
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 7

Language Support for Concurrent
Programming, Deadlocks

September 25, 2013
Anthony D. Joseph and John Canny
http://inst.eecs.berkeley.edu/~cs162

Lec 7.29/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Goals for Today
• Recap: Readers/Writers
• Language Support for Synchronization
• Discussion of Resource Contention and Deadlocks

– Conditions for its occurrence
– Solutions for breaking and avoiding deadlock

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.

Lec 7.39/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Recap: Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W

Lec 7.49/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Recap: Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()

Wait until no writers
Access database
Check out – wake up a waiting writer

– Writer()
Wait until no active readers or writers
Access database
Check out – wake up waiting readers or writer

– State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Condition okToWrite = NIL

Page 2

Lec 7.59/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Code for a Reader
Reader() {
// First check self into system
lock.Acquire();
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
lock.release();
// Perform actual read-only access
AccessDatabase(ReadOnly);
// Now, check out of system
lock.Acquire();
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
lock.Release();

}
Lec 7.69/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Writer() {
// First check self into system
lock.Acquire();
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
okToWrite.wait(&lock); // Sleep on cond var
WW--; // No longer waiting

}
AW++; // Now we are active!
lock.release();
// Perform actual read/write access
AccessDatabase(ReadWrite);
// Now, check out of system
lock.Acquire();
AW--; // No longer active
if (WW > 0){ // Give priority to writers

okToWrite.signal(); // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}
lock.Release();

}

Code for a Writer

Lec 7.79/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

C-Language Support for Synchronization
• C language: All locking/unlocking is explicit: you need to

check every possible exit path from a critical section.

int Rtn() {
lock.acquire();
…
if (error) {

lock.release();
return errReturnCode;

}
…
lock.release();
return OK;

}

Lec 7.89/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are more challenging:
exceptions create many new exit paths from the critical section.

– Consider:
void Rtn() {

lock.acquire();
…
DoFoo();
…
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
– Notice that an exception in DoFoo() will exit without releasing

the lock

Page 3

Lec 7.99/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

C++ Language Support for Synchronization
(cont’d)

• Must catch all exceptions in critical sections
– Catch exceptions, release lock, and re-throw exception:

void Rtn() {
lock.acquire();
try {

…
DoFoo();
…

} catch (...) { // really three dots!
// catch all exceptions

lock.release(); // release lock
throw; // re‐throw unknown exception

}
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
Lec 7.109/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

C++ Language Support for Synchronization
(cont’d)

• Alternative (Recommended by Stroustrup): Use the lock class
destructor to release the lock.

• Set it on entry to critical section contained in a { } block, gets
automatically destroyed (& released) on block exit.

• Exceptions will unwind the stack, call destructor, free the lock

class lock {
mutex &m_;

public:
lock(mutex &m) : m_(m) {

m.acquire();
}
~lock() {

m_.release();
}

};

mutex m;
...
{
lock mylock(m);
...
...
... // no explicit unlock

}

Critical Section

Lec 7.119/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Java Language Support for Synchronization
Java supports both low-level and high-level synchronization:
• Low-level:

– Lock class: a lock, with methods:
» lock.lock()
» lock.unlock()

– Condition: a condition variable associated with a lock, methods:
» condvar.await()
» condvar.signal()

• High-level: every object has an implicit lock and condition var
– synchronized keyword, applies to methods or blocks
– Implicit condition variable methods:

» wait()
» notify() and notifyAll()

Lec 7.129/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Java Language Low-level Synchronization
public class SynchronizedQueue {

private Lock lock = new ReentrantLock();
private Condition cv = lock.newCondition();
private LinkedList<Integer> q = new LinkedList<Integer>();

public void enqueue(int item) {
try {

lock.lock();
q.add(item);
cv.signal();

} finally {
lock.unlock();

}
}

Page 4

Lec 7.139/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Java Language Low-level Synchronization
...

public synchronized int dequeue() {
int retval = 0;
try {

lock.lock();
while (q.size() == 0) {

cv.await();
}
retval = q.removeFirst();

} finally {
lock.unlock();

}
return retval;

}
}

Lec 7.149/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Java High-Level Synchronization

KISS Principle:
KEEP IT SIMPLE,

Explicit locks can help efficiency, but are difficult to analyze.

They also make code more brittle and hard to maintain –
constraints and invariants must hold in original code, but
also in all modified versions.

Q: What is the typical lifetime of a piece of code?
A: At least a decade longer than any of the original

developers anticipated!

STUDENT!

Lec 7.159/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Concurrency Bugs (Lu et al. 2008)

Most concurrency bugs (98%) are either
1. Atomicity violations (not protecting shared resources)
2. Order violations
3. Deadlocks
Type 1. problems are caused by under-protecting shared
resources, type 3. often caused by over-protection.
Fixes to type 3. bugs often create type 1. bugs.
Good news:
4. Most non-deadlock bugs involve only one variable.
5. Most (97%) of deadlocks involve two threads which

access at most two resources.
Not-so-good news: concurrency bugs seem to be a small
fraction of all reported bugs, but consume a large fraction of
debugging time (days per bug instead of hours).

Lec 7.169/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Java Language High-level Synchronization
• Every object in Java has an implicit lock associated with it.
• The synchronized keyword wraps this lock around a method

or a block:

public class TheBank {
public synchronized Withdraw(..) {

... // the implicit lock (on “this”) is held in here
}

}
OR

synchronized (that) { // Specify which object to lock
... // the implicit lock on “that” is held in here

}
The JVM takes care of releasing the lock on normal and
abnormal exits from the method or block.

Page 5

Lec 7.179/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Java Language High-level Synchronization
• In addition to an implicit lock, every object has a single

implicit condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait();
» void wait(long timeout); // Wait for timeout (msecs)
» void wait(long timeout, int nanoseconds); //variant

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of time. This
is useful for handling exception cases:

t1 = time.now();
while (!ATMRequest()) {

wait (CHECKPERIOD);
t2 = time.new();
if (t2 – t1 > LONG_TIME) checkMachine();

}
– Not all Java VMs equivalent!

» Different scheduling policies, not necessarily preemptive!
Lec 7.189/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Java Language High-level Synchronization
public class SynchronizedQueue {

public LinkedList<Integer> q = new LinkedList<Integer>();

public synchronized void enqueue (int item) {
q.add(item);
notify();

}

public synchronized int dequeue () {
try {

while (q.size() == 0) {
wait();

}
return q.removeFirst();

} catch (InterruptedException e) {
return 0;

}
}

}

Lec 7.199/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Scala Language: Actors
• Scala is a state-of-the-art language which runs Scala or Java

code on a Java Virtual Machine.
• Scala supports Actors, a higher-level abstraction for

concurrent programming.

• So far: threads:

Objects
with state:

m1()

m2()

m1()

m2()

m3()
m4()
m5()

m6()

m7()

m8()

m9()

Execute methods
that modify state

Lec 7.209/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Scala Language: Actors
• Actors combine state, methods, and a single thread.

• Actor state is not shared, actors interact by sending and
receiving messages.

• Each actor has a single, synchronized message queue,
which is part of its implementation.

• Actor code typically comprises a while loop which waits for
inbound messages, and dispatches to a message handler.

m1()

m2()

m1()

m2()

m3()
m4()
m5()

m6()

m7()

m8()

m9()

Page 6

Lec 7.219/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Scala Actor Bank Account Example
val b = actor { // b is an actor representing a bank account

var balance = 0.0
loop {

react { // dispatch on the message type
case ("deposit", amount:Double) => balance += amount
case ("withdraw", amount:Double) => balance ‐= amount
case ("interest", rate:Double) => balance += balance*rate
case "balance" => println("balance="+balance)

}
}

}
var grow = true

val g = actor { // g is an actor that periodically adds interest
while (grow) {

b ! ("interest", 0.05) // send an interest update message to b
Thread.sleep(3000)

}
}

Lec 7.229/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec 7.239/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Resources – passive entities needed by threads to do their
work

– CPU time, disk space, memory
• Two types of resources:

– Preemptable – can take it away
» CPU, Embedded security chip

– Non-preemptable – must leave it with the thread
» Disk space, printer, chunk of virtual address space
» Critical section

• Resources may require exclusive access or may be sharable
– Read-only files are typically sharable
– Printers are not sharable during time of printing

• One of the major tasks of an operating system is to manage
resources

Resources

Lec 7.249/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources constantly

in use by high-priority threads
– Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock Starvation but not vice versa
» Starvation can end (but doesn’t have to)
» Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Page 7

Lec 7.259/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Conditions for Deadlock
• Deadlock not always deterministic – Example 2 mutexes:
x=1, y=1 Thread A Thread B

x.P(); y.P();
y.P(); x.P();
… …
y.V(); x.V();
x.V(); y.V();

– Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)

• Deadlocks occur with multiple resources
– Means you can’t decompose the problem
– Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
– Each thread needs 2 disk drives to function
– Each thread gets one disk and waits for another one

A: x.P();
B: y.P();
A: y.P();
B: x.P();
...

Deadlock

Lec 7.269/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time
– Problem occurs when two cars in opposite directions on bridge:

each acquires one segment and needs next
• If a deadlock occurs, it can be resolved if one car backs up

(preempt resources and rollback)
– Several cars may have to be backed up

• Starvation is possible
– East-going traffic really fast no one goes west

Lec 7.289/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Routing Example
• Circular dependency (Deadlock!)

– Packets trying to reach a destination two hops away
– Try to reserve the path to destination – grab first link, then…
– Important problem to multiprocessor networks

• Ho do you prevent deadlock?
– (Answer later)

Lec 7.299/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Dining Philosopher Problem

• Five chopsticks/Five philosopher (really cheap restaurant)
– Free for all: Philosopher will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– (Answer later)

Page 8

Lec 7.309/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Four requirements for Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource
• Hold and wait

– Thread holding at least one resource is waiting to acquire
additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding

the resource, after thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

Lec 7.319/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Symbols

Resource-Allocation Graph
• System Model

– A set of Threads T1, T2, . . ., Tn

– Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

– Each resource type Ri has Wi instances.
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()

• Resource-Allocation Graph:
– V is partitioned into two types:

» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge Ti Rj

– assignment edge – directed edge Rj Ti

R1
R2

T1 T2

Lec 7.329/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge Ti Rj
– assignment edge – directed edge Rj Ti

Lec 7.339/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Administrivia

• Reminder: Nachos Project I design document due
tomorrow (9/26) at 11:59PM

– No slip days allowed

• Please post non-anonymously to Piazza
– No need to be anonymous

Page 9

Lec 7.349/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

5min Break

Lec 7.359/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm (Java JMX

findDeadlockedThreads(), try also jvisualvm)
– Some technique for forcibly preempting resources and/or

terminating tasks

• Deadlock prevention: ensure that system will never enter
a deadlock

– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks never
occur in the system

– Used by most operating systems, including UNIX

Lec 7.369/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Only one of each type of resource look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
[AllocX]: Current resources held by thread X

– See if tasks can eventually terminate on their own
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)
– Nodes left in UNFINISHED deadlocked

Lec 7.379/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [0,0]
UNFINISHED = {T1,T2,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([Requestnode] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Page 10

Lec 7.389/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [0,0]
UNFINISHED = {T1,T2,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT1] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT1]
done = false

}
}

} until(done)

False

Lec 7.399/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [0,0]
UNFINISHED = {T1,T2,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([Requestnode] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Lec 7.409/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [0,0]
UNFINISHED = {T1,T2,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT2] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT2]
done = false

}
}

} until(done)

Lec 7.419/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [0,0]
UNFINISHED = {T1,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT2] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT2]
done = false

}
}

} until(done)

Page 11

Lec 7.429/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,0]
UNFINISHED = {T1,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT2] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT2]
done = false

}
}

} until(done)

Lec 7.439/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,0]
UNFINISHED = {T1,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT2] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT2]
done = false

}
}

} until(done)

Lec 7.449/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,0]
UNFINISHED = {T1,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([Requestnode] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Lec 7.459/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,0]
UNFINISHED = {T1,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT3] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT3]
done = false

}
}

} until(done)

Page 12

Lec 7.469/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,0]
UNFINISHED = {T1,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([Requestnode] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Lec 7.479/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,0]
UNFINISHED = {T1,T3,T4}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT4] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT4]
done = false

}
}

} until(done)

Lec 7.489/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,0]
UNFINISHED = {T1,T3}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT4] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT4]
done = false

}
}

} until(done)

Lec 7.499/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,1]
UNFINISHED = {T1,T3}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT4] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT4]
done = false

}
}

} until(done)

Page 13

Lec 7.509/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,1]
UNFINISHED = {T1,T3}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT4] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT4]
done = false

}
}

} until(done)

Lec 7.519/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,1]
UNFINISHED = {T1,T3}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT4] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT4]
done = false

}
}

} until(done)

False

Lec 7.529/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,1]
UNFINISHED = {T1,T3}

do {
done = true
Foreach node in UNFINISHED {
if ([Requestnode] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Lec 7.539/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,1]
UNFINISHED = {T1,T3}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT1] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT1]
done = false

}
}

} until(done)

Page 14

Lec 7.549/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,1]
UNFINISHED = {T3}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT1] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT1]
done = false

}
}

} until(done)

Lec 7.559/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,2]
UNFINISHED = {T3}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT1] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT1]
done = false

}
}

} until(done)

Lec 7.569/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,2]
UNFINISHED = {T3}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT1] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT1]
done = false

}
}

} until(done)

Lec 7.579/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,2]
UNFINISHED = {T3}

do {
done = true
Foreach node in UNFINISHED {
if ([Requestnode] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Page 15

Lec 7.589/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,2]
UNFINISHED = {T3}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT3] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT3]
done = false

}
}

} until(done)

Lec 7.599/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [1,2]
UNFINISHED = {}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT3] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT3]
done = false

}
}

} until(done)

Lec 7.609/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [2,2]
UNFINISHED = {}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT3] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT3]
done = false

}
}

} until(done)

Lec 7.619/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [2,2]
UNFINISHED = {}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT3] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT3]
done = false

}
}

} until(done)

Page 16

Lec 7.629/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection Algorithm
Example

T1

T2

T3

R2

R1

T4

[RequestT1] = [1,0]; AllocT1 = [0,1]
[RequestT2] = [0,0]; AllocT2 = [1,0]
[RequestT3] = [0,1]; AllocT3 = [1,0]
[RequestT4] = [0,0]; AllocT4 = [0,1]
[Avail] = [2,2]
UNFINISHED = {}

do {
done = true
Foreach node in UNFINISHED {
if ([RequestT3] <= [Avail]) {

remove node from UNFINSHED
[Avail] = [Avail] + [AllocT3]
done = false

}
}

} until(done)

DONE!DONE!
Lec 7.639/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone lines,
but if blocked get busy signal

– Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

Lec 7.649/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Techniques for Preventing Deadlock
(cont’d)

• Make all threads request everything they’ll need at the
beginning

– Problem: Predicting future is hard, tend to over-estimate
resources

– Example:
» Don’t leave home until we know no one is using any intersection

between here and where you want to go!

• Force all threads to request resources in a particular order
preventing any cyclic use of resources

– Thus, preventing deadlock
– Example (x.P, y.P, z.P,…)

» Make tasks request disk, then memory, then…

Lec 7.669/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Routing Example
• Circular dependency (Deadlock!)

– Packets trying to reach a destination two hops away
– Try to reserve the path to destination – grab first link, then
– Important problem to multiprocessor networks

• Use dimension ordering: prioritization of requests, X first,
then Y

Page 17

Lec 7.679/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Routing Example
• Circular dependency (Deadlock!)

– Packets trying to reach a destination two hops away
– Try to reserve the path to destination – grab first link, then…
– Important problem to multiprocessor networks

• Use dimension ordering: prioritization of requests, X first,
then Y

Lec 7.689/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Routing Example
• Circular dependency (Deadlock!)
• Use dimension ordering: prioritization of requests, X first,

then Y.
• In effect this prioritizes “East-South” and “West-North”

turns when moving clockwise (and West-South and East-
North turns going CCW).

Lec 7.699/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Keeps system in a “SAFE” state, i.e. there exists a sequence {T1,
T2, … Tn} with T1 requesting all remaining resources, finishing, then
T2 requesting all remaining resources, etc..

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Banker’s Algorithm for Preventing
Deadlock

Lec 7.709/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Banker’s Algorithm
• Technique: pretend each request is granted, then run

deadlock detection algorithm, substitute
([Requestnode] ≤ [Avail]) ([Maxnode]-[Allocnode] ≤ [Avail])

[FreeResources]: Current free resources each type
[AllocX]: Current resources held by thread X

[MaxX]: Max resources requested by thread X

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {
if ([Maxnode]–[Allocnode]<= [Avail]) {

remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Page 18

Lec 7.719/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Banker’s Algorithm Example

• Banker’s algorithm with dining philosophers
– “Safe” (won’t cause deadlock) if when try to grab chopstick

either:
» Not last chopstick
» Is last chopstick but someone will have

two afterwards
– What if k-handed philosophers? Don’t allow if:

» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» … Lec 7.729/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Summary: Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
» set {T1, …, Tn} of threads with a cyclic waiting pattern

• Deadlock preemption
• Deadlock prevention (Banker’s algorithm)

