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1 Your Task
In this project, you will add features to the threading system of the educational operating system Pintos.
We will introduce these features briefly and provide more details in the reference material at the end of
this document.

In Project 1, each thread that you dealt with (except the init and idle threads) was also a process,
with its own address space, data backed by an executable file, and ability to execute in userspace.
Importantly, each thread that was also a userspace process in Project 1 was the only thread in that
process; multithreaded user programs were not supported. Task 3: User Threads of this project, we will
be overcoming this limitation by adding support for multithreaded user programs. For Task 1: Efficient
Alarm Clock and Task 2: Schedulers of this project, we will simplify things by implementing features
only for kernel threads—threads that only execute in the kernel mode and have no userspace component.

1.1 Task 1: Efficient Alarm Clock
In Pintos, threads may call this function to put themselves to sleep:

/**
* This function suspends execution of the calling thread until time has
* advanced by at least x timer ticks. Unless the system is otherwise idle, the
* thread need not wake up after exactly x ticks. Just put it on the ready queue
* after they have waited for the right number of ticks. The argument to
* timer_sleep() is expressed in timer ticks, not in milliseconds or any another
* unit. There are TIMER_FREQ timer ticks per second, where TIMER_FREQ is a
* constant defined in devices/timer.h (spoiler: it’s 100 ticks per second).
*/

void timer_sleep (int64_t ticks);

timer_sleep() is useful for threads that operate in real-time (e.g. for blinking the cursor once per
second). The current implementation of timer_sleep() is inefficient, because it calls thread_yield()
in a loop until enough time has passed. This consumes CPU cycles while the thread is waiting. Your
task is to re-implement timer_sleep() so that it executes efficiently without any “busy waiting”.

1.2 Task 2: Schedulers
1.2.1 Strict Priority Scheduler

In Pintos, each thread has a priority value ranging from 0 (PRI_MIN) to 63 (PRI_MAX). However, the
current scheduler does not respect these priority values. You must modify the scheduler so that higher-
priority threads always run before lower-priority threads (i.e., strict priority scheduling).

You must also modify the 3 Pintos synchronization primitives (lock, semaphore, condition variable),
so that these shared resources prefer higher-priority threads over lower-priority threads.

Additionally, you must implement priority donation for Pintos locks. When a high-priority thread
(A) has to wait to acquire a lock, which is already held by a lower-priority thread (B), we temporarily
raise B’s priority to A’s priority. A scheduler that does not donate priorities is prone to the problem of
priority inversion whereby a medium-priority thread runs while a high-priority thread (A) waits on a
resource held by a low-priority thread (B). A scheduler that supports priority donation would allow B to
run first, so that A, which has the highest priority, can be unblocked. Your implementation of priority
donation must handle 1) donations from multiple sources, 2) undoing donations when a lock is released,
and 3) nested/recursive donation.

A thread may set its own priority by calling thread_set_priority(int new_priority) and get its
own priority by calling thread_get_priority().

3



CS 162 Fall 2021 Project 2: Threads

If a thread no longer has the highest “effective priority” (it called thread_set_priority() with a
low value or it released a lock), it must immediately yield the CPU to the highest-priority thread.

1.2.2 Fair Priority Scheduler

You may remember from lecture that few modern operating systems use truly strict priority schedulers;
this is chiefly due to their propensity for inducing starvation in low-priority threads. Rather than simply
getting proportionally less time on the CPU, threads with low enough priority will often fail to ever
get scheduled at all. As such, in addition to the strict priority scheduler algorithm described in Strict
Priority Scheduler, you must design and implement a second, priority-based scheduler, built around an
algorithm of your choice selected to ensure that all threads are able to make consistent, if slow, forward
progress. For more details on exactly what is expected of your implementation for this component, refer
to the Fair Scheduler section.

This section is meant to be design-heavy, and as such we expect your design document to be especially
thorough with regards to this component. We will expect you to have considered a minimum of three
possible approaches to this problem, so take care to describe:

I. Which options you considered (minimum of three);

II. What relative advantages and disadvantages each has;

III. Why you chose the algorithm you did from among them.

Your writeup for this task will constitute a sizeable portion of your design document grade. Note
that your final algorithm does not have to be particularly complex, and you will not be graded on the
intricacy of your design: to the contrary, many of the best schedulers in use today are deceptively simple
at their core.

We look forward to seeing what you come up with!

1.3 Task 3: User Threads
Pintos is a multithreaded kernel, i.e. there can be more than one thread running in the kernel.
While working on Project 1, you have no doubt worked with the threading interface in the kernel.
In threads/thread.c, the thread_create function allows us to create a new kernel thread that runs a
specific kernel task, and the thread_exit function allows a thread to kill itself. You should read and
understand the kernel threading model.

On the other hand, as it were in Project 1, each user process only had one thread of control. In other
words, it is impossible for a user program to create a new thread to run another user function – there
was no analog of thread_create and thread_exit for user programs. In a real system, user programs
can indeed create their own threads. We saw this via the pthread library, which we learned about in
discussion1.

In this project, you will need to implement a simplified version of the pthread library that allows
user programs to create their own threads using the functions pthread_create and pthread_exit in
lib/user/pthread.h. Threads can also wait on other threads with the pthread_join function, which
is similar to the wait system call for processes. Threads should be able to learn their thread IDs (TIDs)
through a new get_tid system call. You must also account for how the syscalls in Project 1 are affected
by making user programs multithreaded.

• In Project 1, whenever a user program (which consisted of just a single thread) trapped into the
OS, it ran in its own dedicated kernel thread. In other words, user threads had a 1-1 mapping
with kernel threads. For Task 3: User Threads, you will need to maintain this 1-1 mapping; that
is, a user process with n user threads should be paired 1-1 with n kernel threads, and each user
thread should run in its dedicated kernel thread when it traps into the OS.

1https://cs162.org/static/sections/section1-sol.pdf
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• You should not implement green threads2, which have a many-to-one mapping between user
threads and kernel threads. Green threads are not ideal, because as soon as one user thread
blocks, e.g. on IO, all of the user threads are also blocked.

In addition, you must also implement user-level synchronization. After all, threads are not all that
useful if we can’t synchronize them properly with locks and semaphores. You will be required to im-
plement lock_init, lock_acquire, lock_release, sema_init, sema_down, and sema_up for user pro-
grams.

2https://en.wikipedia.org/wiki/Green_threads
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2 Deliverables
Your project grade will be made up of 4 components:

• 15% Design Document and Design Review

• 75% Code

• 10% Final Report and Code Quality

2.1 Design Document and Design Review
Before you start writing any code for your project, you should create an implementation plan for each
feature and convince yourself that your design is correct. For this project, you must submit a design
document and attend a design review with your project TA.

2.1.1 Design Document Guidelines

Submit your design document as a PDF to the Project 2 Design Document assignment on Gradescope.
For each of the 3 tasks of this project you must explain the following 4 aspects of your proposed

design. We suggest you create a section for each of the 3 project tasks. Then, create subsections for
each of these 4 aspects.

1. Data structures and functions – Write down any struct definitions, global (or static) variables,
typedefs, or enumerations that you will be adding or modifying (if it already exists). These
definitions should be written with the C programming language, not with pseudocode. Include
a brief explanation the purpose of each modification. Your explanations should be as concise as
possible. Leave the full explanation to the following sections.

2. Algorithms – This is where you tell us how your code will work. Your description should be at a
level below the high level description of requirements given in the assignment. We have read the
project spec too, so it is unnecessary to repeat or rephrase what is stated here. On the other hand,
your description should be at a level above the code itself. Don’t give a line-by-line run-down of
what code you plan to write. Instead, you should try to convince us that your design satisfies all
the requirements, including any uncommon edge cases.

The length of this section depends on the complexity of the task and the complexity of your
design. Simple explanations are preferred, but if your explanation is vague or does not provide
enough details, you will be penalized. Here are some tips:

• For complex tasks, like the priority scheduler, we recommend that you split the task into
parts. Describe your algorithm for each part in a separate section. Start with the simplest
component and build up your design, one piece at a time. For example, your algorithms
section for the Priority Scheduler could have sections for:

– Choosing the next thread to run
– Acquiring a Lock
– Releasing a Lock
– Computing the effective priority
– Priority scheduling for semaphores and locks
– Priority scheduling for condition variables
– Changing thread’s priority

• Lists can make your explanation more readable. If your paragraphs seem to lack coherency,
consider using a list.
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• A good length for this section could be 1 paragraph for a simple task (Alarm Clock) or 2
screen pages for a complex task (Priority Scheduler). Make sure your explanation covers all
of the required features.

• We fully expect you to read a lot of Pintos code to prepare for the design document. You
won’t be able to write a good description of your algorithms if you don’t know any specifics
about Pintos.

3. Synchronization – Describe your strategy for preventing race conditions and convince us that it
works in all cases. Here are some tips for writing this section:

• This section should be structured as a list of all potential concurrent accesses to shared
resources. For each case, you should prove that your synchronization design ensures correct
behavior.

• An operating system kernel is a complex, multithreaded program, in which synchronizing
multiple threads can be difficult. The best synchronization strategies are simple and easily
verifiable, which leaves little room for mistakes. If your synchronization strategy is difficult
to explain, consider how you could simplify it.

• You should also aim to make your synchronization as efficient as possible, in terms of time
and memory.

• Synchronization issues revolve around shared data. A good strategy for reasoning about
synchronization is to identify which pieces of data are accessed by multiple independent actors
(whether they are threads or interrupt handlers). Then, prove that the shared data always
remains consistent.

• Lists are a common cause of synchronization issues. Lists in Pintos are not thread-safe.
• Do not forget to consider memory deallocation as a synchronization issue. If you want to use

pointers to struct thread, then you need to prove those threads can’t exit and be deallocated
while you’re using them.

• If you create new functions, you should consider whether the function could be called in 2
threads at the same time. If your function access any global or static variables, you need to
show that there are no synchronization issues.

• Interrupt handlers cannot acquire locks. If you need to access a synchronized variable from
an interrupt handler, consider disabling interrupts.

• Locks do not prevent a thread from being preempted. Threads can be interrupted during a
critical section. Locks only guarantee that the critical section is only entered by one thread
at a time.

4. Rationale – Tell us why your design is better than the alternatives that you considered, or
point out any shortcomings it may have. You should think about whether your design is easy to
conceptualize, how much coding it will require, the time/space complexity of your algorithms, and
how easy/difficult it would be to extend your design to accommodate additional features.

2.1.2 Design Document Additional Questions

You must also answer these additional questions in your design document:

1. When a kernel thread in Pintos calls thread_exit, when/where is the page containing its stack and
TCB (i.e., struct thread) freed? Why can’t we just free this memory by calling palloc_free_page
inside the thread_exit function?

2. When the thread_tick function is called by the timer interrupt handler, in which stack does it
execute?
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3. Suppose there are two kernel threads in the system, Thread A running functionA and Thread B
running functionB. Give a scheduler ordering in which the following code can lead to deadlock.

struct lock lockA; // Global lock
struct lock lockB; // Global lock

void functionA() {
lock_acquire(&lockA);
lock_acquire(&lockB);
lock_release(&lockB);
lock_release(&lockA);

}

void functionB() {
lock_acquire(&lockB);
lock_acquire(&lockA);
lock_release(&lockA);
lock_release(&lockB);

}

4. Consider the following scenario: there are two kernel threads in the system, Thread A and Thread
B. Thread A is running in the kernel, which means Thread B must be on the ready queue, waiting
patiently in threads/switch.S. Currently in Pintos, threads cannot forcibly kill each other. But
suppose that Thread A decides to kill Thread B by taking it off the ready queue and freeing its
thread stack. This will prevent Thread B from running, but what issues could arise later from this
action?

5. Consider a fully-functional correct implementation of this project, except for a single bug, which
exists in the kernel’s sema_up() function. According to the project requirements, semaphores (and
other synchronization variables) must prefer higher-priority threads over lower-priority threads.
However, the implementation chooses the highest-priority thread based on the base priority
rather than the effective priority. Essentially, priority donations are not taken into account
when the semaphore decides which thread to unblock. Please design a test case that can
prove the existence of this bug. Pintos test cases contain regular kernel-level code (variables,
function calls, if statements, etc) and can print out text. We can compare the expected output
with the actual output. If they do not match, then it proves that the implementation contains a
bug. You should provide a description of how the test works, as well as the expected
output and the actual output.

2.1.3 Design Review

You will schedule a 30 minute design review with your project TA. During the design review, your TA
will ask you questions about your design for the project. You should be prepared to defend your design
and answer any clarifying questions your TA may have about your design document. The design review
is also a good opportunity to get to know your TA for those participation points.

2.1.4 Grading

The design document and design review will be graded together. You will receive a score out of 20 points,
which will reflect how convincing your design is, based on your explanation in your design document and
your answers during the design review. You must attend a design review in order to get these points.
We will try to accommodate any time conflicts, but you should let your TA know as soon as possible.
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2.2 Code
The code section of your grade will be determined by your autograder score. Pintos comes with a test
suite that you can run locally on your VM. We run the same tests on the autograder. The results of
these tests will determine your code score.

You can check your current grade for the code portion at any time by logging in to the course
autograder. Autograder results will also be emailed to you.

We will check your progress on Project 2 at one intermediate checkpoint. The requirements for this
checkpoint are described below. This checkpoint will not be counted towards the final grade
for your project. However, it is in your best interest to complete them to ensure that your group is on
pace to finish the assignment. Our goal is not to grade your in-progress implementations, but to ensure
that you’re making satisfactory progress and encourage you to ask for help early and often.

2.3 Checkpoint [Ungraded]
You should have implemented Task 1: Efficient Alarm Clock by the checkpoint deadline. Keep in mind
that both Strict Priority Scheduler and Task 3: User Threads are significantly more time-consuming to
implement, so you may wish to begin Task 2 and Task 3 by this date even though it is not part of this
checkpoint.

2.4 Final Code
You must have completed all coding tasks (Task 1: Efficient Alarm Clock, Task 2: Schedulers, and Task
3: User Threads) in their entirety.

2.5 Final Report and Code Quality
Submit your final report in PDF form to the Project 2 Final Report assignment on Gradescope. Please
include the following in your final report:

• the changes you made since your initial design document and why you made them (feel free to
re-iterate what you discussed with your TA in the design review)

• a reflection on the project – what exactly did each member do? What went well, and what could
be improved?

You will also be graded on the quality of your code. This will be based on many factors:

• Does your scheduler implementation follow best practices for kernel development, particularly with
regards to efficiency?

• Does your code exhibit any major memory safety problems (especially regarding C strings), memory
leaks, poor error handling, or race conditions?

• Is your code simple and easy to understand?

• If you have very complex sections of code in your solution, did you add enough comments to explain
them?

• Did you leave commented-out code in your final submission?

• Did you copy-paste code instead of creating reusable functions?

• Are your lines of source code excessively long? (more than 100 characters)

• Is your Git commit history full of binary files? (don’t commit object files or log files, unless you
actually intend to)

9



CS 162 Fall 2021 Project 2: Threads

3 Reference

3.1 Pintos
In this project, you will be working with both kernel threads, that is, threads that operate in the kernel
without any userspace component, as well as user threads, which are threads that operate in userspace
and can trap to the kernel on interrupts, system calls, or exceptions.

3.1.1 Getting Started

Log in to the Vagrant Virtual Machine that you set up in Homework 0. You should already have your
Pintos code from Project 1 in ~/code/group on your VM.

We recommend that you first use Git to tag your final Project 1 code, for your own benefit. You
may end up building on it later in the course.

Once you have made some progress on your project, you can push your code to the autograder by
pushing to “group master”. This will use the “group” remote that we just set up. You don’t have to do
this right now, because you haven’t made any progress yet.

$ git commit -m "Added feature X to Pintos"
$ git push group master

To compile Pintos and run the Project 2 tests:

$ cd ~/code/group/pintos/src/threads
$ make
$ make check

The last command should run the Pintos test suite. These are the same tests that run on the
autograder. By the end of the project, your code should pass all of the tests.

Many of the tests are the same as those from Project 1, because we want to make sure your changes to
Project 2 do not break your changes to Project 1. However, not all of the tests will be equally weighted.

3.1.2 Source Tree

In the Project 1 specification, we provided an overview of the Pintos source tree. Here, we focus on the
parts that we expect you to modify for Project 2.
threads/
The base Pintos kernel. Most of the modifications you will make for Task 2: Schedulers will be in this
directory.

devices/
Source code for I/O device interfacing: keyboard, timer, disk, etc. You will modify the timer implemen-
tation in Project 2.

userprog/
Implementation of user programs that you modified for Project 1. You will need to update the syscall
interface to add support for multithreading in Task 3: User Threads.

tests/
Tests for each project. You can add extra tests, but do not modify the given tests.
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3.2 Threads
3.2.1 Understanding Threads

The first step is to read and understand the code for the thread system. Pintos already
implements thread creation and thread completion, a simple scheduler to switch between threads, and
synchronization primitives (semaphores, locks, condition variables, and optimization barriers).

Some of this code might seem slightly mysterious. You can read through parts of the source code to
see what’s going on. If you like, you can add calls to printf() almost anywhere, then recompile and run
to see what happens and in what order. You can also run the kernel in a debugger and set breakpoints
at interesting spots, step through code and examine data, and so on.

When a thread is created, the creator specifies a function for the thread to run, as one of the
arguments to thread_create(). The first time the thread is scheduled and runs, it starts executing
from the beginning of that function. When the function returns, the thread terminates. Each thread,
therefore, acts like a mini-program running inside Pintos, with the function passed to thread_create()
acting like main().

At any given time, exactly one thread runs and the rest become inactive. The scheduler decides
which thread to run next. (If no thread is ready to run, then the special “idle” thread runs.)

The mechanics of a context switch are in threads/switch.S, which is x86 assembly code. It saves
the state of the currently running thread and restores the state of the next thread onto the CPU.

Using GDB, try tracing through a context switch to see what happens. You can set a breakpoint
on schedule() to start out, and then single-step from there (use “step” instead of “next”). Be sure
to keep track of each thread’s address and state, and what procedures are on the call stack for each
thread (try “backtrace”). You will notice that when one thread calls switch_threads(), another
thread starts running, and the first thing the new thread does is to return from switch_threads(). You
will understand the thread system once you understand why and how the switch_threads() that gets
called is different from the switch_threads() that returns.

3.2.2 The Thread Struct

Each thread struct represents either a kernel thread or a user process. In each of the 3 projects, you
will have to add your own members to the thread struct. You may also need to change or delete the
definitions of existing members.

Every thread struct occupies the beginning of its own 4KiB page of memory. The rest of the page is
used for the thread’s stack, which grows downward from the end of the page. It looks like this:
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4 kB +---------------------------------+
| kernel stack |
| | |
| | |
| V |
| grows downward |
| |
| |
| |
| |
| |
| |

sizeof (struct thread) +---------------------------------+
| magic |
| : |
| : |
| status |
| tid |

0 kB +---------------------------------+

This layout has two consequences. First, struct thread must not be allowed to grow too big. If it
does, then there will not be enough room for the kernel stack. The base struct thread is only a few bytes
in size. It probably should stay well under 1 kB.

Second, kernel stacks must not be allowed to grow too large. If a stack overflows, it will corrupt
the thread state. Thus, kernel functions should not allocate large structures or arrays as non-static
local variables. Use dynamic allocation with malloc() or palloc_get_page() instead. See the Memory
Allocation section for more details.

• Member of struct thread: tid_t tid
The thread’s thread identifier or tid. Every thread must have a tid that is unique over the entire
lifetime of the kernel. By default, tid_t is a typedef for int and each new thread receives the
numerically next higher tid, starting from 1 for the initial process.

• Member of struct thread: enum thread_status status
The thread’s state, one of the following:

– Thread State: THREAD_RUNNING
The thread is running. Exactly one thread is running at a given time. thread_current()
returns the running thread.

– Thread State: THREAD_READY
The thread is ready to run, but it’s not running right now. The thread could be selected to
run the next time the scheduler is invoked. Ready threads are kept in a doubly linked list
called ready_list.

– Thread State: THREAD_BLOCKED
The thread is waiting for something, e.g. a lock to become available, an interrupt to be
invoked. The thread won’t be scheduled again until it transitions to the THREAD_READY state
with a call to thread_unblock(). This is most conveniently done indirectly, using one of the
Pintos synchronization primitives that block and unblock threads automatically.

– Thread State: THREAD_DYING
The thread has exited and will be destroyed by the scheduler after switching to the next
thread.
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• Member of struct thread: char name[16]
The thread’s name as a string, or at least the first few characters of it.

• Member of struct thread: uint8_t *stack
Every thread has its own stack to keep track of its state. When the thread is running, the CPU’s
stack pointer register tracks the top of the stack and this member is unused. But when the CPU
switches to another thread, this member saves the thread’s stack pointer. No other members are
needed to save the thread’s registers, because the other registers that must be saved are saved on
the stack.

When an interrupt occurs, whether in the kernel or a user program, an “struct intr_frame” is
pushed onto the stack. When the interrupt occurs in a user program, the “struct intr_frame”
is always at the very top of the page.

• Member of struct thread: int priority
A thread priority, ranging from PRI_MIN (0) to PRI_MAX (63). Lower numbers correspond to lower
priorities, so that priority 0 is the lowest priority and priority 63 is the highest. Pintos currently
ignores these priorities, but you will implement priority scheduling in this project.

• Member of struct thread: struct list_elem allelem
This “list element” is used to link the thread into the list of all threads. Each thread is inserted into
this list when it is created and removed when it exits. The thread_foreach() function should be
used to iterate over all threads.

• Member of struct thread: struct list_elem elem
A “list element” used to put the thread into doubly linked lists, either ready_list (the list of
threads ready to run) or a list of threads waiting on a semaphore in sema_down(). It can do
double duty because a thread waiting on a semaphore is not ready, and vice versa.

• Member of struct thread: struct process* pcb
(Used in Task 3: User Threads.) The process control block (PCB) for this process, if this thread
belongs to a user process

• Member of struct thread: unsigned magic
Always set to THREAD_MAGIC, which is just an arbitrary number defined in threads/thread.c,
and used to detect stack overflow. thread_current() checks that the magic member of the
running thread’s struct thread is set to THREAD_MAGIC. Stack overflow tends to change this
value, triggering the assertion. For greatest benefit, as you add members to struct thread, leave
magic at the end.

3.2.3 Thread Functions

threads/thread.c implements several public functions for thread support. Let’s take a look at the
most useful ones:

• Function: void thread_init (void)
Called by main() to initialize the thread system. Its main purpose is to create a struct thread
for Pintos’s initial thread. This is possible because the Pintos loader puts the initial thread’s stack
at the top of a page, in the same position as any other Pintos thread. Before thread_init()
runs, thread_current() will fail because the running thread’s magic value is incorrect. Lots of
functions call thread_current() directly or indirectly, including lock_acquire() for locking a
lock, so thread_init() is called early in Pintos initialization.
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• Function: void thread_start (void)
Called by main() to start the scheduler. Creates the idle thread, that is, the thread that is sched-
uled when no other thread is ready. Then enables interrupts, which as a side effect enables the
scheduler because the scheduler runs on return from the timer interrupt, using intr_yield_on_return().

• Function: void thread_tick (void)
Called by the timer interrupt at each timer tick. It keeps track of thread statistics and triggers
the scheduler when a time slice expires.

• Function: void thread_print_stats (void)
Called during Pintos shutdown to print thread statistics.

• Function: tid_t thread_create (const char *name, int priority, thread_func *func, void *aux)
Creates and starts a new thread named name with the given priority, returning the new thread’s
tid. The thread executes func, passing aux as the function’s single argument. thread_create()
allocates a page for the thread’s thread struct and stack and initializes its members, then it sets
up a set of fake stack frames for it. The thread is initialized in the blocked state, then unblocked
just before returning, which allows the new thread to be scheduled.

– Type: void thread_func (void *aux)
This is the type of the function passed to thread_create(), whose aux argument is passed
along as the function’s argument.

• Function: void thread_block (void)
Transitions the running thread from the running state to the blocked state. The thread will not
run again until thread_unblock() is called on it, so you’d better have some way arranged for
that to happen. Because thread_block() is so low-level, you should prefer to use one of the
synchronization primitives instead.

• Function: void thread_unblock (struct thread *thread)
Transitions thread, which must be in the blocked state, to the ready state, allowing it to resume
running. This is called when the event that the thread is waiting for occurs, e.g. when the lock
that the thread is waiting on becomes available.

• Function: struct thread *thread_current (void)
Returns the running thread.

• Function: tid_t thread_tid (void)
Returns the running thread’s thread id. Equivalent to thread_current ()->tid.

• Function: const char *thread_name (void)
Returns the running thread’s name. Equivalent to thread_current ()->name.

• Function: void thread_exit (void) NO_RETURN
Causes the current thread to exit. Never returns, hence NO_RETURN.

• Function: void thread_yield (void)
Yields the CPU to the scheduler, which picks a new thread to run. The new thread might be
the current thread, so you can’t depend on this function to keep this thread from running for any
particular length of time.

• Function: void thread_foreach (thread_action_func *action, void *aux)
Iterates over all threads t and invokes action(t, aux) on each. action must refer to a function
that matches the signature given by thread_action_func():
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– Type: void thread_action_func (struct thread *thread, void *aux)
Performs some action on a thread, given aux.

• Function: int thread_get_priority (void)
Function: void thread_set_priority (int new_priority)
Stub to set and get thread priority.

3.2.4 Thread Switching

schedule() is responsible for switching threads. It is internal to threads/thread.c and called only by
the three public thread functions that need to switch threads: thread_block(), thread_exit(), and
thread_yield(). Before any of these functions call schedule(), they disable interrupts (or ensure that
they are already disabled) and then change the running thread’s state to something other than running.

schedule() is short but tricky. It records the current thread in local variable cur, determines
the next thread to run as local variable next (by calling next_thread_to_run()), and then calls
switch_threads() to do the actual thread switch. The thread we switched to was also running in-
side switch_threads(), as are all the threads not currently running, so the new thread now returns out
of switch_threads(), returning the previously running thread.

switch_threads() is an assembly language routine in threads/switch.S. It saves registers on the
stack, saves the CPU’s current stack pointer in the current struct thread’s stack member, restores
the new thread’s stack into the CPU’s stack pointer, restores registers from the stack, and returns.

The rest of the scheduler is implemented in thread_schedule_tail(). It marks the new thread
as running. If the thread we just switched from is in the dying state, then it also frees the page that
contained the dying thread’s struct thread and stack. These couldn’t be freed prior to the thread
switch because the switch needed to use it.

Running a thread for the first time is a special case. When thread_create() creates a new thread,
it goes through a fair amount of trouble to get it started properly. In particular, the new thread hasn’t
started running yet, so there’s no way for it to be running inside switch_threads() as the scheduler
expects. To solve the problem, thread_create() creates some fake stack frames in the new thread’s
stack:

• The topmost fake stack frame is for switch_threads(), represented by struct switch_threads_frame.
The important part of this frame is its eip member, the return address. We point eip to
switch_entry(), indicating it to be the function that called switch_entry().

• The next fake stack frame is for switch_entry(), an assembly language routine in threads/switch.S
that adjusts the stack pointer, calls thread_schedule_tail() (this special case is why
thread_schedule_tail() is separate from schedule()), and returns. We fill in its stack frame
so that it returns into kernel_thread(), a function in threads/thread.c.

• The final stack frame is for kernel_thread(), which enables interrupts and calls the thread’s
function (the function passed to thread_create()). If the thread’s function returns, it calls
thread_exit() to terminate the thread.

3.3 Processes
3.3.1 Processes Overview

Recall that in a multithreaded user process, each user thread has an associated kernel thread and a
thread control block (TCB), and the process as a whole shares a process control block (PCB). The TCB
contains information relevant to a particular thread, like its name, priority, or its stack pointer, whereas
the PCB contains information relevant to every thread in the process, like the file descriptor table.
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In Pintos, the TCB of a thread is stored within the same page as the thread’s stack, at the bottom
of the page. In Project 1 when user processes were single threaded, it was possible to embed the PCB
within the TCB, since no other threads would need to access it. So in Project 1, the PCB was contained
inside struct thread within an #ifdef USERPROG statement.

However, in order to implement user-level mulithreading, each of the kernel threads that back the
user threads must share a PCB, we can no longer embed the PCB within the TCB. (We could try to
embed the TCB within the ‘main‘ thread’s TCB, but this is messy and wastes space on the thread
stack). Instead, each process has to malloc a separate struct, called struct process, which contains
the PCB for the process. Each thread has a pointer to the PCB. The PCB is allocated when the process
is created, and free’d when the process exits.

To reduce implementation overhead for Task 3: User Threads, within the starter code we have already
refactored the PCB to be a separate struct instead of embedded within the TCB. You can see the struct
definition in userprog/process.h and see how it is created and destroyed in userprog/process.c.
However, our refactor is barebones – you may find it necessary to add members to both struct process
and struct thread to get a fully functional implementation.

3.3.2 The Process Struct

The full definition of struct process is copied below for your convenience.

/* The process control block for a given process. Since
there can be multiple threads per process, we need a separate
PCB from the TCB. All TCBs in a process will have a pointer
to the PCB, and the PCB will have a pointer to the main thread
of the process, which is ‘special‘. */

struct process {
/* Owned by process.c. */
struct wait_status* wait_status; /* This process’s completion status. */
struct list children; /* Completion status of children. */
uint32_t* pagedir; /* Page directory. */
char process_name[16]; /* Name of the main thread */
struct file* bin_file; /* Executable. */
struct thread* main_thread; /* Pointer to main thread */

/* Owned by syscall.c. */
struct list fds; /* List of file descriptors. */
int next_handle; /* Next handle value. */

};

• Member of struct process struct wait_status* wait_status

A pointer to a struct that contains information about this process’s completion status. The dy-
namially allocated wait_status struct contains a semaphore allowing the parent of a process to
wait on its child, and it contains the exit code of the child process for the parent. The full definition
of struct wait_status can be found in userprog/process.h.

• Member of struct process struct list children

A list of all the completion statuses of the children of this process.

• Member of struct process uint32_t* pagedir

A pointer to the page table for this process

16



CS 162 Fall 2021 Project 2: Threads

• Member of struct process char process_name[16]

The name of a process. This is simply the name of the process’s main thread.

• Member of struct process struct file* bin_file

A pointer to the executable file from which this process was loaded.

• Member of struct process struct thread* main_thread

A pointer to the “main thread” of a process. Every user program starts as single-threaded, and this
single thread is referred to as the “main thread” of the process. Once user-level multithreading is
implemented, the main thread can create more threads using the functions in lib/user/pthread.h.

• Member of struct process struct list fds

A list of all the file-descriptor to struct file* mappings for this user process. These are encoded
in a struct file_descriptor whose definition is available in userprog/process.h

• Member of struct process int next_handle

The next file descriptor number to allocate to a user process. The only requirement is that these
are unique for unique resources, so this number is continuously increasing.

3.3.3 Processes Details

The First User Program All user programs are spawned from other user programs using the exec
system call. So how is the first user program created? When the operating system starts up, it first runs
threads/init.c. If the command-line arguments to Pintos indicate that the user wants to start running
user programs, the run_task function is called, which has the main thread of Pintos (the one running
the threads/init.c code) call process_wait(process_execute(task)). So, the first user program is
created by tha main thread of the OS.

Quick sidebar: it’s important to disambiguate between the “main” thread of the OS and the main
thread of a user program. The main thread of Pintos is the thread that runs threads/init.c – it is
the thread that sets up the OS and starts running the first task, whether that is a user program or a
kernel task. The type of task is dependent on the command-line arguments to Pintos. On the other
hand, the main thread of a user program is the single thread that is running when that user program is
first created. It should be clear from context which “main” thread we are referring to.

Because the first user program is created by the OS’s main thread, the OS’s main thread must
have a PCB, even though it is not a process and will never run user-level code. This is because our
implementation of process_wait and process_execute require the parent “process” to have access to a
list of all child process’ completion statuses. So, in the userprog_init function, we give the OS’s main
thread a (minimal) PCB so that it can successfully execute those functions. Right now, it’s only possible
that the main thread tries to access the children list in those functions. However, if you modify those
functions so that the main thread must access another member of struct process, you must initialize
that member in userprog_init in userprog/process.c.

PIDs and TIDs In the starter code, we define the process ID (PID) of a process to be the thread ID
(TID) of its main thread. The following two functions in userprog/process.c are related:

• bool is_main_thread(struct thread* t, struct process* p)

Returns true if t is the main thread of p

• pid_t get_pid(struct process* p)

Returns the pid_t of the process p. The pid_t type is the same type as tid_t, which is typedef’d
to be an int.
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Stacks and Limits Each user thread must have its own stack in userspace to do scratch work in.
When creating a thread, you must create a stack for it in userspace. See III Page Tables for information
on how to do this.

In userprog/process.h, we provide the following limits for pthreads:

// At most 8MB can be allocated to the stack
#define MAX_STACK_PAGES (1 << 11)
...
#define MAX_THREADS 127

In other words, you can only use the top 8MB of user virtual addresses for stacks, and you only need
to support at most 127 threads at one time in the system.

3.4 Pthread Library
3.4.1 Threading

A subset of the pthread (Pintos thread) library is provided for you in lib/user/pthread.h. These func-
tion serve as the glue between the high-level API of pthread_create, pthread_exit, and pthread_join
and the low-level system call implementation of these functions. We’ll walk you through how the pthread
library works by starting at the high-level usage in one of our tests, and walk down the stack until we
get to the kernel syscall interface.

• tests/userprog/multithreading/create-simple.c In the create-simple test, we see how
the high-level API of the threading library is supposed to work. The main thread of the pro-
cess first runs test_main. It then creates a new thread to run thread_function with the
pthread_check_create call, and waits for that thread to finish with the pthread_check_join.
The expected output of this test is shown in tests/userprog/multithreading/create-simple.ck.

• The functions pthread_check_create and pthread_check_join are simple wrappers (defined
in tests/lib.c) around the “real” functions, pthread_create and pthread_join, that take in
roughly the same values and return the same values as pthread_create and pthread_join, and
ensure that pthread_create and pthread_join did not fail. The APIs for pthread_create and
pthread_join are:

tid_t pthread_create(pthread_fun fun, void* arg)

A pthread_fun is simply a pointer to a function that takes in an arbitrary void* argument, and
returns nothing. This is defined in user/lib/pthread.h. So, the arguments to pthread_create
are a function to run, as well as an argument to give that function.

This function creates a new child thread to run the pthread_fun with argument arg. This function
returns to the parent thread the TID of the child thread, or TID_ERROR if the thread could not be
created successfully.

bool pthread_join(tid_t tid)

The caller of this function waits until the thread with TID tid finishes executing. This function
returns true if tid was valid.

• The implementation of pthread_create and pthread_join are in the file lib/user/pthread.c.
They each are simple wrappers around the functions sys_pthread_create and sys_pthread_join,
which are syscalls for the OS, that you will be required to implement. Their APIs are similar to
pthread_create and pthread_join, and are as follows:

tid_t sys_pthread_create(stub_fun sfun, pthread_fun tfun, const void* arg)
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The sys_pthread_create function creates a new thread to run stub_fun sfun, and gives it as
arguments a pthread_fun and a void* pointer, which is intended to be the argument of the
pthread_fun. It returns to the parent the TID of the created thread, or TID_ERROR if the thread
could not be created.

What is a stub function? There is only one stub function that we are concerned with here, called
_pthread_start_stub defined in lib/user/pthread.c, and it’s implementation is copied below.
This function returns nothing but takes two arguments: a function to run, and an argument for
that function. The stub function runs the function on the argument, then calls pthread_exit().
pthread_exit() is a system call that simply kills the current user thread.

/* OS jumps to this function when a new thread is created.
OS is required to setup the stack for this function and
set %eip to point to the start of this function */

void _pthread_start_stub(pthread_fun fun, void* arg) {
(*fun)(arg); // Invoke the thread function
pthread_exit(); // Call pthread_exit

Why this extra layer of indirection? You might have noticed in tests/userprog/multithreading/
create-simple.c that pthread_exit() was never called; instead, as soon as the created thread
returns from thread_function, it is presumed to have been killed. The stub function is how this
is implemented: the OS actually jumps to _pthread_start_stub instead of directly jumping to
thread_function when the new thread is created. The stub function then calls thread_function.
Then, when thread_function returns, it returns back into _pthread_start_stub. Then, the
implementation of pthread_start_stub kills the thread by calling pthread_exit().

tid_t sys_pthread_join(tid_t tid)

The caller of this function waits until the thread with TID tid finishes executing. This function
returns the TID of the child it waited on, or TID_ERROR if it was invalid to wait on that child. See
3.7 User Threads for more information on validity.

void sys_pthread_exit(void) NO_RETURN

This function terminates the calling thread. The function pthread_exit simply calls this function.

The functions sys_pthread_create, sys_pthread_join, and sys_pthread_exit are system calls
that you are required to implement for this project. They have slightly different APIs than the high
level pthread_create, pthread_join, and pthread_exit functions defined in lib/user/pthread.h,
but are fundamentally very similar. We have setup the user-side of the syscall interface for you in
lib/syscall-nr.h, lib/user/syscall.c, and lib/user/syscall.h, and it is your job to implement
these system calls in userprog/ in the kernel. See 3.7 User Threads for more information.

3.4.2 User-Level Synchronization

Our pthread library also provides an interface to user-level synchronization primitives. See lib/user/syscall.h.
We define the primitives lock_t and sema_t to represent locks and semaphores in user programs. You
can change these definitions if you’d like, but we found the current definitions sufficient for our imple-
mentation. We provide the following syscall stubs:

• bool lock_init(lock_t* lock)

Initializes lock by registering it with the kernel, and returns true if the initialization was successful.
In tests/lib.c, you will see we define lock_check_init, which is analogous to pthread_check_create
and pthread_check_join; it simply verifies that the initialization was successful.
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• void lock_acquire(lock_t* lock)

Acquires lock, and exits the process if acquisition failed. The syscall implementation of lock_acquire
should return a boolean as to whether acquisition failed; the user level implementation of lock_acquire
in lib/user/syscall.c handles termination of the process. You should not update the lock_acquire
(or for that matter, any of the below functions) code in lib/user/syscall.c to remove the exit
call – it will simply make debugging more difficult.

• void lock_release(lock_t* lock)

Acquires lock, and exits the process if the release failed. The syscall implementation of lock_release
should return a boolean as to whether release failed.

• bool sema_init(sema_t* sema, int val)

Initializes sema to val by registering it with the kernel, and returns true if the initialization
was successful. In tests/lib.c, you will see we define lock_check_init, which is analogous to
pthread_check_create and pthread_check_join; it simply verifies that the initialization was
successful.

• void sema_down(sema_t* sema)

Downs sema, and exits the process if the down operation failed. The syscall implementation of
sema_down should return a boolean as to whether the down operation failed.

• void sema_up(sema_t* sema)

Ups sema, and exits the process if the up operation failed. The syscall implementation of sema_up
should return a boolean as to whether the up operation failed.

Your task will be to implement those system calls in the kernel. On every synchronization system
call, you are allowed to make a kernel crossing. In other words, you do not need to avoid kernel crossings
like is done in the implementation of futex.

Given user-level locks and semaphores, it’s possible to implement user-level condition variables en-
tirely at user-level with locks and semaphores as primitives. Feel free to implement condition variables
if you would like, but it is not required as part of the project. The implementation will look similar to
the implementation of CVs in threads/synch.c.

3.5 Efficient Alarm Clock
Here are some more details regarding the Efficient Alarm Clock task.

1. If timer_sleep() is called with a zero or negative argument, then it should simply return imme-
diately.

2. There exist already-implemented functions timer_msleep(), timer_usleep(), and timer_nsleep()
which take the sleep duration argument in units of milliseconds, microseconds, or nanoseconds re-
spectively, which will work once you have implemented timer_sleep(). You do not need to modify
them further.

3. When Pintos starts up, the clock does not run in realtime by default. As such, if a thread goes to
sleep for 5 “seconds” (e.g. ticks = 5 × TIMER_FREQ), it will actually be much shorter than 5
seconds in terms of wall clock time. You can use the --realtime flag for Pintos to override this.

4. The code that runs in interrupt handlers (i.e. timer_interrupt()) should be as fast as possible.
It’s usually wise to do some pre-computation outside of the interrupt handler, in order to make
the interrupt handler as fast as possible. Additionally, you may not acquire locks while executing
timer_interrupt().
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5. Pay close attention to the Pintos linked-list implementation. Each linked list requires a dedicated
list_elem member inside its elements. Every element of a linked list should be the same type. If
you create new linked lists, make sure that they are initialized. Finally, make sure that there are no
race conditions for any of your linked lists (the list manipulation functions are NOT thread-safe).

3.6 Schedulers
3.6.1 General Information

The skeleton code for Pintos includes a framework to support multiple simultaneous scheduler implemen-
tations, of which one will be in use at any time. The choice of which scheduler to execute is controlled
by the variable active_sched_policy, declared within threads/thread.c. Its type is that of an enum
with four values by default: SCHED_FIFO, SCHED_PRIO, SCHED_FAIR, and SCHED_MLFQS, along with a
macro SCHED_DEFAULT which resolves to SCHED_FIFO by default. You can make Pintos use a specific
scheduler by passing in an argument when it starts: for example, -sched-fair will start Pintos with
the fair scheduler enabled. It is possible, but not recommended, to change the value of sched_policy at
runtime; similarly, you may change the way in which the scheduler is dispatched to some other method
(e.g. a macro) if you wish, as long as your method supports the same kernel flags as the skeleton —
this will not be necessary, however, and is not recommended. As long as you do not change this value,
you can assume that it does not change at runtime: this is important because it means you don’t have
to simultaneously maintain, for example, a FIFO thread queue and a priority-based structure, as you
would if the scheduling policy could change during runtime.

Of the available scheduling modes, one (SCHED_FIFO) is already implemented for you; in addition,
you will be implementing support for SCHED_PRIO and SCHED_FAIR. You do not need to make any
changes to support SCHED_MLFQS; implementing an MLFQS was at one point part of this project, but
that is not presently the case. When you are ready to test your schedulers, you do not need to change
SCHED_DEFAULT to point to SCHED_PRIO or SCHED_FAIR; the testing framework will specify which sched-
uler it wants to use for each test.

Some additional points of note:

1. Both SCHED_PRIO and SCHED_FAIR should be implemented as priority schedulers, meaning that
each thread is assigned a priority which changes how much time it gets to spend on the CPU
relative to other threads.

2. By default, threads have a priority in the range PRI_MIN (0) to PRI_MAX (63). You may expand
this range if you wish, but you may not shrink it: all integers from 0 to 63, inclusive, must be valid
priorities in your implementation.

3. A thread’s initial priority is an argument of thread_create(). You should use PRI_DEFAULT (31),
unless there is a reason to use a different value.

4. Along the same lines as the note in Efficient Alarm Clock, any code running with interrupts
disabled should as fast as possible; be careful not to add too much computation to any sections of
the scheduler which run with them off.

5. Try to think simple when you’re implementing your schedulers: real world schedulers are often
surprisingly elegant at their core, and even those are too complicated for this task — we do not
expect you to implement anything like Linux’s Completely Fair Scheduler, to be clear.
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3.6.2 Priority Scheduler

The actual priority scheduler does not require much complexity in and of itself; consider how extant
operating systems implement this sort of scheduler if you’re confused as to how to approach this in an
efficient way.

1. Don’t forget to implement thread_get_priority(), which is the function that returns the cur-
rent thread’s priority. This function should take donations into account. You should return the
effective priority of the thread.

2. A thread cannot change another thread’s priority, except via donations.
The function thread_set_priority() only acts on the current thread.

3. If a thread no longer has the highest effective priority (e.g. because it released a lock or it called
thread_set_priority() with a lower value), it must immediately yield the CPU. If a lock is
released, but the current thread still has the highest effective priority, it should not yield the CPU.

The priority donation component of this task will likely require some thought — it may be helpful to
sketch out some scenarios on paper or on a whiteboard to see if your proposed system holds up.

1. You only need to implement priority donation for locks. Do not implement them for other syn-
chronization variables (it doesn’t make any sense to do it for semaphores or monitors anyway).
However, you need to implement priority scheduling for locks, semaphores, and condition variables.
Priority scheduling is when you unblock the highest priority thread whenever a resource is released
or a monitor is signaled.

2. A thread can only donate (directly) to 1 thread at a time, because once it calls lock_acquire(),
the donor thread is blocked.

3. Your implementation must handle nested donation: Consider a high-priority thread H, a medium-
priority thread M, and a low-priority thread L. If H must wait on M and M must wait on L, then
we should donate H’s priority to L.

4. If there are multiple waiters on a lock when you call lock_release(), then all of those priority
donations must apply to the thread that receives the lock next.
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3.6.3 Fair Scheduler

The goal of a general-purpose scheduler is to balance threads’ different scheduling needs. Users often
will want to prioritize certain tasks over others, but they do not want this prioritization to result in
lower-priority tasks’ starvation.
As such, your design for the fair scheduler must maintain two properties:

I. Prioritization: It must give high-priority threads proportionally more time on the CPU

II. Fairness: It must consistently prevent low -priority threads from starving as a result

Clearly, (I) is achieved by the Strict Priority Scheduler, while (II) can be perfectly achieved by, for
example, a round-robin scheduler: your scheduler, however, must fulfill both. In a general sense the
two goals are in opposition to one another, and as such there exists a broad range of possible designs
that could fulfill this task, balancing at different places between those two extremes. The exact bounds
on your design are specified in the tests, but broadly, any system which (probabilistically) gives higher-
priority threads more time on the CPU than lower-priority ones while still allowing all threads to make
forward progress will satisfy this component.

Your solutions do not need to be particularly complex: there are several surprisingly simple ap-
proaches which will fulfill all the requirements laid out above.

Beyond the core information above, a few additional helpful points are included below:

• The fair scheduler should use the exact same priority-management methods as the priority
scheduler; threads should be able to call thread_set_priority() regardless of whether the un-
derlying scheduler mode is SCHED_PRIO or SCHED_FAIR.

• It is not necessary for SCHED_FAIR to include support for priority donation, but it won’t cause
problems if it does — you do not need to disable it, though you are free to do so.

• Note that "more access" does not necessarily mean preferential access: as long as, with a sufficiently
big time sample, higher priority threads get more time on the CPU than their lower-priority
counterparts, requirement (I) is considered to be fulfilled.

• Given that many approaches to this problem will involve the use of randomization, it is important
to note that the tests for this component will use a consistent random seed between successive
executions. The file lib/kernel/random.h will likely be of use in this regard.

• When many threads of different priorities are executing at once, it might be difficult to observe a
difference in the actual time allocated to threads with very close priority levels, e.g. 10 and 11. To
ensure fair test results, tests focusing on this aspect of the fair scheduler will space priorities out in
intervals of 8; of course, you will still need to be able to support threads with priorities anywhere
between 0 and 63 at the very least.

• The fair scheduler does not need to prevent every possible cause for starvation; if the system is
simply overloaded, there is only so much a scheduling algorithm can do to allocate the limited
resources at hand. A good rule of thumb is that if a round-robin scheduler would struggle to meet
the demands of a given workload, it’s okay for your scheduler to struggle when presented with the
same.
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3.7 User Threads
For this project, you will need to implement the following new system calls:

System Call: tid_t sys_pthread_create(stub_fun sfun, pthread_fun tfun, const void* arg)
Creates a new user thread running stub function sfun, with arguments tfun and arg. Returns TID
of created thread, or TID_ERROR if allocation failed.

System Call: void sys_pthread_exit(void) NO_RETURN Terminates the calling user thread.
If the main thread calls pthread_exit, it should join on all currently active threads, and then exit
the process.

System Call: tid_t sys_pthread_join(tid_t tid) Suspends the calling thread until the thread
with TID tid finishes. Returns the TID of the thread waited on, or TID_ERROR if the thread could
not be joined on. It is only valid to join on threads that are part of the same process and have
not yet been joined on. It is valid to join on a thread that was part of the same process, but has
already terminated – in such cases, the sys_pthread_join call should not block. Any thread can
join on any other thread (the main thread included). If a thread joins on main, it should be woken
up and allowed to run after main calls pthread_exit but before the process is killed (see above).

System Call: bool lock_init(lock_t* lock) Initializes lock, where lock is a pointer to a lock_t in
userspace. Returns true if in initialization was successful.

System Call: bool lock_acquire(lock_t* lock) Acquires lock, blocking if necessary, where lock is
a pointer to a lock_t in userspace. Returns true if the lock was successfully acquired, false if the
lock was not registered with the kernel in a lock_init call or if the current thread already holds
the lock.

System Call: bool lock_release(lock_t* lock) Releases lock, where lock is a pointer to a lock_t
in userspace. Returns true if the lock was successfully released, false if the lock was not registered
with the kernel in a lock_init call or if the current thread does not hold the lock.

System Call: bool sema_init(sema_t* sema, int val) Initializes sema to val, where sema is a
pointer to a sema_t in userspace. Returns true if in initialization was successful.

System Call: bool sema_down(sema_t* sema) Downs sema, blocking if necessary, where sema
is a pointer to a sema_t in userspace. Returns true if the semaphore was successfully downed, false
if the semaphore was not registered with the kernel in a sema_init call.

System Call: bool sema_up(sema_t* sema) Ups sema, where sema is a pointer to a sema_t in
userspace. Returns true if the sema was successfully up’d, false if the sema was not registered with
the kernel in a sema_init call.

System Call: int sys_getschedpolicy() Returns an integer corresponding to the current scheduling
policy in use by the kernel.

The definitions of pid_t, stub_fun, and pthread_fun in the kernel are in userprog/process.h,
and mimic the userspace definitions described in the Reference section.

You will also need to update the system calls you implemented in Project 1 to support multiple user
threads. Most of the changes you’ll make are short and straightforward, but substantial changes will be
made to the process control syscalls. The expected behavior of process control syscalls with respect to
multithreaded user programs is outlined below:

• pid_t exec(const char* file)

When either a single-threaded or multithreaded program exec’s a new process, the new process
should only have a single thread of control, the main thread. New threads of control can be created
in the child process with the pthread syscalls.
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• int wait(pid_t)

When a user thread waits on a child process, only the user thread that called wait should be
suspeneded; the other threads in the parent process should be able to continue working.

• void exit(int status)

When exit is called on a multithreaded program, all currently active threads in the user pro-
gram should be immediately terminated: none of the user threads should be able to execute any
more user-level code. Each of the backing kernel threads should release all its resources before
terminating.

We recommend you implement this functionality without keeping a list of all resources a kernel
thread can have. As a hint and simplifying assumption, you may assume that a user thread that
enters the kernel never blocks indefinitely. You are not required to make use of this assumption,
but it will make implementation of this section much easier.

The assumption above is not true in a number of scenarios, which our test suite simply ignores.
For clarity, we list a few such scenarios: (1) a user thread calls wait on a child process that infinite
loops, (2) two user threads deadlock with their own user-level synchronization primitives, or (3) a
user thread is waiting on STDIN, which may never arrive.

The assumption above does not apply to the case where threads are waiting on other threads in
the same process through pthread_join. Joiners should still be woken up with the thread they
joined on is killed, and joiners on the exiting thread should also be woken up.

3.7.1 Synchronization

To ease implementation difficulty, we will not be requiring you to implement fine-grained synchronization
for syscalls within multithreaded programs. You are allowed to serialize actions per-process (but not
globally).

3.7.2 Additional Information

• Exit Codes: (1) If the main thread calls pthread_exit, the process should terminate with exit
code 0. (2) If any thread calls exit(n), the process should terminate with exit code n. (3) If the
process terminates with an exception, it should exit with exit code -1. These are listed in priority
order (with 3 being the highest priority), in the sense that if any of these occur simultaneously,
the exit code should be the exit code corresponding termination with the highest prioirty. For
example, if main calls pthread_exit and while it is waiting for user threads to finish, one of them
terminates with an exception, the exit code should be set to -1. Also, if multiple calls to exit(n)
are made at the same time with different values of n, any choice of n is valid. Treat exit code rules
as secondary: we will not test you on them in design review, and you should only be concerned
about them if you are failing a test because of the wrong exit code.

• Switching between user threads and switching between user processes require different actions on
part of the kernel. Specifically, for switches between processes, (1) the page table base pointer must
be updated and (2) any virtual caches (which for our purposes, is the TLB) should be invalidated.
For switches between user threads, both of these things should be avoided. This is already done for
you in process_activate, which is called everytime a new thread is created in load and everytime
a new thread scheduled in thread_schedule_tail. Don’t forget to activate the process when you
create a new user thread.

• You are not required to augment the scheduler for Task 3: User Threads; you can just let the
scheduler treat all threads the same, even if they belong to the same process. As a pathological
example, if a user program A has 100 threads, and a user program B has only 1 thread, most of

25



CS 162 Fall 2021 Project 2: Threads

the CPU will be dominated by A’s threads, and B’s thread will be starved. You are not required
to augment the scheduler to make this scenario more fair.

• Task 3: User Threads should be able to be implemented independently of Task 1: Efficient Alarm
Clock and Task 2: Schedulers. The alarm clock does not have an exposed interface via system calls,
so Task 1: Efficient Alarm Clock and Task 3: User Threads are completely independent. There
is some overlap between Task 2: Schedulers and Task 3: User Threads, because Task 3: User
Threads uses both the scheduler and locks. However, the tasks should still be fairly independent
of one another, since all user threads should have the same priority (PRI_DEFAULT).

• As our test programs are multithreaded, the console_lock defined in tests/lib.c is essential;
threads can acquire this during printing calls to make sure print output of different threads is
not interleaved. Currently, the test code only uses the console lock when syn_msg (defined in
tests/lib.c) is set to true. The console lock is initialized in tests/main.c before test_main
is called in each of the tests. Because the console lock is a user-level lock, it will only work
after you have implemented user-level locking. Until you’ve implemented user-level locking, all
your tests will fail as a result of console lock initialization; you can comment out the line
lock_init(&console_lock) in tests/main.c to temporarily prevent this issue.

• In threads/interrupt.c, you will find the function

static inline bool is_trap_from_userspace(struct intr_frame* frame)

which is written return true if this interrupt represents a transition from user-mode to kernel-mode.
You might find this helpful for this project.

• Workflow Recommendations: this task is most easily done in small steps. Start by implementing
a barebones pthread_create and pthread_execute so that
you pass tests/userprog/multithreading/ create-simple. Then, slowly add more and more
features. It is easier to augment a working design than to fix a broken one. Make sure to carefully
track resources. Everything that you allocate must be freed !

4 Appendix

I Synchronization
If sharing of resources between threads is not handled in a careful, controlled fashion, the result is usually
a big mess. This is especially the case in operating system kernels, where faulty sharing can crash the
entire machine. Pintos provides several synchronization primitives to help out.

I.a Disabling Interrupts

The crudest way to do synchronization is to disable interrupts, that is, to temporarily prevent the CPU
from responding to interrupts. If interrupts are off, no other thread will preempt the running thread,
because thread preemption is driven by the timer interrupt. If interrupts are on, as they normally are,
then the running thread may be preempted by another at any time, whether between two C statements
or even within the execution of one.

Incidentally, this means that Pintos is a “preemptible kernel,” that is, kernel threads can be preempted
at any time. Traditional Unix systems are “nonpreemptible,” that is, kernel threads can only be pre-
empted at points where they explicitly call into the scheduler. (User programs can be preempted at any
time in both models.) As you might imagine, preemptible kernels require more explicit synchronization.

You should have little need to set the interrupt state directly. Most of the time you should use
the other synchronization primitives described in the following sections. The main reason to disable
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interrupts is to synchronize kernel threads with external interrupt handlers, which cannot sleep and thus
cannot use most other forms of synchronization.

Some external interrupts cannot be postponed, even by disabling interrupts. These interrupts, called
non-maskable interrupts (NMIs), are supposed to be used only in emergencies, e.g. when the com-
puter is on fire. Pintos does not handle non-maskable interrupts.

Types and functions for disabling and enabling interrupts are in threads/interrupt.h.

• Type: enum intr_level
One of INTR_OFF or INTR_ON, denoting that interrupts are disabled or enabled, respectively.

• Function: enum intr_level intr_get_level (void)
Returns the current interrupt state.

• Function: enum intr_level intr_set_level (enum intr_level level)
Turns interrupts on or off according to level. Returns the previous interrupt state.

• Function: enum intr_level intr_enable (void)
Turns interrupts on. Returns the previous interrupt state.

• Function: enum intr_level intr_disable (void)
Turns interrupts off. Returns the previous interrupt state.

This project only requires accessing a little bit of thread state from interrupt handlers. For the alarm
clock, the timer interrupt needs to wake up sleeping threads. When you access these variables from
kernel threads, you will need to disable interrupts to prevent the timer interrupt from interfering.

When you do turn off interrupts, take care to do so for the least amount of code possible, or you can
end up losing important things such as timer ticks or input events. Turning off interrupts also increases
the interrupt handling latency, which can make a machine feel sluggish if taken too far.

The synchronization primitives themselves in synch.c are implemented by disabling interrupts. You
may need to increase the amount of code that runs with interrupts disabled here, but you should still
try to keep it to a minimum.

Disabling interrupts can be useful for debugging, if you want to make sure that a section of code is
not interrupted. You should remove debugging code before turning in your project. (Don’t just comment
it out, because that can make the code difficult to read.)

There should be no busy waiting in your submission. A tight loop that calls thread_yield() is one
form of busy waiting.

I.b Semaphores

A semaphore is a non-negative integer together with two operators that manipulate it atomically, which
are:

• “Down” or “P”: wait for the value to become positive, then decrement it.

• “Up” or “V”: increment the value (and wake up one waiting thread, if any).

A semaphore initialized to 0 may be used to wait for an event that will happen exactly once. For
example, suppose thread A starts another thread B and wants to wait for B to signal that some activity
is complete. A can create a semaphore initialized to 0, pass it to B as it starts it, and then “down” the
semaphore. When B finishes its activity, it “ups” the semaphore. This works regardless of whether A
“downs” the semaphore or B “ups” it first.

A semaphore initialized to 1 is typically used for controlling access to a resource. Before a block of
code starts using the resource, it “downs” the semaphore, then after it is done with the resource it “ups”
the resource. In such a case a lock, described below, may be more appropriate.

Semaphores can also be initialized to 0 or values larger than 1.
Pintos’ semaphore type and operations are declared in threads/synch.h.
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• Type: struct semaphore
Represents a semaphore.

• Function: void sema_init (struct semaphore *sema, unsigned value)
Initializes sema as a new semaphore with the given initial value.

• Function: void sema_down (struct semaphore *sema)
Executes the “down” or “P” operation on sema, waiting for its value to become positive and then
decrementing it by one.

• Function: bool sema_try_down (struct semaphore *sema)
Tries to execute the “down” or “P” operation on sema, without waiting. Returns true if sema was
successfully decremented, or false if it was already zero and thus could not be decremented without
waiting. Calling this function in a tight loop wastes CPU time, so use sema_down or find a different
approach instead.

• Function: void sema_up (struct semaphore *sema)
Executes the “up” or “V” operation on sema, incrementing its value. If any threads are waiting on
sema, wakes one of them up.
Unlike most synchronization primitives, sema_up may be called inside an external interrupt han-
dler.

Semaphores are internally built out of disabling interrupt and thread blocking and unblocking
(thread_block and thread_unblock). Each semaphore maintains a list of waiting threads, using the
linked list implementation in lib/kernel/list.c.

I.c Locks

A lock is like a semaphore with an initial value of 1. A lock’s equivalent of “up” is called “release”, and
the “down” operation is called “acquire”.

Compared to a semaphore, a lock has one added restriction: only the thread that acquires a lock,
called the lock’s “owner”, is allowed to release it. If this restriction is a problem, it’s a good sign that a
semaphore should be used, instead of a lock.

Locks in Pintos are not “recursive,” that is, it is an error for the thread currently holding a lock to
try to acquire that lock.

Lock types and functions are declared in threads/synch.h.

• Type: struct lock
Represents a lock.

• Function: void lock_init (struct lock *lock)
Initializes lock as a new lock. The lock is not initially owned by any thread.

• Function: void lock_acquire (struct lock *lock)
Acquires lock for the current thread, first waiting for any current owner to release it if necessary.

• Function: bool lock_try_acquire (struct lock *lock)
Tries to acquire lock for use by the current thread, without waiting. Returns true if successful,
false if the lock is already owned. Calling this function in a tight loop is a bad idea because it
wastes CPU time, so use lock_acquire instead.

• Function: void lock_release (struct lock *lock)
Releases lock, which the current thread must own.

• Function: bool lock_held_by_current_thread (const struct lock *lock)
Returns true if the running thread owns lock, false otherwise. There is no function to test whether
an arbitrary thread owns a lock, because the answer could change before the caller could act on it.
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I.d Monitors

A monitor is a higher-level form of synchronization than a semaphore or a lock. A monitor consists of
data being synchronized, plus a lock, called the monitor lock, and one or more condition variables.
Before it accesses the protected data, a thread first acquires the monitor lock. It is then said to be “in
the monitor”. While in the monitor, the thread has control over all the protected data, which it may
freely examine or modify. When access to the protected data is complete, it releases the monitor lock.

Condition variables allow code in the monitor to wait for a condition to become true. Each condition
variable is associated with an abstract condition, e.g. “some data has arrived for processing” or “over
10 seconds has passed since the user’s last keystroke”. When code in the monitor needs to wait for a
condition to become true, it “waits” on the associated condition variable, which releases the lock and
waits for the condition to be signaled. If, on the other hand, it has caused one of these conditions to
become true, it “signals” the condition to wake up one waiter, or “broadcasts” the condition to wake all
of them.

The theoretical framework for monitors was laid out by C. A. R. Hoare. Their practical usage was
later elaborated in a paper on the Mesa operating system.

Condition variable types and functions are declared in threads/synch.h.

• Type: struct condition
Represents a condition variable.

• Function: void cond_init (struct condition *cond)
Initializes cond as a new condition variable.

• Function: void cond_wait (struct condition *cond, struct lock *lock)
Atomically releases lock (the monitor lock) and waits for cond to be signaled by some other piece
of code. After cond is signaled, reacquires lock before returning. lock must be held before calling
this function.

Sending a signal and waking up from a wait are not an atomic operation. Thus, typically
cond_wait’s caller must recheck the condition after the wait completes and, if necessary, wait
again.

• Function: void cond_signal (struct condition *cond, struct lock *lock)
If any threads are waiting on cond (protected by monitor lock lock), then this function wakes up
one of them. If no threads are waiting, returns without performing any action. lock must be held
before calling this function.

• Function: void cond_broadcast (struct condition *cond, struct lock *lock)
Wakes up all threads, if any, waiting on cond (protected by monitor lock lock). lock must be
held before calling this function.

I.e Readers-Writers Locks

In the starter code, we provide you with a working implementation of a readers-writers lock, should
you choose to use it. The API for the lock is defined in threads/synch.h, and is shown below for
convenience.

/* Readers-writers lock. */
#define RW_READER 1
#define RW_WRITER 0

struct rw_lock {
struct lock lock;
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struct condition read, write;
int AR, WR, AW, WW;

};

void rw_lock_init(struct rw_lock*);
void rw_lock_acquire(struct rw_lock*, bool reader);
void rw_lock_release(struct rw_lock*, bool reader);

You can initialize a readers-writers lock with the rw_lock_init function, which mirrors the standard
lock_init function. Unlike a standard lock, you may acquire a readers-writers lock in either reader
mode or writer mode, which is specified by bool reader.. You can use the definitions of RW_READER and
RW_WRITER for cleaner code. One example usage (for a readers lock on the stack) is shown below:

void demo_rw_lock_function() {
// Allocate bytes for rw_lock on the stack
struct rw_lock my_rw_lock;

// Initialize the RW lock
rw_lock_init(&my_rw_lock);

// Acquire RW lock in reader mode
rw_lock_acquire(&rw_lock, RW_READER);

// Release RW lock in reader mode
rw_lock_release(&rw_lock, RW_READER);

}

I.f Optimization Barriers

An optimization barrier is a special statement that prevents the compiler from making assumptions
about the state of memory across the barrier. The compiler will not reorder reads or writes of variables
across the barrier or assume that a variable’s value is unmodified across the barrier, except for local
variables whose address is never taken. In Pintos, threads/synch.h defines the barrier() macro as an
optimization barrier.

One reason to use an optimization barrier is when data can change asynchronously, without the
compiler’s knowledge, e.g. by another thread or an interrupt handler. The too_many_loops function in
devices/timer.c is an example. This function starts out by busy-waiting in a loop until a timer tick
occurs:

/* Wait for a timer tick. */
int64_t start = ticks;
while (ticks == start)

barrier ();

Without an optimization barrier in the loop, the compiler could conclude that the loop would never
terminate, because start and ticks start out equal and the loop itself never changes them. It could
then “optimize” the function into an infinite loop, which would definitely be undesirable.

Optimization barriers can be used to avoid other compiler optimizations. The busy_wait function,
also in devices/timer.c, is an example. It contains this loop:

while (loops-- > 0)
barrier ();
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The goal of this loop is to busy-wait by counting loops down from its original value to 0. Without the
barrier, the compiler could delete the loop entirely, because it produces no useful output and has no side
effects. The barrier forces the compiler to pretend that the loop body has an important effect.

Finally, optimization barriers can be used to force the ordering of memory reads or writes. For
example, suppose we add a “feature” that, whenever a timer interrupt occurs, the character in global
variable timer_put_char is printed on the console, but only if global Boolean variable timer_do_put is
true. The best way to set up x to be printed is then to use an optimization barrier, like this:

timer_put_char = ’x’;
barrier ();
timer_do_put = true;

Without the barrier, the code is buggy because the compiler is free to reorder operations when it
doesn’t see a reason to keep them in the same order. In this case, the compiler doesn’t know that the
order of assignments is important, so its optimizer is permitted to exchange their order. There’s no
telling whether it will actually do this, and it is possible that passing the compiler different optimization
flags or using a different version of the compiler will produce different behavior.

Another solution is to disable interrupts around the assignments. This does not prevent reordering,
but it prevents the interrupt handler from intervening between the assignments. It also has the extra
runtime cost of disabling and re-enabling interrupts:

enum intr_level old_level = intr_disable ();
timer_put_char = ’x’;
timer_do_put = true;
intr_set_level (old_level);

A second solution is to mark the declarations of timer_put_char and timer_do_put as volatile.
This keyword tells the compiler that the variables are externally observable and restricts its latitude
for optimization. However, the semantics of volatile are not well-defined, so it is not a good general
solution. The base Pintos code does not use volatile at all.

The following is not a solution, because locks neither prevent interrupts nor prevent the compiler
from reordering the code within the region where the lock is held:

lock_acquire (&timer_lock); /* INCORRECT CODE */
timer_put_char = ’x’;
timer_do_put = true;
lock_release (&timer_lock);

The compiler treats invocation of any function defined externally, that is, in another source file, as
a limited form of optimization barrier. Specifically, the compiler assumes that any externally defined
function may access any statically or dynamically allocated data and any local variable whose address
is taken. This often means that explicit barriers can be omitted. It is one reason that Pintos contains
few explicit barriers.

A function defined in the same source file, or in a header included by the source file, cannot be relied
upon as an optimization barrier. This applies even to invocation of a function before its definition,
because the compiler may read and parse the entire source file before performing optimization.

II Memory Allocation
Pintos contains two memory allocators, one that allocates memory in units of a page, and one that can
allocate blocks of any size.
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II.a Page Allocator

The page allocator declared in threads/palloc.h allocates memory in units of a page. It is most often
used to allocate memory one page at a time, but it can also allocate multiple contiguous pages at once.

The page allocator divides the memory it allocates into two pools, called the kernel and user pools.
By default, each pool gets half of system memory above 1 MiB, but the division can be changed with
the -ul kernel command line option. An allocation request draws from one pool or the other. If one
pool becomes empty, the other may still have free pages. The user pool should be used for allocating
memory for user processes and the kernel pool for all other allocations. This distinction is very relevant
in this project, since some of the threads you will be dealing with are kernel threads and some of the
threads you will be dealing with are user threads.

Each pool’s usage is tracked with a bitmap, one bit per page in the pool. A request to allocate n
pages scans the bitmap for n consecutive bits set to false, indicating that those pages are free, and then
sets those bits to true to mark them as used. This is a “first fit” allocation strategy.

The page allocator is subject to fragmentation. That is, it may not be possible to allocate n contiguous
pages even though n or more pages are free, because the free pages are separated by used pages. In fact,
in pathological cases it may be impossible to allocate 2 contiguous pages even though half of the pool’s
pages are free. Single-page requests can’t fail due to fragmentation, so requests for multiple contiguous
pages should be limited as much as possible.

Pages may not be allocated from interrupt context, but they may be freed.
When a page is freed, all of its bytes are cleared to 0xcc, as a debugging aid.
Page allocator types and functions are described below.

• Function: void * palloc_get_page (enum palloc_flags flags)
Function: void * palloc_get_multiple (enum palloc_flags flags, size_t page_cnt)
Obtains and returns one page, or page_cnt contiguous pages, respectively. Returns a null pointer
if the pages cannot be allocated.

The flags argument may be any combination of the following flags:

– Page Allocator Flag: PAL_ASSERT
If the pages cannot be allocated, panic the kernel. This is only appropriate during kernel
initialization. User processes should never be permitted to panic the kernel.

– Page Allocator Flag: PAL_ZERO
Zero all the bytes in the allocated pages before returning them. If not set, the contents of
newly allocated pages are unpredictable.

– Page Allocator Flag PAL_USER
Obtain the pages from the user pool. If not set, pages are allocated from the kernel pool.

• Function: void palloc_free_page (void *page)
Function: void palloc_free_multiple (void *pages, size_t page_cnt)
Frees one page, or page_cnt contiguous pages, respectively, starting at pages. All of the pages
must have been obtained using palloc_get_page or palloc_get_multiple.

II.b Block Allocator

The block allocator, declared in threads/malloc.h, can allocate blocks of any size. It is layered on
top of the page allocator described in the previous section. Blocks returned by the block allocator are
obtained from the kernel pool.

The block allocator uses two different strategies for allocating memory. The first strategy applies to
blocks that are 1 KiB or smaller (one-fourth of the page size). These allocations are rounded up to the
nearest power of 2, or 16 bytes, whichever is larger. Then they are grouped into a page used only for
allocations of that size.
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The second strategy applies to blocks larger than 1 KiB. These allocations (plus a small amount of
overhead) are rounded up to the nearest page in size, and then the block allocator requests that number
of contiguous pages from the page allocator.

In either case, the difference between the allocation requested size and the actual block size is wasted.
A real operating system would carefully tune its allocator to minimize this waste, but this is unimportant
in an instructional system like Pintos.

As long as a page can be obtained from the page allocator, small allocations always succeed. Most
small allocations do not require a new page from the page allocator at all, because they are satisfied
using part of a page already allocated. However, large allocations always require calling into the page
allocator, and any allocation that needs more than one contiguous page can fail due to fragmentation,
as already discussed in the previous section. Thus, you should minimize the number of large allocations
in your code, especially those over approximately 4 KiB each.

When a block is freed, all of its bytes are cleared to 0xcc, as a debugging aid.
The block allocator may not be called from interrupt context.
The block allocator functions are described below. Their interfaces are the same as the standard C

library functions of the same names.

• Function: void * malloc (size_t size)
Obtains and returns a new block, from the kernel pool, at least size bytes long. Returns a null
pointer if size is zero or if memory is not available.

• Function: void * calloc (size_t a, size_t b)
Obtains a returns a new block, from the kernel pool, at least a * b bytes long. The block’s contents
will be cleared to zeros. Returns a null pointer if a or b is zero or if insufficient memory is available.

• Function: void * realloc (void *block, size_t new_size)
Attempts to resize block to new_size bytes, possibly moving it in the process. If successful,
returns the new block, in which case the old block must no longer be accessed. On failure, returns
a null pointer, and the old block remains valid.

A call with block null is equivalent to malloc. A call with new_size zero is equivalent to free.

• Function: void free (void *block)
Frees block, which must have been previously returned by malloc, calloc, or realloc (and not
yet freed).

III Page Tables
The code in pagedir.c is an abstract interface to the 80x86 hardware page table, also called a "page
directory" by Intel processor documentation. The page table interface uses a uint32_t * to represent a
page table because this is convenient for accessing their internal structure. The sections below describe
the page table interface and internals.

III.a Creation, Destruction, and Activation

These functions create, destroy, and activate page tables. The base Pintos code already calls these
functions where necessary, so it should not be necessary to call them yourself.

• Function uint32_t *pagedir_create (void)

Creates and returns a new page table. The new page table contains Pintos’s normal kernel virtual
page mappings, but no user virtual mappings.

Returns a null pointer if memory cannot be obtained.
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• Function void pagedir_destroy (uint32_t *pd)

Frees all of the resources held by pd, including the page table itself and the frames that it maps.

• Function void pagedir_activate (uint32_t *pd)

Activates pd. The active page table is the one used by the CPU to translate memory references.

III.b Inspection and Updates

These functions examine or update the mappings from pages to frames encapsulated by a page table.
They work on both active and inactive page tables (that is, those for running and suspended processes),
flushing the TLB as necessary.

• Function bool pagedir_set_page (uint32_t *pd, void *upage, void *kpage, bool writable)

Adds to pd a mapping from user page upage to the frame identified by kernel virtual address kpage.
If writable is true, the page is mapped read/write; otherwise, it is mapped read-only.

User page upage must not already be mapped in pd.

Kernel page kpage should be a kernel virtual address obtained from the user pool with palloc_get_page(PAL_USER).

Returns true if successful, false on failure. Failure will occur if additional memory required for the
page table cannot be obtained.

• Function void *pagedir_get_page (uint32_t *pd, const void *uaddr)

Looks up the frame mapped to uaddr in pd. Returns the kernel virtual address for that frame, if
uaddr is mapped, or a null pointer if it is not.

• Function void pagedir_clear_page (uint32_t *pd, void *page)

Marks page "not present" in pd. Later accesses to the page will fault.

Other bits in the page table for page are preserved.

This function has no effect if page is not mapped.

III.c Page Table Details

The functions provided with Pintos are sufficient to implement the projects. However, you may still
find it worthwhile to understand the hardware page table format, so we’ll go into a little detail in this
section.

The top-level paging data structure is a page called the "page directory" (PD) arranged as an array
of 1,024 32-bit page directory entries (PDEs), each of which represents 4 MB of virtual memory. Each
PDE may point to the physical address of another page called a "page table" (PT) arranged, similarly,
as an array of 1,024 32-bit page table entries (PTEs), each of which translates a single 4 kB virtual page
to a physical page.

Translation of a virtual address into a physical address follows the three-step process illustrated in
the diagram below:

1. The most-significant 10 bits of the virtual address (bits 22...31) index the page directory. If the
PDE is marked "present," the physical address of a page table is read from the PDE thus obtained.
If the PDE is marked "not present" then a page fault occurs.

2. The next 10 bits of the virtual address (bits 12...21) index the page table. If the PTE is marked
"present," the physical address of a data page is read from the PTE thus obtained. If the PTE is
marked "not present" then a page fault occurs.
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3. The least-significant 12 bits of the virtual address (bits 0...11) are added to the data page’s physical
base address, yielding the final physical address.

31 22 21 12 11 0
+----------------------+----------------------+----------------------+
| Page Directory Index | Page Table Index | Page Offset |
+----------------------+----------------------+----------------------+

| | |
_______/ _______/ _____/

/ / /
/ Page Directory / Page Table / Data Page

/ .____________. / .____________. / .____________.
|1,023|____________| |1,023|____________| | |____________|
|1,022|____________| |1,022|____________| | |____________|
|1,021|____________| |1,021|____________| \__\|____________|
|1,020|____________| |1,020|____________| /|____________|
| | | | | | | |
| | | \____\| |_ | |
| | . | /| . | \ | . |
\____\| . |_ | . | | | . |

/| . | \ | . | | | . |
| . | | | . | | | . |
| | | | | | | |
|____________| | |____________| | |____________|

4|____________| | 4|____________| | |____________|
3|____________| | 3|____________| | |____________|
2|____________| | 2|____________| | |____________|
1|____________| | 1|____________| | |____________|
0|____________| \__\0|____________| \____\|____________|

/ /

For the most part, you do not need to understand the PTE format to do the Pintos projects. The
actual format of a page table entry is summarized below. For complete information, refer to section 3.7,
"Page Translation Using 32-Bit Physical Addressing," in IA32-v3a3.

31 12 11 9 6 5 2 1 0
+---------------------------------------+----+----+-+-+---+-+-+-+
| Physical Address | AVL| |D|A| |U|W|P|
+---------------------------------------+----+----+-+-+---+-+-+-+

Pintos provides some macros and functions that are useful for working with raw page tables. The
most helpful ones, found in threads/pte.h are:

• Macro PTE_P

Bit 0, the "present" bit. When this bit is 1, the other bits are interpreted as described below.
When this bit is 0, any attempt to access the page will page fault. The remaining bits are then
not used by the CPU and may be used by the OS for any purpose.

• Macro PTE_ADDR

Bits 12...31, the top 20 bits of the physical address of a frame. The low 12 bits of the frame’s
address are always 0.

3https://web.stanford.edu/class/cs140/projects/pintos/pintos_13.html#IA32-v3a
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IV Linked Lists
Pintos contains a linked list data structure in lib/kernel/list.h that is used for many different pur-
poses. This linked list implementation is different from most other linked list implementations you may
have encountered, because it does not use any dynamic memory allocation.

/* List element. */
struct list_elem

{
struct list_elem *prev; /* Previous list element. */
struct list_elem *next; /* Next list element. */

};

/* List. */
struct list

{
struct list_elem head; /* List head. */
struct list_elem tail; /* List tail. */

};

In a Pintos linked list, each list element contains a “struct list_elem”, which contains the pointers
to the next and previous element. Because the list elements themselves have enough space to hold the
prev and next pointers, we don’t need to allocate any extra space to support our linked list. Here is an
example of a linked list element which can hold an integer:

/* Integer linked list */
struct int_list_elem

{
int value;
struct list_elem elem;

};

Next, you must create a “struct list” to represent the whole list. Initialize it with list_init().

/* Declare and initialize a list */
struct list my_list;
list_init (&my_list);

Now, you can declare a list element and add it to the end of the list. Notice that the second argument
of list_push_back() is the address of a “struct list_elem”, not the “struct int_list_elem” itself.

/* Declare a list element. */
struct int_list_elem three = {3, {NULL, NULL}};

/* Add it to the list */
list_push_back (&my_list, &three.elem);

We can use the list_entry() macro to convert a generic “struct list_elem” into our custom
“struct int_list_elem” type. Then, we can grab the “value” attribute and print it out:

/* Fetch elements from the list */
struct list_elem *first_list_element = list_begin (&my_list);
struct int_list_elem *first_integer = list_entry (first_list_element,

struct int_list_elem,
elem);

printf("The first element is: %d\n", first_integer->value);
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By storing the prev and next pointers inside the structs themselves, we can avoid creating new “linked
list element” containers. However, this also means that a list_elem can only be part of one list a time.
Additionally, our list should be homogeneous (it should only contain one type of element).

The list_entry() macro works by computing the offset of the elem field inside of “struct int_list_elem”.
In our example, this offset is 4 bytes. To convert a pointer to a generic “struct list_elem” to a pointer
to our custom “struct int_list_elem”, the list_entry() just needs to subtract 4 bytes! (It also casts
the pointer, in order to satisfy the C type system.)

Linked lists have 2 sentinel elements: the head and tail elements of the “struct list”. These
sentinel elements can be distinguished by their NULL pointer values. Make sure to distinguish between
functions that return the first actual element of a list and functions that return the sentinel head element
of the list.

There are also functions that sort a link list (using quicksort) and functions that insert an ele-
ment into a sorted list. These functions require you to provide a list element comparison function (see
lib/kernel/list.h for more details).

V Debugging Tips
We discussed a variety of debugging tools in the specification for Project 1. To demonstrate how to use
them in the context of this project, we’ve included a sample GDB session below.

The following example illustrates how one might debug a project 1 solution in which occasionally
a thread that calls timer_sleep is not woken up; thanks to Godmar Black for providing the sample
debugging session. With this bug, tests such as mlfqs_load_1 get stuck. This semester, we will not
be implementing the Multi-Level Feedback Queue Scheduler (MLFQS), but the example should still be
valuable. The source code for these tests are still available in tests/threads/ if you want to follow
along. If you want to run MLFQS tests, you can do so by updating tests/threads/Make.tests.

This session was captured with a slightly older version of Bochs and the gdb macros for Pintos, so it
looks slightly different than it would now.

Sample GDB Session .

First, I start Pintos:

$ pintos -v --gdb -- -q -mlfqs run mlfqs-load-1

writing command line to /tmp/gdalqtb5uf.dsk...
Bochs -q
========================================================================
Bochs x86 emulator 2.2.5
build from cvs snapshot on december 30, 2005
========================================================================
00000000000i[ ] reading configuration from Bochsrc.txt
00000000000i[ ] enabled gdbstub
00000000000i[ ] installing nogui module as the Bochs gui
00000000000i[ ] using log file Bochsout.txt
waiting for gdb connection on localhost:1234

Then, I open a second window on the same machine and start gdb:

$ pintos-gdb kernel.o

gnu gdb red hat linux (6.3.0.0-1.84rh)
copyright 2004 free software foundation, inc.
gdb is free software, covered by the gnu general public license, and you are
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welcome to change it and/or distribute copies of it under certain conditions.
type "show copying" to see the conditions.
there is absolutely no warranty for gdb. type "show warranty" for details.
this gdb was configured as "i386-redhat-linux-gnu"...
using host libthread_db library "/lib/libthread_db.so.1".

Then, I tell gdb to attach to the waiting Pintos emulator:

(gdb) debugpintos
remote debugging using localhost:1234
0x0000fff0 in ?? ()
reply contains invalid hex digit 78

Now I tell Pintos to run by executing c (short for continue):
Now Pintos will continue and output:

pintos booting with 4,096 kb ram...
kernel command line: -q -mlfqs run mlfqs-load-1
374 pages available in kernel pool.
373 pages available in user pool.
calibrating timer... 102,400 loops/s.
boot complete.
executing ’mlfqs-load-1’:
(mlfqs-load-1) begin
(mlfqs-load-1) spinning for up to 45 seconds, please wait...
(mlfqs-load-1) load average rose to 0.5 after 42 seconds
(mlfqs-load-1) sleeping for another 10 seconds, please wait...

Until it gets stuck because of the bug I had introduced. I hit ctrl+c in the debugger window:

program received signal 0, signal 0.
0xc010168c in next_thread_to_run () at ../../threads/thread.c:649
649 while (i <= pri_max && list_empty (&ready_list[i]))
(gdb)

The thread that was running when I interrupted Pintos was the idle thread. If i run backtrace,
it shows this backtrace:

(gdb) bt
#0 0xc010168c in next_thread_to_run () at ../../threads/thread.c:649
#1 0xc0101778 in schedule () at ../../threads/thread.c:714
#2 0xc0100f8f in thread_block () at ../../threads/thread.c:324
#3 0xc0101419 in idle (aux=0x0) at ../../threads/thread.c:551
#4 0xc010145a in kernel_thread (function=0xc01013ff , aux=0x0)
at ../../threads/thread.c:575
#5 0x00000000 in ?? ()

Not terribly useful. What I really like to know is what’s up with the other thread (or threads).
Since I keep all threads in a linked list called all_list, linked together by a struct list_elem
member named allelem, I can use the btthreadlist macro from the macro library I wrote.
btthreadlist iterates through the list of threads and prints the backtrace for each thread:
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(gdb) btthreadlist &all_list allelem
pintos-debug: dumping backtrace of thread ’main’ @@0xc002f000
#0 0xc0101820 in schedule () at ../../threads/thread.c:722
#1 0xc0100f8f in thread_block () at ../../threads/thread.c:324
#2 0xc0104755 in timer_sleep (ticks=1000) at ../../devices/timer.c:141
#3 0xc010bf7c in test_mlfqs_load_1 () at ../../tests/threads/mlfqs-load-1.c:49
#4 0xc010aabb in run_test (name=0xc0007d8c "mlfqs-load-1")
at ../../tests/threads/tests.c:50
#5 0xc0100647 in run_task (argv=0xc0110d28) at ../../threads/init.c:281
#6 0xc0100721 in run_actions (argv=0xc0110d28) at ../../threads/init.c:331
#7 0xc01000c7 in main () at ../../threads/init.c:140

pintos-debug: dumping backtrace of thread ’idle’ @@0xc0116000
#0 0xc010168c in next_thread_to_run () at ../../threads/thread.c:649
#1 0xc0101778 in schedule () at ../../threads/thread.c:714
#2 0xc0100f8f in thread_block () at ../../threads/thread.c:324
#3 0xc0101419 in idle (aux=0x0) at ../../threads/thread.c:551
#4 0xc010145a in kernel_thread (function=0xc01013ff , aux=0x0)
at ../../threads/thread.c:575
#5 0x00000000 in ?? ()

In this case, there are only two threads, the idle thread and the main thread. The kernel stack
pages (to which the struct thread points) are at 0xc0116000 and verb|0xc002f000|, respectively.
The main thread is stuck in timer_sleep, called from test_mlfqs_load_1.

Knowing where threads are stuck can be tremendously useful, for instance when diagnosing dead-
locks or unexplained hangs.
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