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Goals for Today

2PC Failure Examples
+ Conceptual understanding of how to make systems
secure

» Key security properties
— Authentication
— Data integrity
— Confidentiality
— Non-repudiation
+ Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
and lecture notes by Kubiatowicz
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Example of Slave Failure

(warT |
coordinator timeout
GLOBAL-
VOTE-REQ ABORT
slave 1
VOTE-
slave 2 coMMIT
slave 3 f time
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Dealing with Coordinator Failure

+ How to deal with coordinator failures?
— Slave waits for VOTE-REQ in INIT
» Slave can time out and abort (coordinator handles it)
— Slave waits for GLOBAL-* message in READY
» If coordinator fails, slaves must
BLOCK waiting for coordinator
to recover and send
GLOBAL_* message

INIT

Recv: VOTE-REQ Recv: VOTE-REQ
Send: VOTE-ABORT” | gopy: yOTE-COMMIT

Recv: GLOBAL-ABORT Recv: GLOBAL-COMMIT|

[ ABORT ] [COMMIT]
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Example of Coordinator Failure #2
INIT

coordinator restarted

VOTE-REQ
slave 1
GLOBAL-
VOTE- ABORT
slave 2 COMMIT,
block waiting for
slave 3 coordinator
11/20/2013 Anthony D. Joseph CS162 ©UCB Fall 2013

Page 2

coordinator \\\
VOTE-
X

Example of Coordinator Failure #1

READY

REQ 1
slave 1 timeout
VOTE-
slave 2 timeout ABORT
slave 3 timeout
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slave 1

slave 2

slave 3
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Example of Coordinator Failure #3
Cnir ]

READY
restarted

GLOBAL-
COMMIT
block waiting for
coordinator
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COMMIT,




Remembering Where We Were

+ All nodes use stable storage to store which state they are in
+ Upon recovery, a node can restore state and resume:

— Coordinator aborts if in INIT, WAIT, or ABORT states

— Coordinator commits if in COMMIT state

— Slave aborts if in INIT, ABORT states

— Slave commits if in COMMIT state

— If slave is in READY state, see next slide...

CINT T
WAIT READY
— asoRr
Coordinator Slave
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Quiz 21.1: 2PC

« Q1: True _ False _ ltis possible for a slave to ABORT while
another one COMMITs

+ Q2: True _ False _ If a slave fails in the READY state all
slaves eventually ABORT

+ Q3: True _ False _ If the coordinator doesn’t get a reply from
every slave then all slaves will ABORT

+ Q4: True _ False _ If one slave is in the COMMIT state then
all slaves can COMMIT
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+ A worker waiting for global decision

11/20/2013

Blocking for Coordinator to Recover

(READY state) can ask fellow
workers about their state
— If another slave is in ABORT or
COMMIT state then coordinator must
have sent GLOBAL-*

— Thus, slave can safely abort or
commit, respectively

i

Recv: VOTE-REQ /| pecy: VOTE-REQ
Send: VOTE-ABORT | g¢,g: yOTE-cCOMMIT

READY
Recv: GLOBAL-ABORT Recv:.GLOBAL-COMMIT

| ABORT | (commIT|

— If another slave is still in INIT state
then both slaves can decide to abort

— If all slaves are in READY, need to
BLOCK (don’t know if coordinator
wanted to abort or commit)
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Quiz 21.1: 2PC

Q1: True _ False X It is possible for a slave to ABORT while
another one COMMITs

Q2: True _ False X If a slave fails in the READY state all
slaves eventually ABORT

Q8: TrueX False _ If the coordinator doesn’t get a reply from
every slave then all slaves will ABORT

Q4: TrueX False _ If one slave is in the COMMIT state then
all slaves can COMMIT
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Goals for Today

+ Conceptual understanding of how to make systems
secure

+ Key security properties
— Authentication
— Data integrity
— Confidentiality
— Non-repudiation
+ Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
and lecture notes by Kubiatowicz
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Protection vs. Security

+ Protection: mechanisms for controlling access of programs,
processes, or users to resources
— Page table mechanism
— Round-robin schedule
— Data encryption

+ Security: use of protection mech. to prevent misuse of resources
— Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data
— Need to consider external environment the system operates in
» Most well-constructed system cannot protect information if user
accidentally reveals password — social engineering challenge
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What is Computer Security Today?

« Computing in the presence of an adversary!
—Adversary is the security field’s defining characteristic
Reliability, robustness, and fault tolerance
—Dealing with Mother Nature (random failures)
Security

—Dealing with actions of a knowledgeable attacker
dedicated to causing harm

—Surviving malice, and not just mischance

* Wherever there is an adversary, there is a computer
security problem!
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Security Requirements

+ Authentication
—Ensures that a user is who is claiming to be

+ Data integrity

— Ensure that data is not changed from source to
destination or after being written on a storage device

+ Confidentiality
—Ensures that data is read only by authorized users

* Non-repudiation
—Sender/client can't later claim didn’t send/write data

—Receiver/server can’t claim didn’t receive/write data
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Securing Communication: Cryptography

+ Cryptography: communication in the presence of
adversaries

+ Studied for thousands of years

— See the Simon Singh’s The Code Book for an excellent,
highly readable history

+ Central goal: confidentiality

— How to encode information so that an adversary can’t extract
it, but a friend can

+ General premise: there is a key, possession of which
allows decoding, but without which decoding is infeasible

— Thus, key must be kept secret and not guessable
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Symmetric Keys

+ Can just XOR plaintext with the key

— Easy to implement, but easy to break
using frequency analysis
— Unbreakable alternative: XOR with one-
time pad
» Use a different key for each message

P
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Using Symmetric Keys
+ Same key for encryption and decryption
» Achieves confidentiality
» Vulnerable to tampering and replay attacks
Plaintext (m) m

~ Internet

Encrypt with s Decrypt with
secret key . secret key
Ciphertext ‘
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Symmetric Keys

+ More sophisticated (e.g., block cipher) algorithms
— Works with a block size (e.g., 64 bits)
» To encrypt a stream, can encrypt blocks separately, or link them

v

Plaintext Ciphertext
EEEEEEEE m?:‘ﬂ
Block Cipher Block Cipher

Key —=| Encryption Key —=| Decryption
[ITTTTTTIT] (ITTTTTTT1]

Ciphertext Plaintext
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Symmetric Key Ciphers - DES & AES

+ Data Encryption Standard (DES)
— Developed by IBM in 1970s, standardized by NBS/NIST
— 56-bit key (decreased from 64 bits at NSA’s request)

— Still fairly strong other than brute-forcing the key space
» But custom hardware can crack a key in <24 hours

— Today many financial institutions use Triple DES
» DES applied 3 times, with 3 keys totaling 168 bits

« Advanced Encryption Standard (AES)

* Replacement for DES standardized in 2002

» Key size: 128, 192 or 256 bits

¢ Hardware instruction support in some processors
¢ How fundamentally strong are they?

¢ No one knows (no proofs exist)

11/20/2013 Anthony D. Joseph CS162 ©UCB Fall 2013 21.21

Authentication via Secret Key
+ Main idea: entity proves identity by decrypting a secret
encrypted with its own key
— K — secret key shared only by A and B
+ A can asks B to authenticate itself by decrypting a nonce,
i.e., random value, x
— Avoid replay attacks (attacker impersonating client or server)
* Vulnerable to man-in-the middle attack

A B
E(x, K
Notation: E(m,k) —
encrypt message m
with key k
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Integrity: Cryptographic Hashes

+ Basic building block for integrity: cryptographic hashing
— Associate hash with byte-stream, receiver verifies match
» Assures data hasn’t been modified, either accidentally — or
maliciously
» Approach:
- Sender computes a secure digest of message m using H(x)
- H(x) is a publicly known hash function
- Digestd =HMAC (K, m)=H (K | H(K | m))
- HMAC(K, m) is a hash-based message authentication function

- Send digest d and message m to receiver
- Upon receiving m and d, receiver uses shared secret key, K, to

recompute HMAC(K, m) and see whether result agrees with d
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Using Hashing for Integrity

plajintext (m) corrupted msg m

Internet

Digest
HMAC(K,m)

HMAC(K,m)

Encrypted Digest
Unencrypted Message

Can encrypt m for confidentiality
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Standard Cryptographic Hash Functions

+ MD5 (Message Digest version 5)
— Developed in 1991 (Rivest), produces 128 bit hashes
— Widely used (RFC 1321)
— Broken (1996-2008): attacks that find collisions

+ SHA-1 (Secure Hash Algorithm)
— Developed in 1995 (NSA) as MD5 successor with 160 bit hashes
— Widely used (SSL/TLS, SSH, PGP, IPSEC)
— Broken in 2005, government use discontinued in 2010

+ SHA-2 (2001)
— Family of SHA-224, SHA-256, SHA-384, SHA-512 functions

- HMAC'’s are secure even with older “insecure” hash functions
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Public Key / Asymmetric Encryption

+ Sender uses receiver’s public key
— Advertised to everyone

+ Receiver uses complementary private key
— Must be kept secret

Plaintext Plaintext

Internet
Encrypt with Decrypt with
public key private key
Ciphertext
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Asymmetric Encryption (Public Key)

Idea: use two different keys, one to encrypt (e) and one to
decrypt (d)
— A key pair

Crucial property: knowing e does not give away d
Therefore e can be public: everyone knows it!

If Alice wants to send to Bob, she fetches Bob’s public key
(say from Bob’s home page) and encrypts with it

— Alice can’t decrypt what she’s sending to Bob ...
— ... but then, neither can anyone else (except Bob)
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Public Key Cryptography

+ Invented in the 1970s
— Revolutionized cryptography
— (Was actually invented earlier by British intelligence)

+ How can we construct an encryption/decryption algorithm
using a key pair with the public/private properties?
— Answer: Number Theory

+ Most fully developed approach: RSA
— Rivest / Shamir / Adleman, 1977; RFC 3447
— Based on modular multiplication of very large integers
— Very widely used (e.g., ssh, SSL/TLS for https)
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Properties of RSA

+ Requires generating large, random prime numbers
— Algorithms exist for quickly finding these (probabilistic!)

+ Requires exponentiating very large numbers
— Again, fairly fast algorithms exist

+ Overall, much slower than symmetric key crypto

— One general strategy: use public key crypto to exchange a (short)
symmetric session key

» Use that key then with AES or such

+ How difficult is recovering d, the private key?
— Equivalent to finding prime factors of a large number
» Many have tried - believed to be very hard (= brute force only)
» (Though quantum computers can do so in polynomial time!)

11/20/2013 Anthony D. Joseph CS162 ©UCB Fall 2013 21.29

Quiz 21.2: Cryptography

+ Q1: True _ False _ Integrity requires the sender to encrypt
the message

+ Q2: True _ False _ Asymmetric Key Cryptography is much
slower than Symmetric Key Cryptography

+ Q3: True _ False _ Encrypting a nonce (random number)
avoids replay attacks

+ Q4: True _ False _ Confidentiality guarantees data integrity
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Simple Public Key Authentication

+ Each side need only to know the other
side’s public key
— No secret key need be shared

+ A encrypts a nonce (random num.) x
—Avoid replay attacks, e.g., attacker

impersonating client or server

+ B proves it can recover x

Notation: E(m,k) —
encrypt message m
with key k

« A can authenticate itself to B in the
same way

+ Many more details to make this work

securely in practice!
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Administrivia

» Project 4 design due date changed
— Monday 12/2 by 11:59PM

+ Project 3 code due tomorrow (Thu 11/20) before
11:59PM
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5min Break
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Quiz 21.2: Cryptography

+ Q1: True _ False X Integrity requires the sender to encrypt
the message

+ Q2: TrueX False _ Asymmetric Key Cryptography is much
slower than Symmetric Key Cryptography

+ Q8: TrueX False _ Encrypting a nonce (random number)
avoids replay attacks

« Q4: True _ False X Confidentiality guarantees data integrity
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~28 BITS OF ENTROPY | | \WAS IT TROMBONE? NG,

UNCOMMON ORDER TROUBADOR. AND ONE OF
(Now-GIBBERSH) THE Os WAS A ZERD?
BASE WORD UNKNOWN s \
el o AND THERE™ WAS
( = 3 DAYS AT SOME SYMBOL...
TF@U b4dor &3 1000 GUESSES,/sec
(RS o oo
CAPS? 5%%2;_:\1%‘4“ s NUMERAL. | | el S st
PONCTUATION | | DIFFICOLTY T0 GUESS: | | DIFFICULTY To REMEMBER:
o T T EASY HARD

15 ONUY ONE OF A Fél CoMinow ORMATS)

~ 44 BITS OF ENTROPY

correct horse battery staple
2" =550 YEARS AT
/.
R R 1000 GUESSES/SEC
COMMON WORDS DIFFICULTY T0 GUESS: DIFFICYL;LUT\'/Y To REMEMBER:
HARD PERORED 1T

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
ToREMEMBER, BUT EASY FOR COMPUTERS TO GUESS.  https://xked.com/936/
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Non-Repudiation: RSA Crypto & Signatures
+ Suppose Alice has published public key K¢

+ If she wishes to prove who she is, she can send a
message x encrypted with her private key K (i.e.,
she sends E(x, Kp))

— Anyone knowing Alice’s public key K¢ can recover x, verify
that Alice must have sent the message

» It provides a signature
— Alice can’t deny it = non-repudiation
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RSA Crypto & Signatures (cont’d)

Alice

| Sign A/h
Bob $500 (Encrypt)

1 will pay
* Alice's

private key
DFCD3454
BBEA788A
Bob +
1 will pay Verify A/h
[
Bob $500 (Decrypt) Alice's
public key
Also need integrity checks
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Summary of Our Crypto Toolkit

+ If we can securely distribute a key, then

— Symmetric ciphers (e.g., AES) offer fast, presumably
strong confidentiality

+ Public key cryptography does away with (potentially major)
problem of secure key distribution

—But: not as computationally efficient

» Often addressed by using public key crypto to
exchange a session key

+ Digital signature binds the public key to an entity
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Digital Certificates

+ How do you know K¢ is Alice’s public key?

+ Trusted authority (e.g., Verisign) signs binding between Alice
and K¢ with its private key KV e
— C = E({Alice, Kg}, KV iyate)
— C: digital certificate

+ Alice: distribute her digital certificate, C

* Anyone: use trusted authority’s KV, to extract Alice’s
public key from C

= D(C, KV, i) = D(E({Alice, Ke}, KV iaie)s KV puoic) = {Alice, Kg}
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Putting It All Together - HTTPS

+ What happens when you click on
https://www.amazon.com?

* https = “Use HTTP over SSL/TLS”
— SSL = Secure Socket Layer
— TLS = Transport Layer Security
» Successor to SSL

— Provides security layer (authentication, encryption) on
top of TCP

» Fairly transparent to applications
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HTTPS Connection (SSL/TLS) (cont’d)

+ Browser (client) connects via Browser Amazon
TCP to Amazon’s HTTPS

server

« Client sends over list of
crypto protocols it supports

+ Server picks protocols to use
for this session

Server sends over its
certificate

(all of this is in the clear)
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Validating Amazon’s ldentity

+ How does the browser authenticate certificate signatory?

— Certificates of several certificate authorities (e.g., Verisign)
are hardwired into the browser (or OS)

+ If can’t find cert, warn user that site has not been verified
— And may ask whether to continue
— Note, can still proceed, just without authentication
+ Browser uses public key in signatory’s cert to decrypt
signature
— Compares with its own SHA-256 hash of Amazon’s cert
+ Assuming signature matches, now have high confidence
it’s indeed Amazon ...
— ... assuming signatory is trustworthy

— DigiNotar CA breach (July-Sept 2011): Google, Yahoo!,
Mozilla, Tor project, Wordpress, ... (531 total certificates)
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Inside the Server’s Certificate

» Name associated with cert (e.g., Amazon)
+ Amazon’s RSA public key
» A bunch of auxiliary info (physical address, type of cert,
expiration time)
» Name of certificate’s signatory (who signed it)
+ A public-key signature of a hash (SHA-256) of all this
— Constructed using the signatory’s private RSA key, i.e.,
— Cert = E(Hgpazse(KApbic: WWW.2Mazon.com, ...), KS,ya))
» KA, piic: Amazon’s public key
» KSpvatet Signatory (certificate authority) private key
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Certificate Validation
Certificate
E(Hspazss(KApupic; WWW.amazon.com, ...), KSpivae))s
oublic: WWW.amazon.com, ...
E(HSHAZSG(" -)! Kspublic'))
(recall, KS,,pc hardwired) Hsazss(KA i WWW.amazon.com, ..)
y L 2
Hsnazse(KApupicy WWW.amazon.com, ...) " Hsnazse(KApupicy WWW.amazon.com, ...)

Validation failed

Validation successful

Can also validate using peer approach: https://www.eff.org/observatory
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HTTPS Connection (SSL/TLS) cont’d

« Browser constructs a random
session key K used for data
communication

— Private key for bulk crypto
» Browser encrypts K using
Amazon’s public key
+ Browser sends E(K, KA ) to
server
- Browser displays g

+ All subsequent comm.
encrypted w/ symmetric cipher
(e.g., AES128) using key K

- E.g., client can authenticate using
a password

11/20/2013
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Browser Amazon
Here's my cert ‘
1 KB o 422
K
Ek |
. KAPUb/ic)

|
e — "

%
|
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Passwords: Secrecy

+ Example: UNIX /etc/passwd file

— passwd—one way transform(hash)—encrypted passwd
— System stores only encrypted version, so OK even if

someone reads the file!

— When you type in your password, system compares

encrypted version

11/20/2013
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Authentication: Passwords

+ Shared secret between two parties

+ Since only user knows password, someone types correct
password = must be user typing it

+ Very common technique

+ System must keep copy of secret to
check against passwords
— What if malicious user gains access to list of passwords?
» Need to obscure information somehow
— Mechanism: utilize a transformation that is difficult to reverse
without the right key (e.g. encryption)
11/20/2013
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Passwords: How easy to guess?

+ Three common ways of compromising passwords
+ Password Guessing:
— Often obvious passwords like birthday, favorite color, girlfriend’s
name, etc...
— Trivia question 1: what is the most popular password?
— Trivia question 2: what is the next most popular password?
— Answer: (from 32 million stolen passwords— Rockyou 2010)
http://www.nytimes.com/2010/01/21/technology/21password.html

+ Dictionary Attack (against stolen encrypted list):
— Work way through dictionary and compare encrypted version of
dictionary words with entries in /etc/passwd
— http://www.skullsecurity.org/wiki/index.php/Passwords

* Dumpster Diving:
— Find pieces of paper with passwords written on them

— (Also used to get social-security numbers, etc.)
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Passwords: How easy to guess? (cont’d)

+ Paradox:
— Short passwords are easy to crack
— Long ones, people write down!

+ Technology means we have to use longer passwords
— UNIX initially required lowercase, 5-letter passwords: total of
265=10million passwords
» In 1975, 10ms to check a password—1 day to crack
» In 2005, .01us to check a password—0.1 seconds to crack
— Takes less time to check for all words in the dictionary!
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Passwords: Making harder to crack (cont’d)

+ Technique 2: Require more complex passwords
— Make people use at least 8-character passwords with upper-
case, lower-case, and numbers
» 708=6x10"“=6million seconds=69 days@0.01ps/check
— Unfortunately, people still pick common patterns
» e.g. Capitalize first letter of common word, add one digit

+ Technique 3: Delay checking of passwords

— If attacker doesn’t have access to /etc/passwd, delay every
remote login attempt by 1 second

— Makes it infeasible for rapid-fire dictionary attack
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Passwords: Making harder to crack

+ Can’t make it impossible to crack, but can make it harder

+ Technique 1: Extend everyone’s password with a unique
number (“Salt” — stored in password file)
— Early UNIX uses 12-bit “salt” =»dictionary attacks 4096x harder

— Without salt, could pre-compute all the words in the dictionary
hashed with UNIX algorithm (modern salts are 48-128 bits)
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Passwords: Making harder to crack (cont’d)

» Technique 4: Assign very long passwords/passphrases

— Can have more entropy (randomness—harder to crack)

— Embed password in a smart card (or ATM card)
» Requires physical theft to steal password
» Can require PIN from user before authenticates self

— Better: have smartcard or smartphone generate pseudorandom

number

» Client and server share initial seed
» Each second/login attempt advances random number

o 966286

o 09133 @

|
| OskiBEAR

i 12345678

| Qski” Bear

LT TR [ et

11/20/2013
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Passwords: Making harder to crack (cont’d)

+ Technique 5: “Zero-Knowledge Proof”
— Require a series of challenge-response questions
» Distribute secret algorithm to user
» Server presents number; user computes something from number;
returns answer to server; server never asks same “question” twice

— Often performed by smartcard plugged into system

+ Technique 6: Replace password with Biometrics

— Use of one or more intrinsic physical or
behavioral traits to identify someone

&/ A\

— Examples: fingerprint reader, palm reader, retinal scan
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Conclusion

Distributed identity: Use cryptography
Symmetrical (or Private Key) Encryption

— Single Key used to encode and decode

— Introduces key-distribution problem
Public-Key Encryption

—Two keys: a public key and a private key

— Slower than private key, but simplifies key-distribution
Secure Hash Function

—Used to summarize data

—Hard to find another block of data with same hash
Passwords

—Encrypt and salt them to help hide them

—Force them to be longer/not amenable to dictionary attack

—Use zero-knowledge request-response techniques
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