CS162
Operating Systems and
Systems Programming

Lecture 14

File Systems (Part 2)

October 23, 2013
Anthony D. Joseph and John Canny
http://inst.eecs.berkeley.edu/~cs162

SSD Issues

* Wear leveling and background garbage collection
— Writes/Erase damage memory cells, limits SSD lifespan
— Controller uses ECC, performs wear leveling

i -
» 4 KB
written from

host

Wear leveling and
garbage collection

cause data to be
rewritten on the A A
550 L2 KO 2w |

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.3

Page 1

Review: Storage Performance

+ Hard (Magnetic) Disk Performance:
— Latency = Queuing time + Controller + Seek + Rotational +
Transfer
— Rotational latency: on average Y2 rotation
— Transfer time: depends on rotation speed and bit density

+ SSD Performance:
— Read: Queuing time + Controller + Transfer
— Write: Queuing time + Controller (Find Free Block) + Transfer
— Find Free Block time: depends on how full SSD is (available
empty pages), write burst duration, ...
— Limited drive lifespan

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.2

SSD Firmware Challenges

Apple releases firmware fix for Toshiba
SSDs in 2012 MacBook Airs

by Michael Grothaus Oct 18th 2013 at 12:00PM

- MacBook Air Flash Storage Firmware Update
-

Apple has discovered that a small percentage of flash storage
drives in these MacBook Air models have an issue that may result
in data loss. This update tests your drive and, in the majority of
cases, installs new firmware to resolve the issue. If your drive
cannot be updated, Apple will replace it, free of charge.

cases, installs new firmware to resolve the issue. If your drive
cannot be updated, Apple will replace it free of charge.

If your drive is found to be faulty, Apple has detailed how to claim a
replacement on the MacBook Air Flash Storage Drive Replacement Program
page.

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.4

Review: File System Goals

+ Maximize sequential performance
+ Efiicient random access to file

+ Easy management of files (growth, truncation, etc)

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.5

Goals for Today

+ File Systems Structures (cont’d)

+ Naming and Directories

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.
©UCB Fall 2013 Lec 14.7

10/23/2013 Anthony D. Joseph and John Canny CS162

Page 2

Review: Linked Allocation

directory entry

618

)]

618 339

no. of disk blocks —1

FAT

+ MSDOS links pages together to create a file

— Links not in pages, but in the File Allocation Table (FAT)
» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together

— Access properties:
» Sequential access expensive unless FAT cached in memory
» Random really expensive if FAT not cached

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013

Lec 14.6

Multilevel Indexed Files (UNIX 4.1)

+ Multilevel Indexed Files: I

(from UNIX 4.1 BSD)

— Key idea: efficient for small
files, but still allow big files 5|

direct blocks 77

owners (2)

timestamps (3)

size block count

single indirect —

double indirect _|

triple indirect

+ File hdr contains 13 pointers
— Fixed size table, pointers not all equivalent
— This header is called an “inode” in UNIX

+ File Header format:
— First 10 pointers are to data blocks
— Ptr 11 points to “indirect block” containing 256 block ptrs
— Pointer 12 points to “doubly indirect block” containing 256

indirect block ptrs for total of 64K blocks

— Pointer 13 points to a triply indirect block (16M blocks)

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec 14.8

Multilevel Indexed Files (UNIX 4.1):
Discussion

+ Basic technique places an upper limit on file size that is
approximately 16Gbytes
— Designers thought this was bigger than anything anyone
would need. Much bigger than a disk at the time...

— Fallacy: today, Facebook gets hundreds of TBs of logs every
day!

+ Pointers get filled in dynamically: need to allocate indirect
block only when file grows > 10 blocks

— On small files, no indirection needed

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.9

UNIX BSD 4.2

+ Same as BSD 4.1 (same file header and triply indirect blocks),
except incorporated ideas from Cray-1 DEMOS:
— Uses bitmap allocation in place of freelist
— Attempt to allocate files contiguously
—10% reserved disk space (mentioned next slide)
— Skip-sector positioning (mentioned in two slides)

» Problem: When create a file, don’t know how big it will become
(in UNIX, most writes are by appending)
— How much contiguous space do you allocate for a file?
—In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range

» To expand a file, you first try successive blocks in bitmap, then
choose new range of blocks

— Also in BSD 4.2: store files from same directory near each other

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.11

Page 3

Example of Multilevel Indexed Files

+ Sample file in multilevel mode
indexed format: SRl
— How many accesses for
block #23? (assume file
header accessed on open)?
» Two: One for indirect block,
one for data :
— How about block #5? |
» One: One for data S0l crect =
— Block #3407
» Three: double indirect block,
indirect block, and data
» UNIX 4.1 Pros and cons
— Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy
— Cons: Lots of seeks
Very large files must read many indirect blocks (four
I/O’s per block!)

Anthony D. Joseph and John Canny CSs162

timestamps (3)

size block count

direct blocks 77

double indirect_|

triple indirect

10/23/2013 ©UCB Fall 2013 Lec 14.10

How to Deal with Full Disks?

* In many systems, disks are always full
— EECS department growth: 300 GB to 1TB in a year (now 10s TB)

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.12

E E c S Universtry oF CauiFornia Berkeley
ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
Billable Storage (in GB)

25000

Project
20000 /
15000 /
10000 /
5000 M_///

0 ‘ IMAP ‘ ;
1/1/2005 1/1/2007 "*1/1/2009 T1/1/2011 T’W/1/2013

Restructure Rates Rate Drop Rate Drop

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.13

Attack of the Rotational Delay

+ Problem: Missing blocks due to rotational delay
— Issue: Read one block, do processing, and read next block. In
meantime, disk has continued turning: missed next block!

Skip Sector

Track Buffer
(Holds complete track)

— Solution 1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a track: give
time for processing to overlap rotation
— Solution 2: Read ahead: read next block right after first, even if
application hasn’t asked for it yet
» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have internal
RAM that allows them to read a complete track
» Important Aside: Modern disks+controllers do many complex
things “under the covers”
— Track buffers, elevator algorithms, bad block filtering

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.15

Page 4

How to Deal with Full Disks?

* In many systems, disks are always full
— EECS department growth: 300 GB to 1TB in a year (now 10s TB)
— How to fix? Announce disk space is low, so please delete files?
» Don't really work: people try to store their data faster
— Sidebar: Perhaps we are getting out of this mode with new disks...
However, let’s assume disks are full for now
+ Solution:
— Don't let disks get completely full: reserve portion
» Free count = # blocks free in bitmap
» Scheme: Don't allocate data if count < reserve
— How much reserve do you need?
» In practice, 10% seems like enough
— Tradeoff: pay for more disk, get contiguous allocation
» Since seeks so expensive for performance, this is a very good
tradeoff

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.14

Administrivia
« Midterm results: Mean: 69.71, Median: 71.75, Std Dev: 14.24

Count
8

UpTol0 10To20 20To30 30To40 40To50 50To60 60To70 70To80 80To90 90To100 More

+ Regrade request deadline: October 25, 2013 by 11:59pm
— We will regrade the entire exam

+ Please fill out the anonymous course survey at
https://www.surveymonkey.com/s/FSW3HVJ

+ We'll try to make changes this semester based on your feedback
10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.16

Quiz 14.1: File Systems

+ Q1: True _ False _ With FAT, pointers are maintained in
the data blocks

+ Q2: True _ False _ Unix file system is more efficient than
FAT for random access

+ Q3: True _ False _ The “Skip Sector Positioning” technique
allows reading consecutive blocks on a track

« Q4: True _ False _ Maintaining the free blocks in a list is
more efficient than using a bitmap

+ Q5: True _ False _ In Unix, accessing random data in a
large file is on average slower than in a small file

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.17

Quiz 14.1: File Systems

+ Q1: True _ False X With FAT, pointers are maintained in
the data blocks

« Q2: True X False _ Unix file system is more efficient than
FAT for random access

+ Q3: Truex False _ The “Skip Sector Positioning” technique
allows reading consecutive blocks on a track

+ Q4: True _ False X Maintaining the free blocks in a list is
more efficient than using a bitmap

+ Q5: True X False _ In Unix, accessing random data in a
large file is on average slower than in a small file

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.19

Page 5

5min Break

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.18

How do we actually access files?

« All information about a file contained in its file header
— UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber”)
— Once you load the header structure, all blocks of file are locatable

+ Question: how does the user ask for a particular file?
— One option: user specifies an inode by a number (index).
» Imagine: open(“14553344”)
— Better option: specify by textual name
» Have to map name—inumber
— Another option: Icon

» This is how Apple made its money. Graphical user interfaces. Point
to a file and click

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.20

Naming

+ Naming (name resolution): process by which a system
translates from user-visible names to system resources

+ In the case of files, need to translate from strings (textual
names) or icons to inumbers/inodes

+ For global file systems, data may be spread over globe=need
to translate from strings or icons to some combination of
physical server location and inumber

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.21

Directory Organization

+ Directories organized into a hierarchical structure
— Seems standard, but in early 70’s it wasn't
— Permits much easier organization of data structures

+ Entries in directory can be either files or directories

+ Files named by ordered set (e.g., /programs/p/list)

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.23

Page 6

Directories

+ Directory: a relation used for naming
—Just a table of (file name, inumber) pairs

» How are directories constructed?
— Directories often stored in files
» Reuse of existing mechanism
» Directory named by inode/inumber like other files
— Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

» How are directories modified?
— Originally, direct read/write of special file
— System calls for manipulation: mkdir, rmdir
— Ties to file creation/destruction
» On creating a file by name, new inode grabbed and associated
with new file in particular directory

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.22

Directory Structure

root avi tc jim

| text | mail ‘count‘ baok‘ | boak| mail ‘unhexi hyp ‘

* Not really a hierarchy!
— Many systems allow directory structure to be organized as an
acyclic graph or even a (potentially) cyclic graph
— Hard Links: different names for the same file
» Multiple directory entries point at the same file
— Soft Links: “shortcut” pointers to other files
» Implemented by storing the logical name of actual file

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.24

Directory Structure

| avi ‘count‘ ‘unhex‘ hex|

L — % he

+ Name Resolution: The process of converting a logical name
into a physical resource (like a file)

— Traverse succession of directories until reach target file
— Global file system: May be spread across the network

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.25

Where are inodes stored?

+ In early UNIX and DOS/Windows’ FAT file system,
headers stored in special array in outermost cylinders

— Header not stored anywhere near the data blocks. To
read a small file, seek to get header, seek back to data.

— Fixed size, set when disk is formatted. At formatting
time, a fixed number of inodes were created (They were
each given a unique number, called an “inumber”)

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.27

Page 7

Directory Structure (Con’t)

+ How many disk accesses to resolve “/my/book/count”?
— Read in file header for root (fixed spot on disk)
— Read in first data block for root

» Table of file name/index pairs. Search linearly — ok since
directories typically very small

— Read in file header for “my”

— Read in first data block for “my”; search for “book”

— Read in file header for “book”

— Read in first data block for “book”; search for “count”
— Read in file header for “count”

+ Current working directory: Per-address-space pointer to a
directory (inode) used for resolving file names

— Allows user to specify relative filename instead of absolute path
(say CWD="/my/book” can resolve “count”)

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.26

Where are inodes stored?

+ Later versions of UNIX moved the header information to be
closer to the data blocks
— Often, inode for file stored in same “cylinder group” as parent
directory of the file (makes an 1s of that directory run fast).
— Pros:

» UNIX BSD 4.2 puts a portion of the file header array on each
cylinder. For small directories, can fit all data, file headers, etc.
in same cylinder = no seeks!

» File headers much smaller than whole block (a few hundred
bytes), so multiple headers fetched from disk at same time
» Reliability: whatever happens to the disk, you can find many of
the files (even if directories disconnected)
— Part of the Fast File System (FFS)

» General optimization to avoid seeks

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.28

In-Memory File System Structures

(N
L[]

directory structure

<2

open (file name)

directory structure fi

e-control block

user space kernel memory secondary storage

+ Open system call:
— Resolves file name, finds file control block (inode)
— Makes entries in per-process and system-wide tables
— Returns index (called “file handle”) in open-file table

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.29

Quiz 14.2: File Systems

* Q1: True _ False _ A hard-link is a pointer to other file
* Q2: True _ False _ inumber is the id of a block
+ Q8: True _ False _ Typically, directories are stored as files

+ Q4: True _ False _ Storing file headers on the outermost
cylinders minimizes the seek time

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.31

Page 8

In-Memory File System Structures

index l:' \:I:|
il
r | // data blocks
read (index) \\D

system-wide file-control block

open-file table

per-process
open-file table

user space kernel memory secondary storage

+ Read/write system calls:
— Use file handle to locate inode
— Perform appropriate reads or writes

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.30

Quiz 14.2: File Systems

+ Q1: True _ False X A hard-link is a pointer to other file
» Q2: True _ False X inumber is the id of a block
+ Q8: TrueX False _ Typically, directories are stored as files

+ Q4: True _ False X Storing file headers on the outermost
cylinders minimizes the seek time

10/23/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 14.32

File System Summary (1/2)
+ File System:
— Transforms blocks into Files and Directories
— Optimize for access and usage patterns
— Maximize sequential access, allow efficient random access

+ File (and directory) defined by header, called “inode”

+ Multilevel Indexed Scheme
— Inode contains file info, direct pointers to blocks,
— indirect blocks, doubly indirect, etc..

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.33

Page 9

File System Summary (2/2)

« 4.2 BSD Multilevel index files
— Inode contains pointers to actual blocks, indirect blocks, double
indirect blocks, etc.
— Optimizations for sequential access: start new files in open
ranges of free blocks, rotational Optimization

+ Naming: act of translating from user-visible names to actual
system resources
— Directories used for naming for local file systems

10/23/2013 Anthony D. Joseph and John Canny CSs162 ©UCB Fall 2013 Lec 14.34

