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Goals for Today
• Remote Procedure Call

• Examples using RPC 
– Distributed File Systems
– World-Wide Web

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
notes by Joseph and Kubiatowicz. 
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Distributed Systems – Message Passing
• Distributed systems use a variety of messaging frameworks 

to communicate: 
– e.g. the protocols for TCP: connecting, flow control, loss…
– 2PC for transaction processing
– HTTP GET and POST
– UDP messages for MS SQL Server (last time)

• Disadvantages of message passing:
– Complex, stateful protocols, versions, feature creep
– Need error recovery, data protection, etc.
– Ad-hoc checks for message integrity
– Resources consumed on server between messages (DoS risk)
– Need to program for different OSes, target languages,…

• Want a higher-level abstraction that addresses these issues, 
but whose effects are application-specific
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Remote Procedure Call

• Another option: Remote Procedure Call (RPC)
– Looks like a local procedure call on client:

file.read(1024);
– Translated automatically into a procedure call on remote 

machine (server)

• Implementation:
– Uses request/response message passing “under the covers”
– Deals with many of the generic challenges of protocols that 

use message passing – may even be “transactional” - but 
usually not. 

– Allows the programmer to focus on the message effects: as 
though the procedure were executed on the server.
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RPC Details
• Client and server use “stubs” to glue pieces together

– Client stub is responsible for “marshalling” arguments and 
“unmarshalling” the return values

– Server-side stub is responsible for “unmarshalling” arguments 
and “marshalling” the return values

• Marshalling involves (depending on system) converting 
values to a canonical form, serializing objects, copying 
arguments passed by reference, etc.

– Needs to account for cross-language and cross-platform 
issues 

• Technique: compiler generated stubs
– Input: interface definition language (IDL)

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language
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RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etw

orkN
et

w
or

k

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B

23.711/27/2013 Anthony D. Joseph and John Canny       CS162        ©UCB Fall 2013

RPC Binding
• How does client know which machine to send RPC?

– Need to translate name of remote service into network endpoint 
(e.g., host:port)

– Binding: the process of converting a user-visible name into a 
network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• Object registry (if used)
– Contains remote object names and client stub code
– Allows dynamic loading of remote object stub
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Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address spaces 
on different machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– ONC/RPC (originally SUN RPC) in Linux, Windows,…
– DCE/RPC (Distributed Computing Environment/RPC)
– MSRPC: Microsoft version of DCE/RPC
– RMI (Java Remote Method Invocation)
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Microkernel Operating Systems

• Example: split kernel into application-level servers using RPC
– File system looks remote, even though on same machine
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Microkernel Operating Systems

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces of 

software (client or server)
– Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can be on 
a separate machine from X server; Neither has to run on the 
machine with the frame buffer
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Problems with RPC
• Handling failures

– Different failure modes in distributed system than on a single 
machine

– Without RPC a failure within a procedure call usually meant 
whole application would crash/die

– With RPC a failure within a procedure call means remote 
machine crashed, but local one could continue working

– Answer? Distributed transactions can help

• Performance
– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware they are using RPC (so 

much for transparency!) 
» Caching can help, but may make failure handling even more 

complex
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Distributed File Systems

• Distributed File System: 
– Transparent access to files stored on a remote disk
– Transparent concurrency: All clients have the same view of 

the state of the file system. 
– Failure transparency The client and client programs should 

operate correctly after a server failure.
– Replication transparency To support scalability, we may 

wish to replicate files across multiple servers. Clients should 
be unaware of this.

– Migration transparency Files should be able to move 
around without the client's knowledge.

Network
Read File

Data
Client Server
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Distributed File Systems
• Naming choices (always an issue):

– Hostname:localname: Name files explicitly
» No location or migration transparency

– Mounting of remote file systems
» System manager mounts remote file system

by giving name and local mount point
» Transparent to user: all reads and writes 

look like local reads and writes to user
e.g. /users/sue/foo/sue/foo on server

– A single, global name space: every file 
in the world has unique name

» Location Transparency: servers 
can change and files can move 
without involving user mount

coeus:/sue
mount
adj:/prog

mount
adj:/jane
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Simple Distributed File System

• EVERY read and write gets forwarded to server

• Advantage: Server provides completely consistent view of 
file system to multiple clients

• Problems?  Performance!
– Going over network is slower than going to local memory
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client
cache
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Failures

• What if server crashes? Can client wait until server comes 
back up and continue as before?

– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after seek? 

Then, when client does “read”, it will fail
– Message retries: suppose server crashes after it does UNIX “rm 

foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with two-

phase commit protocol, but NFS takes a more ad hoc approach)

Crash!
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Stateless Protocol

• Stateless protocol: A protocol in which all information 
required to process a request is passed with request

– Server keeps no state about client, except as hints to help 
improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can continue 
where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

• Examples:
– HTTP
– REST (Representational State Transfer)

• Stateful
– SOAP (Simple Object Access Protocol) - usually over HTTP!

Crash!
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Network File System (NFS)

• Three Layers for NFS system
– UNIX file-system interface: open, read, write, close calls + file 

descriptors
– VFS layer: distinguishes local from remote files

» Calls the NFS protocol procedures for remote requests
– NFS service layer: bottom layer of the architecture

» Implements the NFS protocol
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Schematic View of NFS Architecture 
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Network File System (NFS)
• NFS Protocol: RPC for file operations on server

– Reading/searching a directory 
– Manipulating links and directories 
– Accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to server’s 
disk before results are returned to the client 

– Lose some of the advantages of caching
– Time to perform write() can be long
– Need some mechanism for readers to eventually notice 

changes! (more on this later)

23.2011/27/2013 Anthony D. Joseph and John Canny       CS162        ©UCB Fall 2013

NFS Continued
• NFS servers are stateless; each request provides all 

arguments require for execution
– E.g. reads include information for entire operation, such as 

ReadAt(inumber,position), not Read(openfile)
– No need to perform network open() or close() on file – each 

operation stands on its own

• Idempotent: Performing requests multiple times has same 
effect as performing it exactly once

– Example: Server crashes between disk I/O and message send, 
client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-write file 
block – no side effects

– Example: What about “remove”?  NFS does operation twice and 
second time returns an advisory error 
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NFS Continued
• Failure Model: Transparent to client system

– Is this a good idea?  What if you are in the middle of reading a 
file and server crashes? 

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are 

talking over network)
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• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds 
(exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, but 
other clients use old version of file until timeout.

What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

NFS Cache consistency

cache
F1:V2

Server
Client

cache

Client

cache

F1:V1

F1:V2

F1:V2
F1 still ok?
No: (F1:V2)
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NFS Pros and Cons
• NFS Pros:

– Simple, Highly portable
• NFS Cons:

– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic
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Andrew File System
• Andrew File System (AFS, late 80’s)  DCE DFS (commercial 

product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the 

file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible 

immediately to other programs who have file open

• In AFS, everyone who has file open sees old version
– Don’t get newer versions until reopen file
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Andrew File System (con’t)

• Data cached on local disk of client as well as memory
– On open with a cache miss (file not on local disk):

» Get file from server, set up callback with server 
– On write followed by close:

» Send copy to server; tells all clients with copies to fetch new 
version from server on next open (using callbacks)

• What if server crashes? Lose all callback state!
– Reconstruct callback information from client: go ask everyone 

“who has which files cached?”
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Andrew File System (con’t)

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation
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Administrivia

• MIDTERM II 5:30-7pm in 145 Dwinelle (A-L) and 2060 
Valley LSB (M-Z) 

– Review: 306 Soda 7-9pm, Sunday Dec 1
– Covers Lectures #14-24, projects, and readings
– One sheet of notes, both sides

• Project 4 Initial Design Due Monday
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5min Break
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• Q1: True _  False _  RPC requires special networking 
support and functionality

• Q2: True _  False _  The client and server for RPC must use 
the same hardware architecture (e.g., little endian) 

• Q3: True _  False _  Local procedure call << same-machine 
RPC << remote machine RPC

• Q4: True _  False _  NFS provides weak client-server data 
consistency

Quiz 23.1: RPC and NFS
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Distributed Object-Oriented Systems

Distributed systems, like any complex software benefit from 
careful software architecture, especially object-oriented 
programming. 

Major efforts were devoted to OOP distributed systems 
architectures:
• CORBA (Common Object Request Broker Architecture)
• DCOM (Distributed Component Object Model) from MS, 

which drew heavily from the open system DCE/DFS
These systems use remote methods, and add object proxying
and even garbage collection.
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Internet-Scale Distributed Computing
• CORBA and DCOM were robust, powerful RPC-based 

distributed object systems. They were supposed to become 
the substrate for internet-scale distributed computing.
What happened? (they didn’t)

• From last time:
– Morris worm
– Code Red
– Slammer ………………….

which led to…

• Ubiquitous firewalls, packet filters etc., across the internet. 

• HTTP (port 80) was the only reliable route to a remote host
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Internet-Scale Distributed Computing
• One approach is to tunnel other types of payload (other than 

HTTP) through port 80, and demultiplex at the server. 
Usually, but not always, this works.

• Instead many systems have used HTTP directly as a high-
level transport for RPC. A cluster of technologies have 
developed around data messaging, RPC and distributed 
objects over HTTP:

– SOAP/WSDL
– REST
– and enabled by XML and JSON (JavaScript Object Notation)
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WWW- SOAP RPC

SOAP covers the following four main areas:
• A message format for one-way communication 

describing how a message can be packed into an XML 
document.

• A description of how a SOAP message should be 
transported using HTTP (for Web-based interaction) or 
SMTP (for e-mail-based interaction).

• A set of rules that must be followed when processing a 
SOAP message and a simple classification of the entities 
involved in processing a SOAP message.

• A set of conventions on how to turn an RPC call into a 
SOAP message and back.
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Soap Message

Typically an XML element containing header and body 
elements
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SOAP RPC

SOAP RPC messages typically encode arguments that are 
presented to the calling program as parameters and return 
values:
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Soap RPC
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Soap Response
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WSDL
Is “Web Services Description Language” an XML format for 
specifying metadata about a SOAP protocol.

WSDL is used to describe precisely
• what a service does, i.e., the operations the service 

provides,
• where it resides, i.e., details of the protocol specific 

address, e.g., a URL, and
• how to invoke it, i.e., details of the data formats and 

protocols
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WSDL
Service Implementation section 
Service Interface section 
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REST – “post RPC”

REpresentation State Transfer

Stateless Client/Server Protocol: Principles
1. Each message in the protocol contains all the 

information needed by the receiver to understand 
and/or process it. This constraint attempts to “keep 
things simple” and avoid needless complexity

2. Set of Uniquely Addressable Resources
– “Everything is a Resource” in a RESTful system
– Requires universal syntax for resource identification (e.g. 

URI)
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REST

3. Set of Well-Defined Operations that can be applied to 
all resources
– In context of HTTP, the primary methods are
– POST, GET, PUT, DELETE
– these are similar (but not exactly) to the database notion of
– CRUD (Create, Read, Update, Delete)

4. The use of Hypermedia both for Application Information 
and State Transitions
– Resources are typically stored in a structured data format 

that supports hypermedia links, such as XHTML or XML
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REST

Idempotency: repeated application of the operation does 
not change the state of the target
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REST example
<user>

<name>Jane</name>
<gender>female</gender>
<location href="http://www.example.org/us/ny/new_york">

New York City, NY, USA</location>
</user>

This documentation is a representation used for the User resource
It might live at http://www.example.org/users/jane/
• If a user needs information about Jane, they GET this resource
• If they need to modify it, they GET it, modify it, and PUT it back
• The href to the Location resource allows savvy clients to gain access 

to its information with another simple GET request
Implication: Clients cannot be “thin”; need to understand resource 
formats
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REST vs. RPC

In RPC systems, the design emphasis is on verbs
• What operations can I invoke on a system?
• getUser(), addUser(), removeUser(), updateUser(), 

getLocation(), updateLocation(), listUsers(), 
listLocations(), etc.

In REST systems, the design emphasis is on nouns
• User, Location
• In REST, you would define XML representations for 

these resources and then apply the standard methods to 
them
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Conclusion
• Remote Procedure Call (RPC): Call procedure on remote 

machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user 

programming (in stub)

• Distributed File System:
– Transparent access to files stored on a remote disk

» NFS uses caching for performance

• SOAP and WSDL:
– An RPC protocol and an RPC description format

• REST:
– Simplicity of RPC without any state and without “verbs”


