Goals for Today’s Lecture

+ Paging- and Segmentation-based Translation Recap

. CS162 « Multi-level Translation
Operating Systems and . Caching
Systems Programming "~ Misses
Lecture 10 — Organization
» Translation Look aside Buffers (TLBs
Caches and TLBs ()

+ How Caching and TLBs fit into the Virtual Memory
Architecture
October 7, 2013

Anthony D. Joseph and John Canny

http://inst.eecs.berkeley.edu/~cs162 Note: Some slides and/or pictures in the following are adapted from slides ©2005
Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D. Joseph, John
Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric Brewer, Ras Bodik,
lon Stoica, Doug Tygar, and David Wagner.

10/7113 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.2
Review: Address Segmentation Review: Address Segmentation
Virtual memory view 1011 0000 + | Physical memory view Virtual memory view Physical memory view
1111 1111 11 0000 1111 1111 _
11110000 | Stack | sk
(0xFO) Segment Map | 1110 0000 1110 0000 1110 0000 / Segment Map stack [1110 0000
——&—— (0xE0)
1100 0000 Seg # | base limit) Seg # | base limit /
(0xC0) 1 10110000 | 10000 What happens if 11 10110000 | 10000

stack grows to

10 0111 0000 11000
1110 0000?
/ o1 0101 0000 | 10 0000
eap 1

1 10 0111 0000 11000
/ (] 0101 0000 | 10 0000
heap 1

1000 0000 00 0001 0000 10 0000 1000 0000 00 0001 0000 10 0000 hea
(0x80) 0111 0000 P 0111 0000
(0x70)
0101 0000 0101 0000
0100 0000 (0x50) 0100 0000
(0x40)
code code
code [code [
0000 0000 000 B9} 0000 0000 0000 0000
lseg # offset lseg # offset
10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.3 10/7113 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.4

Page 1

Review: Address Segmentation

Virtual memory view Physical memory view

111 1111
stack
1110 0000 1 Segment Map 1110 0000
1100 0000 Seg # | base limit
11 1011 0000 10000
I 10 0111 0000 11
o / 01 |01010000 | 10(gloﬁroom toﬂgrow!!

1000 0000 p 00 0001 0000 | 10 Buffer overflow error or
resize segment and 00
move segments around
to make room 00

0100 0000

code 0001 0000

0000 0000 0000 0000

lseg # offset

10/713 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.5

Review: Paging

. . Page Table
Virtual memory view 1111 [11101 Physical memory view

1111111 1110|1100
btubk 11101| null
11100 I

1110 0000 . ot | nul 110 0000
7/ 11010| null
11001 null
B 11000| null
What happens if 10111] nutt
stack grows to lot10] null
10101 null
1110 00007 10100 null

10011 null
10010| 10000
10001] 01111
10000| 01110
01111 null
01110| null
01101 null
01100 null
01011) 01101
01010| 01100
01001| 01011
01000| 01010
00111] null
00110 null
00101 null
00100| null
00011| 00101

1000 0000

I

hean
n

0111 000

0101 000

0100 0000

p
pu |
gl Code

0001 0000

[0000 0000

]
\vjvis)

0000 0000
Iy

page # offset

10/7113 Anthony D. Jos

00010
00001
00000

0

00100
00011
00010

CB Fall 2013

Lec 10.7

Page 2

Virtual memory view

1111 111

1111 0000

1100 0000

1000 0000

0100 0000

0000 Q000

page # offset

10/7113

Review: Paging

Page Table

11111 11101
11110| 11100
11101 null
11100 null
11011| null
11010(null
11001 null
11000 null
10111 null
10110 null
10101 null
10100(null
10011 null
10010{ 10000

I],o

Physical memory view

77,7

110 0000

10001(01111

10000(01110

hean
B2

01111 null
01110| null
01101 null
01100| null
01011] 01101
01010| 01100
01001] 01011
01000| 01010
00111] null
00110| null
00101] null
00100| null
00011] 00101
00010| 00100
00001| 00011
00000| 00010

o

pry
Loue

A

Anthony D. Jos

CB Fall 2013

0111 000

0101 000

A

g o
. Coue

0001 0000

I 0000 0000

Lec 10.6

Virt
1111 111

1110 0000

1100 0000

1000 0000

0100 0000

0000 0000
)

Review: Paging

Page Table
11111 [11101

11110 11100
—stack—]_————— 11101 10111

[—"11100| 10110
11011| null
11010[null
11001 null
11000 null
10111 null
10110| null
10101 null
10100| null
10011 null
10010/ 10000

ual memory view

Physical memory view

Allocate new
pages where

10001(01111

10000(01110

room!

01111] null
01110 null
01101] null
01100| null
01011] 01101
01010| 01100
01001 01011
01010

01000
00111] null
00110| null
00101| null
00100| null

]
\vivi~)

|
LuUuc

0001 0000

E 0000 0000

page # offset
10/7/13 Anthony D. Jos

A

00011
00010]
00001
00000

00101
00100
00011
00010

CB Fall 2013 Lec 10.8

Multi-level Translation
+ What about a tree of tables?
— Lowest level page table=memory still allocated with bitmap
— Higher levels often segmented
+ Could have any number of levels. Example (top segment):

Virtual
Address: l
page #0 | V,R
Base1 it1 |V .
page #3 | VR, Physical Address
Base3| Limit3{ N page #4 |N
SeqgMapPtr Base4| Limit4 #5 |VA,
Base5| Limit5 page ((check Perm)
Base6| Limit6 | N
Base7| Limit7 |V ccess Access
Error

Error
» What must be saved/restored on context switch?
— Segment map pointer register (for this example)
— Top-level page table pointer register (2-level page tables)

10/713 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.9

Another common example: two-level page table

. i i Physical
10 bits 10 bits 12 bits Address:

Virtual
Address:

PageTablePtr

— 4 bytes «—

+ Tree of Page Tables
+ Tables fixed size (1024 entries)
— On context-switch: save single
PageTablePtr register
+ Valid bits on Page Table Entries
— Don’t need every 2"-|evel table
— Even when exist, 2"%-level tables can_, 4 bytes +—

reside on disk if not in use
10/713 Anthony D. Joseph and John Canny

CS162 ©UCB Fall 2013 Lec 10.11

Page 3

What about Sharing (Complete Segment)?

Limit7

Base7|

Process B

10/7113 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.10

Summary: Two-Level Paging

Virtual memory view Page Tables Physical memory view
1111 1111 (level 2)
stack 1111101
1111 0000 i 10[11100 1110 0000
e o1 10111
Page Table 00 10110
1100 0000 age Tablg
(level 1)
111 11| nun —
T 110 10 10000
X 101 o1 01111
hean |._.1oo 0o 01110 \
1000 0000 s ot \
001 —Neap— 4141 000
000 11| 01101
» 10 01100
- 01| 01011 0101 000
00 01010
0100 0000 .
11| 00101
2 # 10 oot00 I code
page 01] 00011
code 00| 00010 "1 0001 0000
0006‘6\000 _ 0000 0000
o

pagel # offset

10/7113 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.12

Summary: Two-Level Paging

Virtual memory view Page Tables Physical memory view
(level 2)
stack 1 [11101
10| 11100 1110 0000
1 o1 10111
Page Table 00| 1om10
(level 1)

1001 0000
(0x90)

1000 0000
(0x80)
00| 01010
11] 00101
10| 00100 -1
code b1 oo === 0001 0000
I 0000 0000
10/713 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.13
Address Translation Comparison
Advantages Disadvantages
Segmentation | Fast context External fragmentation
switching: Segment
mapping
maintained by CPU
Paging No external Large table size ~ virtual
(single-level |fragmentation, fast | memory
page) easy allocation
Paged Table size ~ # of Multiple memory
segmentation |pages in virtual references per page
Two-level memory, fast easy |access
pages allocation
10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.15

Page 4

Multi-level Translation Analysis

+ Pros:
— Only need to allocate as many page table entries as we need
for application — size is proportional to usage
» In other words, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing

» Share at segment or page level (need additional reference
counting)

+ Cons:
— One pointer per page (typically 4K — 16K pages today)
— Page tables need to be contiguous

» However, previous example keeps tables to exactly one page in
size

— Three (or more, if >2 levels) memory lookups per reference
» Seems very expensive!

10/7113 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.14

10/7113

Caching Concept

Cache: a repgsitory for copies that can be accessed more
quickly than the original

— Make frequent case fast and infrequent case less dominant
Caching at different levels

— Can cache: memory locations, address translations, pages, file
blocks, file names, network routes, etc...

Only good if:
— Frequent case frequent enough and
— Infrequent case not too expensive
Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.16

Example
+ Data in memory, no cache:
Main
P Memory
Processor [€— - (DRAM)
Access time =
100ns
100ns
+ Data in memory, 10ns cache: Second i
ain
Level
Memory
Processor |& >|Cache |€—>
(SRAM) (DRAM)
10ns 100ns

Average Access time =
(Hit Rate x HitTime) + (Miss Rate x MissTime)
+ HitRate + MissRate = 1

10/713 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.17

Why Does Caching Help? Locality!

Probability
of reference /\
0

Address Space
+ Temporal Locality (Locality in Time):
— Keep recently accessed data items closer to processor
+ Spatial Locality (Locality in Space):
— Move contiguous blocks to the upper levels

2n-1

Lower Level|
To Processor | Upper Level Memory
Memory
Blk X
From Processor BIkY
10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.19

Page 5

Review: Memory Hierarchy

+ Take advantage of the principle of locality to:
— Present as much memory as in the cheapest technology
— Provide access at speed offered by the fastest technology

Processor

=
(]

Secondary

Mal Secondary Storage
szory Storage (Disk)
(DRAM) (SSD)

ayoeg 1|
ayoe)n g

re

(paseys)
ayoe9 g1

[s1a1s160y (9 sia1s1Bay 9

ayoeg 1]
ayoeg z1

100 100,000 10,000,000
(0.1 ms) (10 ms)

w
-
@
&
S

Speed (ns): 0.3 1

Size (bytes): 100Bs 10kBs 100kBs MBs GBs 100GBs TBs

10/7/13 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.18

Sources of Cache Misses

- Compulsory (cold start): first reference to a block
— “Cold” fact of life: not a whole lot you can do about it

— Note: When running “billions” of instruction, Compulsory Misses
are insignificant

+ Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size
+ Conflict (collision):
— Multiple memory locations mapped to same cache location
— Solutions: increase cache size, or increase associativity
» Two others:

— Coherence (Invalidation): other process (e.g., I/O) updates
memory
— Policy: Due to non-optimal replacement policy

10/7/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.20

Caching Questions

+ 8 byte cache

+ 32 byte memory

» 1 block =1 byte

+ Assume CPU accesses 01100

?

1"

o 1

[T 10
) 10l
01

Cache

(01100)
—_—

1. How do you know whether byte @ 01100 is
cached?

10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Physical Memory
1

0

Lec 10.21

Caching Questions

8 byte cache

32 byte memory

1 block = 1 byte

Assume CPU accesses 01100

Cache

1
0 A

1 §
0)
1

o

ly!,

1. How do you know whether byte @ 01100 is
cached?

2. If not, at which location in the cache do you
place the byte?

3. If cache full, which cached byte do you evict?
10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

0

Physical Memory
1

Lec 10.23

Page 6

Caching Questions

+ 8 byte cache

+ 32 byte memory

+ 1 block = 1 byte

» Assume CPU accesses 01100
Cache

1

0 (07 ’
o1 1% «
001 4
000

1. How do you know whether byte @ 01100 is
cached?

2. If not, at which location in the cache do you
place the byte?

10/7113 Anthony D. Joseph and John Canny CS162

Physical Memory

=r=1=1=}

©UCB Fall 2013

[=1=I=T=t=1=-1-1-1-I-T-1-T-1-1-1-1

o=

OOS200=2=00242002=002200==002

Lec 10.22

Simple Example: Direct Mapped Cache

+ Each byte (block) in physical memory is
cached to a single cache location
— Least significant bits of address (last 3
bits) index the cache
—(00100),(01100),(10100),(11100) cached
to 100 Index Tag Cache

* How do you know which byte is
cached?

— Cache stores the most significant two
bits (i.e., tag) of the cached byte

10/7113 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Physical Memory

1
0

1
0

Scooo

o=

00000000000

o021 00==00

Lec 10.24

Simple Example: Direct Mapped

+ Each byte (block) in physical memory is
cached to a single cache location

— Least significant bits of address (last 3 bits)
index the cache

— (00100),(01100),(10100),(11100) cached to 100
Index Tag Cache

=

Cache

Physical Memory

1. How do you know whether (01100) is cached?
— Check tag associated with index 100

2. At which cache location do you place (01100)?
- 100

3. If cache full, which cached byte do you evict?

10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

o

1100 —

Lec 10.25

Simple Example: Fully Associative Cache

+ Each byte can be stored at any location
in the cache

Cache

[07100] H\

1. How do you know whether (01100) is cached?
— Check tag of all cache entries

2. At which cache location do you place (01100)?
— Any

3. If cache full, which cached byte do you evict?

Spe%Lf‘L%n$\E/>|9§ng;l1 Eng lJlgtM Canny

Tag

10/7/1_3 CS162 ©UCB Fall 2013

Physical Memory
1

0

Lec 10.27

Page 7

Simple Example: Fully Associative Cache

+ Each byte can be stored at any location Physical Memory

in the cache 1

=r=1=1=}

OOS200=2=00242002=002200==002

Cache

Tag

o=

+ How do you know which byte is
cached?

— Tag store entire address of cached byte

[=1=I=T=t=1=-1-1-1-I-T-1-T-1-1-1-1

10/7113 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.26

Administrivia
» Project #1:
— Code due Tuesday Oct 8 by 11:59pm

» Design doc (submit projl-final-design) and group evals
(Google Docs form) due Wed 10/9 at 11:59PM

» Group evals are anonymous to your group

+ Midterm #1 is Monday Oct 21 5:30-7pm in
145 Dwinelle (A-L) and 2060 Valley LSB (M-Z)
— Closed book, double-sided handwrikten page of notes,
no calculators, smartphones, Google glass etc.

— Covers lectures #1-13 (Disks/SSDs, Filesystems), readings,
handouts, and projects 1 and 2

— Review session 390 Hearst Mining, Fri October 18, 5-7 PM

+ Class feedback is always welcome!

10/7113 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.28

5min Break

10/713 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.29

Set Associative Cache

+ N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel

+ Example: Two-way set associative cache
— Two tags in the set are compared to input in parallel
— Data is selected based on the tag result

31 8 4 0
| Cache Tag | cache Index | Byte Select

Valid Cache Tag Cache Data

Cache Block 0

Cache Data
Cache Block 0

Cache Tag Valid

10/713 Anthony D.

Lec 10.31

Hit l |_—| Cache Block e

Page 8

Direct Mapped Cache

« Cache index selects a cache block

+ “Byte select” selects byte within cache block
— Example: Block Size=32B blocks

+ Cache tag fully identifies the cached data

+ Data with same “cache index” shares the same cache entry
— Conflict misses

31 8 4 0
| Cache Tag | Cache Index | Byte Select |

Ex: 0x01

T Byte 31| °* |Byte1 |Byte 0 |!
_________________ p———— = — — |1
Byte 63| °* By& 33| Byte 32

it
10/7/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall ZOEl

Lec 10.30

Fully Associative Cache

+ Fully Associative: Every block can hold any line

— Address does not include a cache index

— Compare Cache Tags of all Cache Entries in Parallel
+ Example: Block Size=32B blocks

— We need N 27-bit comparators

— Still have byte select to choose from within block

31 4 0
| Cache Tag (27 bits long)

I Byte Select I
Ex: 0x01
Cache Tag Valid Bit Cache Data
—’@‘_ Byte31| °° |Bytel |Byte0
—— Byte 63| ** | Byte 33| Byte 32
.@.
.@.
>@‘ g M
10/7/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.32

Where does a Block Get Placed in a

Cache?
* Example: Block 12 placed in 8 block cache
32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Set associative:
block 12 can go
anywhere in set 0

Direct mapped:
block 12 (01100)
can go only into
block 4 (12 mod 8)

Block 01234567 Block 01234567 Block 01234567
no. no. no.

Fully associative:
block 12 can go
anywhere

Set Set Set Set
01 2 3

tag index ta index tag

10/713 Anthony D. Joseph and John Canny Cst ©UCB Fall 2013 Lec 10.33

What Happens on a Write?

+ Write through: The information is written both to the block in
the cache and to the block in the lower-level memory
+ Write back: The information is written only to the block in the
cache.
— Modified cache block is written to main memory only when it is
replaced
— Question is block clean or dirty?
+ Pros and Cons of each?
- WT:
» PRO: read misses cannot result in writes
» CON: processor held up on writes unless writes buffered
— WB:
» PRO: repeated writes not sent to DRAM
processor not held up on writes
» CON: More complex
Read miss may require writeback of dirty data

10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.35

Page 9

Which Block Should be
Replaced on a Miss?

+ Easy for Direct Mapped: Only one possibility
-+ Set Associative or Fully Associative:

— Random

— LRU (Least Recently Used)

Example TLB miss rates:

2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 52% 57% 47% 53% 4.4% 50%
64 KB 1.9% 20% 15% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

10/7/13 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.34

Caching Applied to Address Translation

Virtual L8 Physical
Address Cached"
Yes —> Ms» Physical
Il / Memory
Translate
(MMU)

Data Read or Write
(untranslated)
» Question is one of page locality: does it exist?

— Instruction accesses spend a lot of time on the same page
(since accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...
» Can we have a TLB hierarchy?

— Sure: multiple levels at dlfferent S|zes/speeds

10/7/13 Anthony D. Joseph and John Canny ©UCB Fall 2013 Lec 10.36

Recap: Two-Level Paging

Virtual memory view Page Tables Physical memory view
(level 2)
—stack— 11 11101
10| 11100 1110 0000
1 o1 10111
00| 10110
Page Table
(level 1)
11| @
T 110| null
101 null
1001 0000 ool 01110
(0x90) - 011 null 1000 0000
010| ®
001] null (OXBO)
000| @ 11| 01101
10| 01100
o1] 01011
00| 01010
11 00101
10 00100 o
01| ooot1 Lode
code 00/ o010 0001 0000
B 0000 0000
10/713 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.37

What happens on a Context Switch?

* Need to do something, since TLBs map virtual addresses to
physical addresses

— Address Space just changed, so TLB entries no longer valid!

+ Options?
— Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
— Include ProcessID in TLB
» This is an architectural solution: needs hardware

+ What if translation tables change?
— For example, to move page from memory to disk or vice versa...
— Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!

10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec 10.39

Page 10

What Actually Happens on a TLB Miss?

* Hardware traversed page tables:
— On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

+ Software traversed Page tables
— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

+ Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults since
they use translation for many things

10/7113 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.38

What TLB organization makes sense?

+ Needs to be really fast
— Critical path of memory access
— Seems to argue for Direct Mapped or Low Associativity
* However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high!
— This argues that cost of Conflict (Miss Time) is much higher than
slightly increased cost of access (Hit Time)
+ Thrashing: continuous conflicts between accesses
— What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
— What if use high order bits as index?
» TLB mostly unused for small programs

Cache [—{Memory

10/7113 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.40

TLB organization: include protection

+ How big does TLB actually have to be?
—Usually small: 128-512 entries
—Not very big, can support higher associativity

+ TLB usually organized as fully-associative cache
—Lookup is by Virtual Address
—Returns Physical Address + other info

+ What happens when fully-associative is too slow?
—Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”

* When does TLB lookup occur relative to memory cache
access?
—Before memory cache lookup?
—In parallel with memory cache lookup?

10/713 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.41

Overlapping TLB & Cache Access (1/2)

* Main idea:
— Offset in virtual address exactly covers the “cache index”
and “byte select”

— Thus can select the cached byte(s) in parallel to perform
address translation

virtual address [Virtual Page #] Offset]

physical address [tag/page # | index | byte |

10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.43

Page 11

Reducing translation time further

+ As described, TLB lookup is in serial with cache lookup:

Virtual Address
4—10—»

V page no. offset

TLB Lookup

échesé
v/ ights / _PA

|P page no. | offset |
4—10—>

Physical Address
+ Machines with TLBs go one step further: they overlap TLB
lookup with cache access.
— Works because offset available early

10/7/13 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.42

Overlapping TLB & Cache Access (1/2)
*+ Here is how this might work with a 4K cache:
| o |

32 |TLB —’]""’A~ 4K Cache 1K
20
[page #

10 2 +——4bytes—
[disp [00]

PA PA Data Hit/

Miss

» What if cache size is increased to 8KB?

— Overlap not complete
— Need to do something else. See CS152/252

Hit/
Miss

10/7/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.44

Putting Everything Together: Address

_ Translation Physical
Virtual Address: Memory:
Tual [{'EL
P1 index] P2 index] Offset
PageTablePir Physic ress:
P ys&a Offset
Page Table [|
(15t level)
Page Table
(2 level)
Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.45

10/713

Putting Everything Together: Cachptr? i
ysica
Memory:
Physic re!
P Y I# Offset
|taq |index Ibyte I
lcache:
tal ck:
l I I N T 1
l |
| 1 11
l T T 1
10/7113 Anthony D. Joseph and John Canny ~ CST62 __ ©UCB Fal 2013 Lec 10.47

Page 12

Putting Everything Together: TLB

Physical
Virtual Address: Memory:
rual [{'EL
P1 index] P2 index] Offset
—J
Physic resg:
Paje # | Offset
h
TLB:
]
— [-
|
10/7/13 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.46
Summary (1/2)

+ The Principle of Locality:
— Program likely to access a relatively small portion of the address
space at any instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

+ Three (+1) Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Conflict Misses: increase cache size and/or associativity
— Capacity Misses: increase cache size
— Coherence Misses: Caused by external processors or I/O
devices

10/7/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.48

Summary (2/2)

+ Cache Organizations:
— Direct Mapped: single block per set
— Set associative: more than one block per set
— Fully associative: all entries equivalent

+ TLB is cache on address translations
— Fully associative to reduce conflicts
— Can be overlapped with cache access

10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec 10.49

Page 13

