
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 23

Remote Procedure Call

November 27, 2013
Anthony D. Joseph and John Canny
http://inst.eecs.berkeley.edu/~cs162

23.211/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Goals for Today
• Remote Procedure Call

• Examples using RPC
– Distributed File Systems
– World-Wide Web

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
notes by Joseph and Kubiatowicz.

23.311/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Distributed Systems – Message Passing
• Distributed systems use a variety of messaging frameworks

to communicate:
– e.g. the protocols for TCP: connecting, flow control, loss…
– 2PC for transaction processing
– HTTP GET and POST
– UDP messages for MS SQL Server (last time)

• Disadvantages of message passing:
– Complex, stateful protocols, versions, feature creep
– Need error recovery, data protection, etc.
– Ad-hoc checks for message integrity
– Resources consumed on server between messages (DoS risk)
– Need to program for different OSes, target languages,…

• Want a higher-level abstraction that addresses these issues,
but whose effects are application-specific

23.411/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Remote Procedure Call

• Another option: Remote Procedure Call (RPC)
– Looks like a local procedure call on client:

file.read(1024);
– Translated automatically into a procedure call on remote

machine (server)

• Implementation:
– Uses request/response message passing “under the covers”
– Deals with many of the generic challenges of protocols that

use message passing – may even be “transactional” - but
usually not.

– Allows the programmer to focus on the message effects: as
though the procedure were executed on the server.

Page 2

23.511/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

RPC Details
• Client and server use “stubs” to glue pieces together

– Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

– Server-side stub is responsible for “unmarshalling” arguments
and “marshalling” the return values

• Marshalling involves (depending on system) converting
values to a canonical form, serializing objects, copying
arguments passed by reference, etc.

– Needs to account for cross-language and cross-platform
issues

• Technique: compiler generated stubs
– Input: interface definition language (IDL)

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language

23.611/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etw

orkN
et

w
or

k

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B

23.711/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

RPC Binding
• How does client know which machine to send RPC?

– Need to translate name of remote service into network endpoint
(e.g., host:port)

– Binding: the process of converting a user-visible name into a
network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• Object registry (if used)
– Contains remote object names and client stub code
– Allows dynamic loading of remote object stub

23.811/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address spaces
on different machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– ONC/RPC (originally SUN RPC) in Linux, Windows,…
– DCE/RPC (Distributed Computing Environment/RPC)
– MSRPC: Microsoft version of DCE/RPC
– RMI (Java Remote Method Invocation)

Page 3

23.911/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Microkernel Operating Systems

• Example: split kernel into application-level servers using RPC
– File system looks remote, even though on same machine

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

23.1011/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Microkernel Operating Systems

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces of

software (client or server)
– Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can be on
a separate machine from X server; Neither has to run on the
machine with the frame buffer

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

23.1111/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Problems with RPC
• Handling failures

– Different failure modes in distributed system than on a single
machine

– Without RPC a failure within a procedure call usually meant
whole application would crash/die

– With RPC a failure within a procedure call means remote
machine crashed, but local one could continue working

– Answer? Distributed transactions can help

• Performance
– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware they are using RPC (so

much for transparency!)
» Caching can help, but may make failure handling even more

complex

23.1211/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Distributed File Systems

• Distributed File System:
– Transparent access to files stored on a remote disk
– Transparent concurrency: All clients have the same view of

the state of the file system.
– Failure transparency The client and client programs should

operate correctly after a server failure.
– Replication transparency To support scalability, we may

wish to replicate files across multiple servers. Clients should
be unaware of this.

– Migration transparency Files should be able to move
around without the client's knowledge.

Network
Read File

Data
Client Server

Page 4

23.1311/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Distributed File Systems
• Naming choices (always an issue):

– Hostname:localname: Name files explicitly
» No location or migration transparency

– Mounting of remote file systems
» System manager mounts remote file system

by giving name and local mount point
» Transparent to user: all reads and writes

look like local reads and writes to user
e.g. /users/sue/foo/sue/foo on server

– A single, global name space: every file
in the world has unique name

» Location Transparency: servers
can change and files can move
without involving user mount

coeus:/sue
mount
adj:/prog

mount
adj:/jane

23.1411/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Simple Distributed File System

• EVERY read and write gets forwarded to server

• Advantage: Server provides completely consistent view of
file system to multiple clients

• Problems? Performance!
– Going over network is slower than going to local memory
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client
cache

23.1511/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Failures

• What if server crashes? Can client wait until server comes
back up and continue as before?

– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after seek?

Then, when client does “read”, it will fail
– Message retries: suppose server crashes after it does UNIX “rm

foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with two-

phase commit protocol, but NFS takes a more ad hoc approach)

Crash!

23.1611/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Stateless Protocol

• Stateless protocol: A protocol in which all information
required to process a request is passed with request

– Server keeps no state about client, except as hints to help
improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can continue
where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

• Examples:
– HTTP
– REST (Representational State Transfer)

• Stateful
– SOAP (Simple Object Access Protocol) - usually over HTTP!

Crash!

Page 5

23.1711/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Network File System (NFS)

• Three Layers for NFS system
– UNIX file-system interface: open, read, write, close calls + file

descriptors
– VFS layer: distinguishes local from remote files

» Calls the NFS protocol procedures for remote requests
– NFS service layer: bottom layer of the architecture

» Implements the NFS protocol

23.1811/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Schematic View of NFS Architecture

23.1911/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Network File System (NFS)
• NFS Protocol: RPC for file operations on server

– Reading/searching a directory
– Manipulating links and directories
– Accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to server’s
disk before results are returned to the client

– Lose some of the advantages of caching
– Time to perform write() can be long
– Need some mechanism for readers to eventually notice

changes! (more on this later)

23.2011/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such as

ReadAt(inumber,position), not Read(openfile)
– No need to perform network open() or close() on file – each

operation stands on its own

• Idempotent: Performing requests multiple times has same
effect as performing it exactly once

– Example: Server crashes between disk I/O and message send,
client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-write file
block – no side effects

– Example: What about “remove”? NFS does operation twice and
second time returns an advisory error

Page 6

23.2111/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

NFS Continued
• Failure Model: Transparent to client system

– Is this a good idea? What if you are in the middle of reading a
file and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are

talking over network)

23.2211/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds
(exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, but
other clients use old version of file until timeout.

What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

NFS Cache consistency

cache
F1:V2

Server
Client

cache

Client

cache

F1:V1

F1:V2

F1:V2
F1 still ok?
No: (F1:V2)

23.2311/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

NFS Pros and Cons
• NFS Pros:

– Simple, Highly portable
• NFS Cons:

– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

23.2411/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Andrew File System
• Andrew File System (AFS, late 80’s)  DCE DFS (commercial

product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the

file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible

immediately to other programs who have file open

• In AFS, everyone who has file open sees old version
– Don’t get newer versions until reopen file

Page 7

23.2511/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Andrew File System (con’t)

• Data cached on local disk of client as well as memory
– On open with a cache miss (file not on local disk):

» Get file from server, set up callback with server
– On write followed by close:

» Send copy to server; tells all clients with copies to fetch new
version from server on next open (using callbacks)

• What if server crashes? Lose all callback state!
– Reconstruct callback information from client: go ask everyone

“who has which files cached?”

23.2611/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Andrew File System (con’t)

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

23.2711/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Administrivia

• MIDTERM II 5:30-7pm in 145 Dwinelle (A-L) and 2060
Valley LSB (M-Z)

– Review: 306 Soda 7-9pm, Sunday Dec 1
– Covers Lectures #14-24, projects, and readings
– One sheet of notes, both sides

• Project 4 Initial Design Due Monday

23.2811/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

5min Break

Page 8

23.2911/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ RPC requires special networking
support and functionality

• Q2: True _ False _ The client and server for RPC must use
the same hardware architecture (e.g., little endian)

• Q3: True _ False _ Local procedure call << same-machine
RPC << remote machine RPC

• Q4: True _ False _ NFS provides weak client-server data
consistency

Quiz 23.1: RPC and NFS

23.3011/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ RPC requires special networking
support and functionality

• Q2: True _ False _ The client and server for RPC must use
the same hardware architecture (e.g., little endian)

• Q3: True _ False _ Local procedure call << same-machine
RPC << remote machine RPC

• Q4: True _ False _ NFS provides weak client-server data
consistency

Quiz 23.1: RPC and NFS

X

X

X

X

23.3111/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Distributed Object-Oriented Systems

Distributed systems, like any complex software benefit from
careful software architecture, especially object-oriented
programming.

Major efforts were devoted to OOP distributed systems
architectures:
• CORBA (Common Object Request Broker Architecture)
• DCOM (Distributed Component Object Model) from MS,

which drew heavily from the open system DCE/DFS
These systems use remote methods, and add object proxying
and even garbage collection.

23.3211/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Internet-Scale Distributed Computing
• CORBA and DCOM were robust, powerful RPC-based

distributed object systems. They were supposed to become
the substrate for internet-scale distributed computing.
What happened? (they didn’t)

• From last time:
– Morris worm
– Code Red
– Slammer ………………….

which led to…

• Ubiquitous firewalls, packet filters etc., across the internet.

• HTTP (port 80) was the only reliable route to a remote host

Page 9

23.3311/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Internet-Scale Distributed Computing
• One approach is to tunnel other types of payload (other than

HTTP) through port 80, and demultiplex at the server.
Usually, but not always, this works.

• Instead many systems have used HTTP directly as a high-
level transport for RPC. A cluster of technologies have
developed around data messaging, RPC and distributed
objects over HTTP:

– SOAP/WSDL
– REST
– and enabled by XML and JSON (JavaScript Object Notation)

23.3411/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

WWW- SOAP RPC

SOAP covers the following four main areas:
• A message format for one-way communication

describing how a message can be packed into an XML
document.

• A description of how a SOAP message should be
transported using HTTP (for Web-based interaction) or
SMTP (for e-mail-based interaction).

• A set of rules that must be followed when processing a
SOAP message and a simple classification of the entities
involved in processing a SOAP message.

• A set of conventions on how to turn an RPC call into a
SOAP message and back.

23.3511/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Soap Message

Typically an XML element containing header and body
elements

23.3611/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

SOAP RPC

SOAP RPC messages typically encode arguments that are
presented to the calling program as parameters and return
values:

Page 10

23.3711/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Soap RPC

23.3811/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Soap Response

23.3911/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

WSDL
Is “Web Services Description Language” an XML format for
specifying metadata about a SOAP protocol.

WSDL is used to describe precisely
• what a service does, i.e., the operations the service

provides,
• where it resides, i.e., details of the protocol specific

address, e.g., a URL, and
• how to invoke it, i.e., details of the data formats and

protocols

23.4011/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

WSDL
Service Implementation section 
Service Interface section 

Page 11

23.4111/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

REST – “post RPC”

REpresentation State Transfer

Stateless Client/Server Protocol: Principles
1. Each message in the protocol contains all the

information needed by the receiver to understand
and/or process it. This constraint attempts to “keep
things simple” and avoid needless complexity

2. Set of Uniquely Addressable Resources
– “Everything is a Resource” in a RESTful system
– Requires universal syntax for resource identification (e.g.

URI)

23.4211/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

REST

3. Set of Well-Defined Operations that can be applied to
all resources
– In context of HTTP, the primary methods are
– POST, GET, PUT, DELETE
– these are similar (but not exactly) to the database notion of
– CRUD (Create, Read, Update, Delete)

4. The use of Hypermedia both for Application Information
and State Transitions
– Resources are typically stored in a structured data format

that supports hypermedia links, such as XHTML or XML

23.4311/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

REST

Idempotency: repeated application of the operation does
not change the state of the target

23.4411/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

REST example
<user>

<name>Jane</name>
<gender>female</gender>
<location href="http://www.example.org/us/ny/new_york">

New York City, NY, USA</location>
</user>

This documentation is a representation used for the User resource
It might live at http://www.example.org/users/jane/
• If a user needs information about Jane, they GET this resource
• If they need to modify it, they GET it, modify it, and PUT it back
• The href to the Location resource allows savvy clients to gain access

to its information with another simple GET request
Implication: Clients cannot be “thin”; need to understand resource
formats

Page 12

23.4511/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

REST vs. RPC

In RPC systems, the design emphasis is on verbs
• What operations can I invoke on a system?
• getUser(), addUser(), removeUser(), updateUser(),

getLocation(), updateLocation(), listUsers(),
listLocations(), etc.

In REST systems, the design emphasis is on nouns
• User, Location
• In REST, you would define XML representations for

these resources and then apply the standard methods to
them

23.4611/27/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Conclusion
• Remote Procedure Call (RPC): Call procedure on remote

machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user

programming (in stub)

• Distributed File System:
– Transparent access to files stored on a remote disk

» NFS uses caching for performance

• SOAP and WSDL:
– An RPC protocol and an RPC description format

• REST:
– Simplicity of RPC without any state and without “verbs”

