
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 21  
 

Security (I)"

November 20, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

21.2!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Goals for Today"
•  2PC Failure Examples !
•  Conceptual understanding of how to make systems

secure!
•  Key security properties!

– Authentication !
– Data integrity !
– Confidentiality !
– Non-repudiation!

•  Cryptographic Mechanisms!

!
Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
and lecture notes by Kubiatowicz"

21.3!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Review: 2PC Failure Free  
Execution Example "

coordinator	

slave	
 1	

/me	

VOTE-­‐
REQ	

VOTE-­‐
COMMIT	

GLOBAL-­‐
COMMIT	

slave	
 2	

slave	
 3	

21.4!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Example of Slave Failure"

coordinator	

slave	
 1	

/me	

VOTE-­‐REQ	

VOTE-­‐
COMMIT	

GLOBAL-­‐
ABORT	

INIT	

WAIT	

ABORT	
 COMM	
 /meout	

slave	
 2	

slave	
 3	

Page 2

21.5!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Dealing with Coordinator Failure"

•  How to deal with coordinator failures?!
– Slave waits for VOTE-REQ in INIT!

»  Slave can time out and abort (coordinator handles it)!
– Slave waits for GLOBAL-* message in READY!

»  If coordinator fails, slaves must!
"BLOCK waiting for coordinator!
!to recover and send!
!GLOBAL_* message!

!

INIT	

READY	

ABORT	
 COMMIT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐ABORT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐COMMIT	

Recv:	
 GLOBAL-­‐ABORT	
 Recv:	
 GLOBAL-­‐COMMIT	

21.6!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Example of Coordinator Failure #1"

coordinator	

slave	
 1	

VOTE-­‐
REQ	

VOTE-­‐
ABORT	

/meout	

INIT	

READY	

ABORT	
 COMM	

/meout	

/meout	

slave	
 2	

slave	
 3	

21.7!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Example of Coordinator Failure #2"

VOTE-­‐REQ	

VOTE-­‐
COMMIT	

INIT	

READY	

ABORT	
 COMM	

block	
 wai/ng	
 for	

coordinator	

restarted	

GLOBAL-­‐
ABORT	

coordinator	

slave	
 1	

slave	
 2	

slave	
 3	

21.8!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Example of Coordinator Failure #3"

VOTE-­‐REQ	

VOTE-­‐
COMMIT	

INIT	

READY	

ABORT	
 COMM	

block	
 wai/ng	
 for	

coordinator	

restarted	

GLOBAL-­‐
COMMIT	

coordinator	

slave	
 1	

slave	
 2	

slave	
 3	

Page 3

21.9!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Remembering Where We Were"
•  All nodes use stable storage to store which state they are in!
•  Upon recovery, a node can restore state and resume:!

– Coordinator aborts if in INIT, WAIT, or ABORT states!
– Coordinator commits if in COMMIT state!
– Slave aborts if in INIT, ABORT states!
– Slave commits if in COMMIT state!
–  If slave is in READY state, see next slide…!

INIT	

READY	

ABORT	
 COMM	

INIT	

WAIT	

ABORT	
 COMM	

Coordinator" Slave"

21.10!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Blocking for Coordinator to Recover"
•  A worker waiting for global decision

(READY state) can ask fellow
workers about their state!

–  If another slave is in ABORT or
COMMIT state then coordinator must
have sent GLOBAL-*!

– Thus, slave can safely abort or
commit, respectively!

–  If another slave is still in INIT state!
!then both slaves can decide to abort !

–  If all slaves are in READY, need to
BLOCK (don’t know if coordinator
wanted to abort or commit)!

INIT	

READY	

ABORT	
 COMMIT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐ABORT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐COMMIT	

Recv:	
 GLOBAL-­‐ABORT	
 Recv:	
 GLOBAL-­‐COMMIT	

21.11!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

•  Q1: True _ False _ It is possible for a slave to ABORT while
another one COMMITs!

•  Q2: True _ False _ If a slave fails in the READY state all
slaves eventually ABORT!

•  Q3: True _ False _ If the coordinator doesn’t get a reply from
every slave then all slaves will ABORT!

•  Q4: True _ False _ If one slave is in the COMMIT state then
all slaves can COMMIT!

!
!
!

Quiz 21.1: 2PC"

21.12!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

•  Q1: True _ False _ It is possible for a slave to ABORT while
another one COMMITs!

•  Q2: True _ False _ If a slave fails in the READY state all
slaves eventually ABORT!

•  Q3: True _ False _ If the coordinator doesn’t get a reply from
every slave then all slaves will ABORT!

•  Q4: True _ False _ If one slave is in the COMMIT state then
all slaves can COMMIT!

!
!
!

Quiz 21.1: 2PC"

X!

X!

X!

X!

Page 4

21.13!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Goals for Today"
•  Conceptual understanding of how to make systems

secure!
•  Key security properties!

– Authentication !
– Data integrity !
– Confidentiality !
– Non-repudiation!

•  Cryptographic Mechanisms!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
and lecture notes by Kubiatowicz"

21.14!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

What is Computer Security Today?"

•  Computing in the presence of an adversary!!
– Adversary is the security field’s defining characteristic!

•  Reliability, robustness, and fault tolerance!
– Dealing with Mother Nature (random failures)!

•  Security!
– Dealing with actions of a knowledgeable attacker

dedicated to causing harm!
– Surviving malice, and not just mischance!

•  Wherever there is an adversary, there is a computer
security problem!!

21.15!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Protection vs. Security"

•  Protection: mechanisms for controlling access of programs,
processes, or users to resources!

– Page table mechanism!
– Round-robin schedule!
– Data encryption!

•  Security: use of protection mech. to prevent misuse of resources!
– Misuse defined with respect to policy!

»  E.g.: prevent exposure of certain sensitive information!
»  E.g.: prevent unauthorized modification/deletion of data!

– Need to consider external environment the system operates in!
» Most well-constructed system cannot protect information if user

accidentally reveals password – social engineering challenge!

21.16!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Security Requirements"
•  Authentication !

– Ensures that a user is who is claiming to be!

•  Data integrity "
– Ensure that data is not changed from source to

destination or after being written on a storage device !

•  Confidentiality "
– Ensures that data is read only by authorized users!

•  Non-repudiation"
– Sender/client can’t later claim didn’t send/write data!
– Receiver/server can’t claim didn’t receive/write data!

!

Page 5

21.17!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Securing Communication: Cryptography "
•  Cryptography: communication in the presence of

adversaries!

•  Studied for thousands of years!
– See the Simon Singh’s The Code Book for an excellent,

highly readable history!

•  Central goal: confidentiality"
– How to encode information so that an adversary can’t extract

it, but a friend can!

•  General premise: there is a key, possession of which
allows decoding, but without which decoding is infeasible!

– Thus, key must be kept secret and not guessable!

21.18!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Using Symmetric Keys "
•  Same key for encryption and decryption!
•  Achieves confidentiality!
•  Vulnerable to tampering and replay attacks!

Internet!Encrypt with!
secret key!

Decrypt with!
secret key!

Plaintext (m)! m!

Ciphertext!

21.19!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Symmetric Keys"

•  Can just XOR plaintext with the key!
– Easy to implement, but easy to break

using frequency analysis!
– Unbreakable alternative: XOR with one-

time pad!
» Use a different key for each message!

21.20!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Symmetric Keys"
•  More sophisticated (e.g., block cipher) algorithms !

– Works with a block size (e.g., 64 bits)!
»  To encrypt a stream, can encrypt blocks separately, or link them!

Page 6

21.21!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Symmetric Key Ciphers - DES & AES"

•  Data Encryption Standard (DES)!
– Developed by IBM in 1970s, standardized by NBS/NIST!
– 56-bit key (decreased from 64 bits at NSA’s request)!
– Still fairly strong other than brute-forcing the key space!

»  But custom hardware can crack a key in < 24 hours!
– Today many financial institutions use Triple DES!

» DES applied 3 times, with 3 keys totaling 168 bits!
•  Advanced Encryption Standard (AES)!

•  Replacement for DES standardized in 2002!
•  Key size: 128, 192 or 256 bits!
•  Hardware instruction support in some processors!

•  How fundamentally strong are they?!
•  No one knows (no proofs exist)!

21.22!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Authentication via Secret Key"
•  Main idea: entity proves identity by decrypting a secret

encrypted with its own key!
– K – secret key shared only by A and B!

•  A can asks B to authenticate itself by decrypting a nonce,
i.e., random value, x!

– Avoid replay attacks (attacker impersonating client or server)!
•  Vulnerable to man-in-the middle attack!

E(x, K)

x

A B

Notation: E(m,k) –
encrypt message m
with key k!
!

21.23!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Integrity: Cryptographic Hashes"

•  Basic building block for integrity: cryptographic hashing!
– Associate hash with byte-stream, receiver verifies match!

»  Assures data hasn’t been modified, either accidentally – or
maliciously!

•  Approach: !
-  Sender computes a secure digest of message m using H(x)!

-  H(x) is a publicly known hash function!
-  Digest d = HMAC (K, m) = H (K | H (K | m))!
-  HMAC(K, m) is a hash-based message authentication function!

-  Send digest d and message m to receiver!

-  Upon receiving m and d, receiver uses shared secret key, K, to
recompute HMAC(K, m) and see whether result agrees with d!

21.24!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Using Hashing for Integrity"

Internet!Digest!
HMAC(K,m)!

plaintext (m)!

Encrypted Digest!

Digest!
HMAC(K,m)!
!

=!

digest’!

NO!
corrupted msg! m!

Unencrypted Message!

Can encrypt m for confidentiality!

Page 7

21.25!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Standard Cryptographic Hash Functions"
•  MD5 (Message Digest version 5)!

– Developed in 1991 (Rivest), produces 128 bit hashes!
– Widely used (RFC 1321)!
– Broken (1996-2008): attacks that find collisions!

•  SHA-1 (Secure Hash Algorithm)!
– Developed in 1995 (NSA) as MD5 successor with 160 bit hashes!
– Widely used (SSL/TLS, SSH, PGP, IPSEC)!
– Broken in 2005, government use discontinued in 2010!

•  SHA-2 (2001) !
– Family of SHA-224, SHA-256, SHA-384, SHA-512 functions!

•  HMAC’s are secure even with older “insecure” hash functions!
!! 21.26!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Asymmetric Encryption (Public Key)"
•  Idea: use two different keys, one to encrypt (e) and one to

decrypt (d)!
– A key pair!

•  Crucial property: knowing e does not give away d!

•  Therefore e can be public: everyone knows it!!

•  If Alice wants to send to Bob, she fetches Bob’s public key
(say from Bob’s home page) and encrypts with it!

– Alice can’t decrypt what she’s sending to Bob …!
– … but then, neither can anyone else (except Bob)!

21.27!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Public Key / Asymmetric Encryption"
•  Sender uses receiver’s public key!

– Advertised to everyone!
•  Receiver uses complementary private key!

– Must be kept secret!

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

21.28!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Public Key Cryptography"

•  Invented in the 1970s!
– Revolutionized cryptography!
–  (Was actually invented earlier by British intelligence)!

•  How can we construct an encryption/decryption algorithm
using a key pair with the public/private properties? !

– Answer: Number Theory!

•  Most fully developed approach: RSA!
– Rivest / Shamir / Adleman, 1977; RFC 3447!
– Based on modular multiplication of very large integers!
– Very widely used (e.g., ssh, SSL/TLS for https)!

Page 8

21.29!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Properties of RSA"
•  Requires generating large, random prime numbers!

–  Algorithms exist for quickly finding these (probabilistic!)!

•  Requires exponentiating very large numbers!
–  Again, fairly fast algorithms exist!

•  Overall, much slower than symmetric key crypto!
– One general strategy: use public key crypto to exchange a (short)

symmetric session key !
» Use that key then with AES or such!

•  How difficult is recovering d, the private key? !
–  Equivalent to finding prime factors of a large number

» Many have tried - believed to be very hard (= brute force only)!
»  (Though quantum computers can do so in polynomial time!)!

21.30!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Simple Public Key Authentication"
•  Each side need only to know the other

side’s public key!
– No secret key need be shared!

•  A encrypts a nonce (random num.) x!
– Avoid replay attacks, e.g., attacker

impersonating client or server!

•  B proves it can recover x!

•  A can authenticate itself to B in the
same way!

•  Many more details to make this work
securely in practice!!

E({x, A}, PublicB)

E({x, y, B}, PublicA)

A B

Notation: E(m,k) –
encrypt message m
with key k!
!

E({y, A}, PublicB)

21.31!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

•  Q1: True _ False _ Integrity requires the sender to encrypt
the message!

•  Q2: True _ False _ Asymmetric Key Cryptography is much
slower than Symmetric Key Cryptography !

•  Q3: True _ False _ Encrypting a nonce (random number)
avoids replay attacks!

•  Q4: True _ False _ Confidentiality guarantees data integrity!
!
!
!

Quiz 21.2: Cryptography"

21.32!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Administrivia"
•  Project 4 design due date changed!

– Monday 12/2 by 11:59PM!

•  Project 3 code due tomorrow (Thu 11/20) before
11:59PM!

Page 9

21.33!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

5min Break"

21.34!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!
https://xkcd.com/936/ !

21.35!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

•  Q1: True _ False _ Integrity requires the sender to encrypt
the message!

•  Q2: True _ False _ Asymmetric Key Cryptography is much
slower than Symmetric Key Cryptography !

•  Q3: True _ False _ Encrypting a nonce (random number)
avoids replay attacks!

•  Q4: True _ False _ Confidentiality guarantees data integrity!
!
!
!

Quiz 21.2: Cryptography"

X!

X!

X!

X!

21.36!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Non-Repudiation: RSA Crypto & Signatures"

•  Suppose Alice has published public key KE!

•  If she wishes to prove who she is, she can send a
message x encrypted with her private key KD (i.e.,
she sends E(x, KD))!

– Anyone knowing Alice’s public key KE can recover x, verify
that Alice must have sent the message!

» It provides a signature!
– Alice can’t deny it ⇒ non-repudiation!

Page 10

21.37!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

RSA Crypto & Signatures (cont’d)"

I will pay
Bob $500"

I will pay
Bob $500"

Also need integrity checks!
21.38!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Digital Certificates"

•  How do you know KE is Alice’s public key?!

•  Trusted authority (e.g., Verisign) signs binding between Alice
and KE with its private key KVprivate!

– C = E({Alice, KE}, KVprivate)!
– C: digital certificate !

•  Alice: distribute her digital certificate, C!

•  Anyone: use trusted authority’s KVpublic, to extract Alice’s
public key from C!

– D(C, KVpublic) = D(E({Alice, KE}, KVprivate), KVpublic) = {Alice, KE}!

21.39!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Summary of Our Crypto Toolkit"
•  If we can securely distribute a key, then!

– Symmetric ciphers (e.g., AES) offer fast, presumably
strong confidentiality!

•  Public key cryptography does away with (potentially major)
problem of secure key distribution!

– But: not as computationally efficient!
» Often addressed by using public key crypto to

exchange a session key!

•  Digital signature binds the public key to an entity!

21.40!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Putting It All Together - HTTPS!
•  What happens when you click on
https://www.amazon.com?!

•  https = “Use HTTP over SSL/TLS”!
– SSL = Secure Socket Layer!
– TLS = Transport Layer Security!

»  Successor to SSL!
– Provides security layer (authentication, encryption) on

top of TCP!
»  Fairly transparent to applications!

Page 11

21.41!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

HTTPS Connection (SSL/TLS) (cont’d)"
•  Browser (client) connects via

TCP to Amazon’s HTTPS
server!

•  Client sends over list of
crypto protocols it supports!

•  Server picks protocols to use
for this session!

•  Server sends over its
certificate!

•  (all of this is in the clear)!

Browser! Amazon!

Hello. I support!
(TLS+RSA+AES128+SHA2) or!

(SSL+RSA+3DES+MD5)

or …!
Let’s use!

TLS+RSA

+AES128+SHA2"

Here’s my cert"

~1 KB of data"

21.42!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Inside the Server’s Certificate"

•  Name associated with cert (e.g., Amazon)!
•  Amazon’s RSA public key!
•  A bunch of auxiliary info (physical address, type of cert,

expiration time)!
•  Name of certificate’s signatory (who signed it)!
•  A public-key signature of a hash (SHA-256) of all this!

– Constructed using the signatory’s private RSA key, i.e.,!
– Cert = E(HSHA256(KApublic, www.amazon.com, …), KSprivate))!

»  KApublic: Amazon’s public key!
»  KSprivate: signatory (certificate authority) private key !

•  …!

21.43!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Validating Amazon’s Identity"
•  How does the browser authenticate certificate signatory?!

– Certificates of several certificate authorities (e.g., Verisign)
are hardwired into the browser (or OS)!

•  If can’t find cert, warn user that site has not been verified!
– And may ask whether to continue!
– Note, can still proceed, just without authentication!

•  Browser uses public key in signatory’s cert to decrypt
signature!

– Compares with its own SHA-256 hash of Amazon’s cert!
•  Assuming signature matches, now have high confidence

it’s indeed Amazon …!
– … assuming signatory is trustworthy!
– DigiNotar CA breach (July-Sept 2011): Google, Yahoo!,

Mozilla, Tor project, Wordpress, … (531 total certificates)!

21.44!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Certificate Validation"

E(HSHA256(KApublic, www.amazon.com, …), KSprivate)), !
KApublic, www.amazon.com, …!

HSHA256(KApublic, www.amazon.com, …)!

E(HSHA256(…), KSpublic))!
(recall, KSpublic hardwired)!

=!

Yes!

Validation successful!

Validation failed!
No!

HSHA256(KApublic, www.amazon.com, …)!

HSHA256(KApublic, www.amazon.com, ..)!

Certificate!

Can also validate using peer approach: https://www.eff.org/observatory !

Page 12

21.45!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

•  Browser constructs a random
session key K used for data
communication!

–  Private key for bulk crypto!
•  Browser encrypts K using

Amazon’s public key!
•  Browser sends E(K, KApublic) to

server!
•  Browser displays!
•  All subsequent comm.

encrypted w/ symmetric cipher
(e.g., AES128) using key K!

–  E.g., client can authenticate using
a password!

Browser! Amazon!

Here’s my cert"

~1 KB of data"

E(K, KApublic)!
K"

E(password …, K)!

E(response …, K)!

Agreed!

HTTPS Connection (SSL/TLS) cont’d"

K"

21.46!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Authentication: Passwords"

•  Shared secret between two parties!

•  Since only user knows password, someone types correct
password ⇒ must be user typing it!

•  Very common technique!

•  System must keep copy of secret to  
check against passwords!

– What if malicious user gains access to list of passwords?!
» Need to obscure information somehow!

– Mechanism: utilize a transformation that is difficult to reverse
without the right key (e.g. encryption)!

21.47!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Passwords: Secrecy"

•  Example: UNIX /etc/passwd file!
– passwd→one way transform(hash)→encrypted passwd!
– System stores only encrypted version, so OK even if

someone reads the file!!
– When you type in your password, system compares

encrypted version!

“eggplant”

21.48!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Passwords: How easy to guess?"
•  Three common ways of compromising passwords!
•  Password Guessing: !

– Often obvious passwords like birthday, favorite color, girlfriend’s
name, etc…!

– Trivia question 1: what is the most popular password?!
– Trivia question 2: what is the next most popular password?!
– Answer: (from 32 million stolen passwords– Rockyou 2010)

http://www.nytimes.com/2010/01/21/technology/21password.html !

•  Dictionary Attack (against stolen encrypted list): !
– Work way through dictionary and compare encrypted version of

dictionary words with entries in /etc/passwd
– http://www.skullsecurity.org/wiki/index.php/Passwords !

•  Dumpster Diving:!
– Find pieces of paper with passwords written on them!
–  (Also used to get social-security numbers, etc.)!

Page 13

21.49!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Passwords: How easy to guess? (cont’d)"

•  Paradox: !
– Short passwords are easy to crack!
– Long ones, people write down!!

•  Technology means we have to use longer passwords!
– UNIX initially required lowercase, 5-letter passwords: total of

265=10million passwords!
»  In 1975, 10ms to check a password→1 day to crack!
»  In 2005, .01μs to check a password→0.1 seconds to crack!

– Takes less time to check for all words in the dictionary!!

21.50!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Passwords: Making harder to crack"

•  Can’t make it impossible to crack, but can make it harder!

•  Technique 1: Extend everyone’s password with a unique
number (“Salt” – stored in password file)!

– Early UNIX uses 12-bit “salt” èdictionary attacks 4096x harder!
– Without salt, could pre-compute all the words in the dictionary

hashed with UNIX algorithm (modern salts are 48-128 bits)!

21.51!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Passwords: Making harder to crack (cont’d) "

•  Technique 2: Require more complex passwords!
– Make people use at least 8-character passwords with upper-

case, lower-case, and numbers!
»  708=6x1014=6million seconds=69 days@0.01μs/check!

– Unfortunately, people still pick common patterns!
»  e.g. Capitalize first letter of common word, add one digit!

•  Technique 3: Delay checking of passwords!
–  If attacker doesn’t have access to /etc/passwd, delay every

remote login attempt by 1 second!
– Makes it infeasible for rapid-fire dictionary attack!

21.52!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Passwords: Making harder to crack (cont’d)"
•  Technique 4: Assign very long passwords/passphrases!

– Can have more entropy (randomness→harder to crack)!
– Embed password in a smart card (or ATM card)!

» Requires physical theft to steal password!
» Can require PIN from user before authenticates self!

– Better: have smartcard or smartphone generate pseudorandom
number!

» Client and server share initial seed!
»  Each second/login attempt advances random number!

Page 14

21.53!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Passwords: Making harder to crack (cont’d)"

•  Technique 5: “Zero-Knowledge Proof”!
– Require a series of challenge-response questions!

» Distribute secret algorithm to user!
»  Server presents number; user computes something from number;

returns answer to server; server never asks same “question” twice!
– Often performed by smartcard plugged into system!

•  Technique 6: Replace password with Biometrics!
– Use of one or more intrinsic physical or  

behavioral traits to identify someone!
– Examples: fingerprint reader, palm reader, retinal scan!

21.54!11/20/2013! Anthony D. Joseph CS162 ©UCB Fall 2013!

Conclusion"
•  Distributed identity: Use cryptography!
•  Symmetrical (or Private Key) Encryption!

– Single Key used to encode and decode!
– Introduces key-distribution problem!

•  Public-Key Encryption!
– Two keys: a public key and a private key!
– Slower than private key, but simplifies key-distribution!

•  Secure Hash Function!
– Used to summarize data!
– Hard to find another block of data with same hash!

•  Passwords!
– Encrypt and salt them to help hide them!
– Force them to be longer/not amenable to dictionary attack!
– Use zero-knowledge request-response techniques!

