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Review: Address Segmentation Review: Address Segmentation
Virtual memory view 1011 0000 + | Physical memory view Virtual memory view Physical memory view
1111 1111 11 0000 1111 1111 _
11110000 | Stack | sk
(0xFO) Segment Map | 1110 0000 1110 0000 1110 0000 / Segment Map stack [1110 0000
——&——  (0xE0)
1100 0000 Seg # | base limit ) Seg # | base limit /
(0xC0) 1 10110000 | 10000 What happens if 11 10110000 | 10000

stack grows to

10 0111 0000 11000
1110 0000?
/ o1 0101 0000 | 10 0000
eap 1

1 10 0111 0000 11000
/ (] 0101 0000 | 10 0000
heap 1

1000 0000 00 0001 0000 10 0000 1000 0000 00 0001 0000 10 0000 hea
(0x80) 0111 0000 P 0111 0000
(0x70)
0101 0000 0101 0000
0100 0000 (0x50) 0100 0000
(0x40)
code code
code [ code [
0000 0000 000 B9} 0000 0000 0000 0000
lseg # offset lseg # offset
10/713 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.3 10/7113 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 10.4

Page 1




Review: Address Segmentation

Virtual memory view Physical memory view

111 1111
stack
1110 0000 1 Segment Map 1110 0000
1100 0000 Seg # | base limit
11 1011 0000 10000
I 10 0111 0000 11
o / 01 |01010000 | 10( gloﬁroom toﬂgrow!!

1000 0000 p 00 0001 0000 | 10 Buffer overflow error or
resize segment and 00
move segments around
to make room 00

0100 0000

code 0001 0000

0000 0000 0000 0000

lseg # offset
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Review: Paging

. . Page Table
Virtual memory view 1111 [11101 Physical memory view

1111111 1110|1100
btubk 11101| null
11100 I
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What happens if 10111] nutt
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1110 00007 10100 null

10011 null
10010| 10000
10001] 01111
10000| 01110
01111 null
01110| null
01101 null
01100 null
01011) 01101
01010| 01100
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01000| 01010
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00011| 00101
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Virtual memory view

1111 111

1111 0000

1100 0000

1000 0000

0100 0000

0000 Q000

page # offset
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Review: Paging

Page Table

11111 11101
11110| 11100
11101 null
11100 null
11011| null
11010( null
11001 null
11000 null
10111 null
10110 null
10101 null
10100( null
10011 null
10010{ 10000

I],o

Physical memory view
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110 0000

10001( 01111

10000( 01110

hean
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01111 null
01110| null
01101 null
01100| null
01011] 01101
01010| 01100
01001] 01011
01000| 01010
00111] null
00110| null
00101] null
00100| null
00011] 00101
00010| 00100
00001| 00011
00000| 00010
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Virt
1111 111

1110 0000

1100 0000

1000 0000

0100 0000

0000 0000
)

Review: Paging

Page Table
11111 [ 11101

11110 11100
—stack—]_————— 11101 10111

[ —"11100| 10110
11011| null
11010[ null
11001 null
11000 null
10111 null
10110| null
10101 null
10100| null
10011 null
10010/ 10000

ual memory view

Physical memory view

Allocate new
pages where

10001( 01111

10000( 01110

room!

01111] null
01110 null
01101] null
01100| null
01011] 01101
01010| 01100
01001 01011
01010

01000
00111] null
00110| null
00101| null
00100| null

]
\vivi~)

|
LuUuc

0001 0000

E 0000 0000

page # offset
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Multi-level Translation
+ What about a tree of tables?
— Lowest level page table=memory still allocated with bitmap
— Higher levels often segmented
+ Could have any number of levels. Example (top segment):

Virtual
Address: l
page #0 | V,R
Base1 it1 |V .
page #3 | VR, Physical Address
Base3| Limit3{ N page #4 |N
SeqgMapPtr Base4| Limit4 #5 |VA,
Base5| Limit5 page ((check Perm)
Base6| Limit6 | N
Base7| Limit7 |V ccess Access
Error

Error
» What must be saved/restored on context switch?
— Segment map pointer register (for this example)
— Top-level page table pointer register (2-level page tables)

10/713 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 10.9

Another common example: two-level page table

. i i Physical
10 bits 10 bits 12 bits Address:

Virtual
Address:

PageTablePtr

— 4 bytes «—

+ Tree of Page Tables
+ Tables fixed size (1024 entries)
— On context-switch: save single
PageTablePtr register
+ Valid bits on Page Table Entries
— Don’t need every 2"-|evel table
— Even when exist, 2"%-level tables can_, 4 bytes +—

reside on disk if not in use
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What about Sharing (Complete Segment)?

Limit7

Base7|

Process B
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Summary: Two-Level Paging

Virtual memory view Page Tables Physical memory view
1111 1111 (level 2)
stack 1111101
1111 0000 i 10[ 11100 1110 0000
e o1 10111
Page Table 00 10110
1100 0000 age Tablg
(level 1)
111 11| nun —
T 110 10 10000
X 101 o1 01111
hean |._.1oo 0o 01110 \
1000 0000 s ot \
001 —Neap— 4141 000
000 11| 01101
» 10 01100
- 01| 01011 0101 000
00 01010
0100 0000 .
11| 00101
2 # 10 oot00 I code
page 01] 00011
code 00| 00010 "1 0001 0000
0006‘6\000 _ 0000 0000
o

pagel # offset
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Summary: Two-Level Paging

Virtual memory view Page Tables Physical memory view
(level 2)
stack 1 [ 11101
10| 11100 1110 0000
1 o1 10111
Page Table 00| 1om10
(level 1)

1001 0000
(0x90)

1000 0000
(0x80)
00| 01010
11] 00101
10| 00100 -1
code b1 oo === 0001 0000
I 0000 0000
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Address Translation Comparison
Advantages Disadvantages
Segmentation | Fast context External fragmentation
switching: Segment
mapping
maintained by CPU
Paging No external Large table size ~ virtual
(single-level |fragmentation, fast | memory
page) easy allocation
Paged Table size ~ # of Multiple memory
segmentation |pages in virtual references per page
Two-level memory, fast easy |access
pages allocation
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Multi-level Translation Analysis

+ Pros:
— Only need to allocate as many page table entries as we need
for application — size is proportional to usage
» In other words, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing

» Share at segment or page level (need additional reference
counting)

+ Cons:
— One pointer per page (typically 4K — 16K pages today)
— Page tables need to be contiguous

» However, previous example keeps tables to exactly one page in
size

— Three (or more, if >2 levels) memory lookups per reference
» Seems very expensive!
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Caching Concept

Cache: a repgsitory for copies that can be accessed more
quickly than the original

— Make frequent case fast and infrequent case less dominant
Caching at different levels

— Can cache: memory locations, address translations, pages, file
blocks, file names, network routes, etc...

Only good if:
— Frequent case frequent enough and
— Infrequent case not too expensive
Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Example
+ Data in memory, no cache:
Main
P Memory
Processor [€— - (DRAM)
Access time =
100ns
100ns
+ Data in memory, 10ns cache: Second i
ain
Level
Memory
Processor |& >|Cache |€—>
(SRAM) (DRAM)
10ns 100ns

Average Access time =
(Hit Rate x HitTime) + (Miss Rate x MissTime)
+ HitRate + MissRate = 1
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Why Does Caching Help? Locality!

Probability
of reference /\
0

Address Space
+ Temporal Locality (Locality in Time):
— Keep recently accessed data items closer to processor
+ Spatial Locality (Locality in Space):
— Move contiguous blocks to the upper levels

2n-1

Lower Level|
To Processor | Upper Level Memory
Memory
Blk X
From Processor BIkY
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Review: Memory Hierarchy

+ Take advantage of the principle of locality to:
— Present as much memory as in the cheapest technology
— Provide access at speed offered by the fastest technology

Processor

=
(]

Secondary

Mal Secondary Storage
szory Storage (Disk)
(DRAM) (SSD)

ayoeg 1|
ayoe)n g

re

(paseys)
ayoe9 g1

[s1a1s160y (9 sia1s1Bay 9

ayoeg 1]
ayoeg z1

100 100,000 10,000,000
(0.1 ms) (10 ms)

w
-
@
&
S

Speed (ns): 0.3 1

Size (bytes): 100Bs 10kBs 100kBs  MBs GBs 100GBs TBs
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Sources of Cache Misses

- Compulsory (cold start): first reference to a block
— “Cold” fact of life: not a whole lot you can do about it

— Note: When running “billions” of instruction, Compulsory Misses
are insignificant

+ Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size
+ Conflict (collision):
— Multiple memory locations mapped to same cache location
— Solutions: increase cache size, or increase associativity
» Two others:

— Coherence (Invalidation): other process (e.g., I/O) updates
memory
— Policy: Due to non-optimal replacement policy
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Caching Questions

+ 8 byte cache

+ 32 byte memory

» 1 block =1 byte

+ Assume CPU accesses 01100

?

1"

o 1

[ T 10
) 10l
01

Cache

(01100)
—_—

1. How do you know whether byte @ 01100 is
cached?
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Caching Questions

8 byte cache

32 byte memory

1 block = 1 byte

Assume CPU accesses 01100

Cache

1
0 A

1 §
0 )
1

o

ly!,

1. How do you know whether byte @ 01100 is
cached?

2. If not, at which location in the cache do you
place the byte?

3. If cache full, which cached byte do you evict?
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Caching Questions

+ 8 byte cache

+ 32 byte memory

+ 1 block = 1 byte

» Assume CPU accesses 01100
Cache

1

0 (07 ’
o1 1% «
001 4
000

1. How do you know whether byte @ 01100 is
cached?

2. If not, at which location in the cache do you
place the byte?
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Simple Example: Direct Mapped Cache

+ Each byte (block) in physical memory is
cached to a single cache location
— Least significant bits of address (last 3
bits) index the cache
—(00100),(01100),(10100),(11100) cached
to 100 Index Tag Cache

* How do you know which byte is
cached?

— Cache stores the most significant two
bits (i.e., tag) of the cached byte
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Simple Example: Direct Mapped

+ Each byte (block) in physical memory is
cached to a single cache location

— Least significant bits of address (last 3 bits)
index the cache

— (00100),(01100),(10100),(11100) cached to 100
Index Tag Cache

=

Cache

Physical Memory

1. How do you know whether (01100) is cached?
— Check tag associated with index 100

2. At which cache location do you place (01100)?
- 100

3. If cache full, which cached byte do you evict?
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Simple Example: Fully Associative Cache

+ Each byte can be stored at any location
in the cache

Cache

[07100] H\

1. How do you know whether (01100) is cached?
— Check tag of all cache entries

2. At which cache location do you place (01100)?
— Any

3. If cache full, which cached byte do you evict?

Spe%Lf‘L%n$\E/>|9§ng;l1 Eng lJlgtM Canny

Tag
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Simple Example: Fully Associative Cache

+ Each byte can be stored at any location Physical Memory

in the cache 1

=r=1=1=}

OOS200=2=00242002=002200==002

Cache

Tag

o=

+ How do you know which byte is
cached?

— Tag store entire address of cached byte

[=1=I=T=t=1=-1-1-1-I-T-1-T-1-1-1-1
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Administrivia
» Project #1:
— Code due Tuesday Oct 8 by 11:59pm

» Design doc (submit projl-final-design) and group evals
(Google Docs form) due Wed 10/9 at 11:59PM

» Group evals are anonymous to your group

+ Midterm #1 is Monday Oct 21 5:30-7pm in
145 Dwinelle (A-L) and 2060 Valley LSB (M-Z)
— Closed book, double-sided handwrikten page of notes,
no calculators, smartphones, Google glass etc.

— Covers lectures #1-13 (Disks/SSDs, Filesystems), readings,
handouts, and projects 1 and 2

— Review session 390 Hearst Mining, Fri October 18, 5-7 PM

+ Class feedback is always welcome!
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5min Break
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Set Associative Cache

+ N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel

+ Example: Two-way set associative cache
— Two tags in the set are compared to input in parallel
— Data is selected based on the tag result

31 8 4 0
| Cache Tag | cache Index | Byte Select

Valid Cache Tag Cache Data

Cache Block 0

Cache Data
Cache Block 0

Cache Tag Valid

10/713 Anthony D.
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Direct Mapped Cache

« Cache index selects a cache block

+ “Byte select” selects byte within cache block
— Example: Block Size=32B blocks

+ Cache tag fully identifies the cached data

+ Data with same “cache index” shares the same cache entry
— Conflict misses

31 8 4 0
| Cache Tag | Cache Index | Byte Select |

Ex: 0x01

T Byte 31| °* |Byte1 |Byte 0 |!
_________________  p———— = — — |1
Byte 63| °* By& 33| Byte 32

it
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Fully Associative Cache

+ Fully Associative: Every block can hold any line

— Address does not include a cache index

— Compare Cache Tags of all Cache Entries in Parallel
+ Example: Block Size=32B blocks

— We need N 27-bit comparators

— Still have byte select to choose from within block

31 4 0
| Cache Tag (27 bits long)

I Byte Select I
Ex: 0x01
Cache Tag Valid Bit  Cache Data
—’@‘_ Byte31| °° |Bytel |Byte0
—— Byte 63| ** | Byte 33| Byte 32
_.@._
_.@._
_>@‘_ g M
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Where does a Block Get Placed in a

Cache?
* Example: Block 12 placed in 8 block cache
32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Set associative:
block 12 can go
anywhere in set 0

Direct mapped:
block 12 (01100)
can go only into
block 4 (12 mod 8)

Block 01234567 Block 01234567 Block 01234567
no. no. no.

Fully associative:
block 12 can go
anywhere

Set Set Set Set
01 2 3

tag index ta index tag
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What Happens on a Write?

+ Write through: The information is written both to the block in
the cache and to the block in the lower-level memory
+ Write back: The information is written only to the block in the
cache.
— Modified cache block is written to main memory only when it is
replaced
— Question is block clean or dirty?
+ Pros and Cons of each?
- WT:
» PRO: read misses cannot result in writes
» CON: processor held up on writes unless writes buffered
— WB:
» PRO: repeated writes not sent to DRAM
processor not held up on writes
» CON: More complex
Read miss may require writeback of dirty data
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Which Block Should be
Replaced on a Miss?

+ Easy for Direct Mapped: Only one possibility
-+ Set Associative or Fully Associative:

— Random

— LRU (Least Recently Used)

Example TLB miss rates:

2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 52% 57% 47% 53% 4.4% 50%
64 KB 1.9% 20% 15% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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Caching Applied to Address Translation

Virtual L8 Physical
Address Cached"
Yes —> Ms» Physical
Il / Memory
Translate
(MMU)

Data Read or Write
(untranslated)
» Question is one of page locality: does it exist?

— Instruction accesses spend a lot of time on the same page
(since accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...
» Can we have a TLB hierarchy?

— Sure: multiple levels at dlfferent S|zes/speeds
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Recap: Two-Level Paging

Virtual memory view Page Tables Physical memory view
(level 2)
—stack— 11 11101
10| 11100 1110 0000
1 o1 10111
00| 10110
Page Table
(level 1)
11| @
T 110| null
101 null
1001 0000 ool 01110
(0x90) - 011 null 1000 0000
010| ®
001] null (OXBO)
000| @ 11| 01101
10| 01100
o1] 01011
00| 01010
11 00101
10 00100 o
01| ooot1 Lode
code 00/ o010 0001 0000
B 0000 0000
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What happens on a Context Switch?

* Need to do something, since TLBs map virtual addresses to
physical addresses

— Address Space just changed, so TLB entries no longer valid!

+ Options?
— Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
— Include ProcessID in TLB
» This is an architectural solution: needs hardware

+ What if translation tables change?
— For example, to move page from memory to disk or vice versa...
— Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
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What Actually Happens on a TLB Miss?

* Hardware traversed page tables:
— On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

+ Software traversed Page tables
— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

+ Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults since
they use translation for many things
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What TLB organization makes sense?

+ Needs to be really fast
— Critical path of memory access
— Seems to argue for Direct Mapped or Low Associativity
* However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high!
— This argues that cost of Conflict (Miss Time) is much higher than
slightly increased cost of access (Hit Time)
+ Thrashing: continuous conflicts between accesses
— What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
— What if use high order bits as index?
» TLB mostly unused for small programs

Cache [—{Memory
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TLB organization: include protection

+ How big does TLB actually have to be?
—Usually small: 128-512 entries
—Not very big, can support higher associativity

+ TLB usually organized as fully-associative cache
—Lookup is by Virtual Address
—Returns Physical Address + other info

+ What happens when fully-associative is too slow?
—Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”

* When does TLB lookup occur relative to memory cache
access?
—Before memory cache lookup?
—In parallel with memory cache lookup?
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Overlapping TLB & Cache Access (1/2)

* Main idea:
— Offset in virtual address exactly covers the “cache index”
and “byte select”

— Thus can select the cached byte(s) in parallel to perform
address translation

virtual address [Virtual Page #] Offset ]

physical address [tag/page # | index | byte |
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Reducing translation time further

+ As described, TLB lookup is in serial with cache lookup:

Virtual Address
4—10—»

V page no. offset

TLB Lookup

échesé
v/ ights / _PA

|P page no. | offset |
4—10—>

Physical Address
+ Machines with TLBs go one step further: they overlap TLB
lookup with cache access.
— Works because offset available early
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Overlapping TLB & Cache Access (1/2)
*+ Here is how this might work with a 4K cache:
| o |

32 |TLB —’ ]""’A~ 4K Cache 1K
20
[ page #

10 2 +——4bytes—
[ disp [00]

PA PA Data Hit/

Miss

» What if cache size is increased to 8KB?

— Overlap not complete
— Need to do something else. See CS152/252

Hit/
Miss
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Putting Everything Together: Address

_ Translation Physical
Virtual Address: Memory:
Tual [{'EL
P1 index] P2 index] Offset
PageTablePir Physic ress:
P ys&a Offset
Page Table [ |
(15t level)
Page Table
(2 level)
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Putting Everything Together: Cachptr? i
ysica
Memory:
Physic re!
P Y I# Offset
|taq |index Ibyte I
lcache:
tal ck:
l I I N T 1
l |
| 1 11
l T T 1
10/7113 Anthony D. Joseph and John Canny ~ CST62 __ ©UCB Fal 2013 Lec 10.47

Page 12

Putting Everything Together: TLB

Physical
Virtual Address: Memory:
rual [{'EL
P1 index] P2 index] Offset
—J
Physic resg:
Paje # | Offset
h
TLB:
]
— [ -
|
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Summary (1/2)

+ The Principle of Locality:
— Program likely to access a relatively small portion of the address
space at any instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

+ Three (+1) Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Conflict Misses: increase cache size and/or associativity
— Capacity Misses: increase cache size
— Coherence Misses: Caused by external processors or I/O
devices
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Summary (2/2)

+ Cache Organizations:
— Direct Mapped: single block per set
— Set associative: more than one block per set
— Fully associative: all entries equivalent

+ TLB is cache on address translations
— Fully associative to reduce conflicts
— Can be overlapped with cache access
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