
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 4  
 

Synchronization, Atomic operations,
Locks"

September 16, 2013!
Anthony D. Joseph and John Canny!
http://inst.eecs.berkeley.edu/~cs162!

Lec 4.2!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Recap: ATM Bank Server"

•  ATM server problem:!
– Service a set of requests!
– Do so without corrupting database!
– Donʼt hand out too much money!

Lec 4.3!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Recap: Challenge of Threads"
•  Speed up server by using multiple threads (one per request)!

– Can use multi-processor, or overlap comp and I/O!

•  Requests proceeds to completion, blocking as required:!
 Deposit(acctId, amount) {
 acct = GetAccount(actId); /* May use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
 }!

•  Unfortunately, shared state can get corrupted: 
! !Thread 1 ! !Thread 2  
!!load r1, acct->balance
 load r1, acct->balance
 add r1, amount2
 store r1, acct->balance
 add r1, amount1
 store r1, acct->balance
 Lec 4.4!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Recap: Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! ! x = y+1; ! y = y*2;!

– What are the possible values of x? !
! Thread A !Thread B!
! !x = 1; !!
! ! x = y+1; !!

 y = 2;!
 y = y*2!

x=13" Preemption can occur !
at any time!!

Page 2

Lec 4.5!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

•  Most of the time, threads are working on separate data, so
scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! ! x = y+1; ! y = y*2;!

– What are the possible values of x? !
! Thread A !Thread B!
!! y = 2; !!
!! y = y*2; !!

 x = 1;!
 x = y+1;!

x=5"

Recap: Problem is at the lowest level"

Preemption can occur !
at any time!!

Lec 4.6!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

•  Most of the time, threads are working on separate data, so
scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! ! x = y+1; ! y = y*2;!

– What are the possible values of x? !
! Thread A !Thread B!
!! y = 2; !!
! ! x = 1; !!

 x = y+1;!
 y= y*2;!

x=3"

Recap: Problem is at the lowest level"

Preemption can occur !
at any time!!

Lec 4.7!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Goals for Today"

•  Concurrency examples and sharing!

•  Synchronization!

•  Hardware Support for Synchronization!
!

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.!

Lec 4.8!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

•  Threaded programs must work for all interleavings of thread
instruction sequences!

– Cooperating threads inherently non-deterministic and non-
reproducible!

– Really hard to debug unless carefully designed!!
•  Example: Therac-25!

– Machine for radiation therapy!
»  Software control of electron  

accelerator and electron beam/ 
Xray production!

»  Software control of dosage!
– Software errors caused  

overdoses and the death of  
several patients!

»  A series of race conditions on  
shared variables and poor  
software design!

»  “They determined that data entry speed during editing was the
key factor in producing the error condition: If the prescription data
was edited at a fast pace, the overdose occurred.”!

Correctness Requirements"

Page 3

Lec 4.9!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Space Shuttle Example"
•  Original Space Shuttle launch aborted 20 minutes before

scheduled launch!
•  Shuttle has five computers:!

– Four run the “Primary Avionics  
Software System” (PASS)!

»  Asynchronous and real-time!
» Runs all of the control systems!
» Results synchronized and compared 440 times per second!

– The Fifth computer is the “Backup Flight System” (BFS)!
»  Stays synchronized in case it is needed!
» Written by completely different team than PASS!

•  Countdown aborted because BFS disagreed with PASS!
– A 1/67 chance that PASS was out of sync one cycle!
– Bug due to modifications in initialization code of PASS!

»  A delayed init request placed into timer queue!
»  As a result, timer queue not empty at expected time to force use

of hardware clock!
– Bug not found during extensive simulation!

PASS

BFS

Lec 4.10!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Atomic Operations"
•  To understand a concurrent program, we need to know what

the underlying atomic operations are!!
•  Atomic Operation: an operation that always runs to completion

or not at all!
–  It is indivisible: it cannot be stopped in the middle and state

cannot be modified by someone else in the middle!
– Fundamental building block – if no atomic operations, then have

no way for threads to work together!

•  On most machines, memory references and assignments (i.e.
loads and stores) of words are atomic!

•  Many instructions are not atomic!
– Double-precision floating point store often not atomic!
– VAX and IBM 360 had an instruction to copy a whole array!

Lec 4.11!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Concurrency Challenges"
•  Multiple computations (threads) executing in parallel to !

– share resources, and/or!
– share data!

•  Fine grain sharing: !
⇑  increase concurrency à better performance!
⇓  more complex!

•  Coarse grain sharing:!
⇑  Simpler to implement!
⇓  Lower performance!

•  Examples:!
•  Sharing CPU for 10ms vs. 1min!
•  Sharing a database at the row vs. table granularity!

Lec 4.12!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Motivation: “Too much milk”"
•  Great thing about OSʼs – analogy between

problems in OS and problems in real life!
– Help you understand real life problems better!
– But, computers are much stupider than people!

•  Example: People need to coordinate:!

Arrive home, put milk away"3:30"
Buy milk"3:25"
Arrive at store"Arrive home, put milk away"3:20"
Leave for store"Buy milk"3:15"

Leave for store"3:05"
Look in Fridge. Out of milk"3:00"

Look in Fridge. Out of milk"Arrive at store"3:10"

Person B"Person A"Time"

Page 4

Lec 4.13!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Definitions"
•  Synchronization: using atomic operations to ensure

cooperation between threads!
– For now, only loads and stores are atomic!
– Weʼll show that is hard to build anything useful with only

reads and writes!

•  Critical Section: piece of code that only one thread can
execute at once!

•  Mutual Exclusion: ensuring that only one thread executes
critical section!

– One thread excludes the other while doing its task!
– Critical section and mutual exclusion are two ways of

describing the same thing!

Lec 4.14!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

More Definitions"
•  Lock: prevents someone from doing something!

– Lock before entering critical section and  
before accessing shared data!

– Unlock when leaving, after accessing shared data!
– Wait if locked!

»  Important idea: all synchronization involves waiting!
•  Example: fix the milk problem by putting a lock on refrigerator!

– Lock it and take key if you are going to go buy milk!
– Fixes too much (coarse granularity): roommate angry if only

wants orange juice!

!
– Of Course – We donʼt know how to make a lock yet!

#$@%@#$@

Lec 4.15!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Too Much Milk: Correctness Properties"
•  Need to be careful about correctness of concurrent

programs, since non-deterministic!
– Always write down desired behavior first!
–  Impulse is to start coding first, then when it doesnʼt work,

pull hair out!
–  Instead, think first, then code!

•  What are the correctness properties for the “Too much
milk” problem?!

– Never more than one person buys!
– Someone buys if needed!

•  Restrict ourselves to use only atomic load and store
operations as building blocks!

Lec 4.16!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Too Much Milk: Solution #1"
•  Use a note to avoid buying too much milk:!

– Leave a note before buying (kind of “lock”)!
– Remove note after buying (kind of “unlock”)!
– Donʼt buy if note (wait)!

•  Suppose a computer tries this (remember, only memory read/
write are atomic):!

 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

•  Result? !

Page 5

Lec 4.17!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Too Much Milk: Solution #1"
•  Still too much milk but only occasionally!!
 Thread A Thread B
 if (noMilk)
 if (noNote) {
 if (noMilk)
 if (noNote) {
 leave Note;

 buy milk;
 remove note;
 }
 }!
 leave Note;

 buy milk;
 …
•  Thread can get context switched after checking milk and note

but before leaving note!!
•  Solution makes problem worse since fails intermittently!

– Makes it really hard to debug…!
– Must work despite what the thread dispatcher does!!

Lec 4.18!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Too Much Milk: Solution #1½ "
•  Clearly the Note is not quite blocking enough!

– Letʼs try to fix this by placing note first!
•  Another try at previous solution:!
!

 leave Note;
 if (noMilk) {
 if (noNote) {
 buy milk;
 }
 }

 remove Note;

•  What happens here?!
– Well, with human, probably nothing bad!
– With computer: no one ever buys milk!

Lec 4.19!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Too Much Milk Solution #2"
•  How about labeled notes? !

– Now we can leave note before checking!

•  Algorithm looks like this:!
!!
! !Thread A ! !Thread B!
 leave note A; leave note B;

 if (noNote B) { if (noNote A) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;

•  Does this work?!

Lec 4.20!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Too Much Milk Solution #2"
•  Possible for neither thread to buy milk!!
! ! !Thread A ! !Thread B!
 leave note A;
 leave note B;

 if (noNote A) {
 if (noMilk) {
 buy Milk;
 }
 }

 if (noNote B) {
 if (noMilk) {
 buy Milk;
 …
 remove note B;!
•  Really insidious: !

– Unlikely that this would happen, but will at worse possible
time!

Page 6

Lec 4.21!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Too Much Milk Solution #2:
problem!"

•  Iʼm not getting milk, Youʼre getting milk!
•  This kind of lockup is called “starvation!”!

Lec 4.22!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Administrivia"
•  Section assignments posted on Piazza!

– Most groups were assigned 1st or 2nd preference!
– Attend assigned sections THIS week!

•  Nachos Project I begins tomorrow (Threads)!
– Start reading walkthrough and code NOW!
– Download Nachos tar file!
– Set up Java environment, Eclipse, version control!
– More details in sections!

•  Sections will have weekly quizzes!
– New grade breakdown: 50% projects, 40% exams, 5%

participation (lectures/sections/Piazza), 5% quizzes!

Lec 4.23!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

5min Break"

Lec 4.24!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Too Much Milk Solution #3"
•  Here is a possible two-note solution:!
! ! !Thread A ! !Thread B!
 leave note A; leave note B;

 while (note B) {\\X if (noNote A) {\\Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;!

•  Does this work? Yes. Both can guarantee that: !
–  It is safe to buy, or!
– Other will buy, ok to quit!

•  At X: !
–  if no note B, safe for A to buy, !
– otherwise wait to find out what will happen!

•  At Y: !
–  if no note A, safe for B to buy!
– Otherwise, A is either buying or waiting for B to quit!

Page 7

Lec 4.25!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Solution #3 discussion"
•  Our solution protects a single “Critical-Section” piece of code

for each thread:!
 if (noMilk) {
 buy milk;

 } !
•  Solution #3 works, but itʼs really unsatisfactory!

– Really complex – even for this simple an example!
» Hard to convince yourself that this really works!

– Aʼs code is different from Bʼs – what if lots of threads?!
» Code would have to be slightly different for each thread!

– While A is waiting, it is consuming CPU time!
»  This is called “busy-waiting”!

•  Thereʼs a better way!
– Have hardware provide better (higher-level) primitives than

atomic load and store!
– Build even higher-level programming abstractions on this new

hardware support!
Lec 4.26!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

High-Level Picture"
•  The abstraction of threads is good:!

– Maintains sequential execution model !
– Allows simple parallelism to overlap I/O and computation!

•  Unfortunately, still too complicated to access state shared
between threads !

– Consider “too much milk” example!
–  Implementing a concurrent program with only loads and stores

would be tricky and error-prone!
•  Weʼll implement higher-level operations on top of atomic

operations provided by hardware!
– Develop a “synchronization toolbox”!
– Explore some common programming paradigms!

Lec 4.27!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Too Much Milk: Solution #4"
•  Suppose we have some sort of implementation of a lock

(more in a moment)!
– Lock.Acquire() – wait until lock is free, then grab!
– Lock.Release() – unlock, waking up anyone waiting!
– These must be atomic operations – if two threads are waiting

for the lock, only one succeeds to grab the lock!

•  Then, our milk problem is easy:!
! milklock.Acquire();
 if (nomilk)
 buy milk;
 milklock.Release();

•  Once again, section of code between Acquire() and
Release() called a “Critical Section”!

Lec 4.28!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

How to Implement Lock?"
•  Lock: prevents someone from accessing something!

– Lock before entering critical section (e.g., before accessing
shared data)!

– Unlock when leaving, after accessing shared data!
– Wait if locked!

»  Important idea: all synchronization involves waiting!
»  Should sleep if waiting for long time!

•  Hardware lock instructions!
–  Is this a good idea?!
– What about putting a task to sleep?!

» How do handle interface between hardware and scheduler?!
– Complexity?!

»  Each feature makes hardware more complex and slower!

Page 8

Lec 4.29!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

•  How can we build multi-instruction atomic operations?!
– Recall: dispatcher gets control in two ways. !

»  Internal: Thread does something to relinquish the CPU!
»  External: Interrupts cause dispatcher to take CPU!

– On a uniprocessor, can avoid context-switching by:!
»  Avoiding internal events (although virtual memory tricky)!
»  Preventing external events by disabling interrupts!

•  Consequently, naïve Implementation of locks:!
! !LockAcquire { disable Ints; }
 LockRelease { enable Ints; }!

Naïve use of Interrupt Enable/Disable"

Lec 4.30!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

•  Canʼt let user do this! Consider following:!
 LockAcquire();
While(TRUE) {;}

•  Real-Time system—no guarantees on timing! !
– Critical Sections might be arbitrarily long!

•  What happens with I/O or other important events? !!
–  “Reactor about to meltdown. Help?”!

Naïve use of Interrupt Enable/Disable:
Problems"

Lec 4.31!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Better Implementation of Locks by Disabling
Interrupts"

•  Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable!

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Put at front of ready queue
 } else {
 value = FREE;
 }
 enable interrupts;

}

Lec 4.32!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

New Lock Implementation: Discussion"
•  Disable interrupts: avoid interrupting between checking and

setting lock value!
– Otherwise two threads could think that they both have lock!

!
•  Note: unlike previous solution, critical section very short!

– User of lock can take as long as they like in their own critical
section!

– Critical interrupts taken in time!

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Critical
Section

Page 9

Lec 4.33!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Interrupt re-enable in going to sleep"
•  What about re-enabling ints when going to sleep?!

•  Before putting thread on the wait queue?!
– Release can check the queue and not wake up thread!

•  After putting the thread on the wait queue!
– Release puts the thread on the ready queue, but the thread still

thinks it needs to go to sleep!
– Misses wakeup and still holds lock (deadlock!)!

•  Want to put it after sleep(). But, how?!

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 go to sleep();
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Enable Position"
Enable Position"
Enable Position"

Lec 4.34!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

How to Re-enable After Sleep()?"
•  Since ints are disabled when you call sleep:!

– Responsibility of the next thread to re-enable ints!
– When the sleeping thread wakes up, returns to acquire and re-

enables interrupts!
 Thread A !Thread B!
 .

 .
 disable ints

 sleep
 sleep return

 enable ints
 .

 .
 .

 disable int
 sleep

 sleep return
 enable ints

 .
 .

context switch"

context 
switch"

yield return
enable ints

disable int
yield

Lec 4.35!9/16/13! Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013!

Summary"
•  Introduced important concept: Atomic Operations!

– An operation that runs to completion or not at all!
– These are the primitives on which to construct various

synchronization primitives!
!

•  Showed construction of Locks using interrupts!
– Using careful disabling of interrupts!
– Must be very careful not to waste/tie up machine resources!

»  Shouldnʼt disable interrupts for long!
– Key ideas: Use a separate lock variable, and use hardware

mechanisms to protect modifications of that variable!

