, how?!

Acquire() { 
 disable interrupts; 
 if (value == BUSY) { 
  put thread on wait queue; 
  go to sleep(); 
 } else { 
  value = BUSY; 
 } 
 enable interrupts; 

} 

Enable Position"
Enable Position"
Enable Position"
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How to Re-enable After Sleep()?"
•  Since ints are disabled when you call sleep:!

– Responsibility of the next thread to re-enable ints!
– When the sleeping thread wakes up, returns to acquire and re-

enables interrupts!
  Thread A !Thread B!
  . 

 . 
 disable ints 

 sleep 
   sleep return 

  enable ints 
   . 

  . 
  . 

   disable int 
  sleep 

  sleep return 
 enable ints 

 . 
 . 

context switch"

context 
switch"

yield return 
enable ints 

disable int 
yield 
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Summary"
•  Introduced important concept: Atomic Operations!

– An operation that runs to completion or not at all!
– These are the primitives on which to construct various 

synchronization primitives!
!

•  Showed construction of Locks using interrupts!
– Using careful disabling of interrupts!
– Must be very careful not to waste/tie up machine resources!

»  Shouldnʼt disable interrupts for long!
– Key ideas: Use a separate lock variable, and use hardware 

mechanisms to protect modifications of that variable!


