
CS 162 Operating Systems and System Programming
Fall 2020 Midterm 2

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

This is a proctored, closed-book exam. During the exam, you may

not communicate with other people regarding the exam questions

or answers in any capacity. If there is something in a question that you

believe is open to interpretation, please use the “Clarifications”

button to request a clarification. We will issue an announcement if we

believe your question merits one. We will overlook minor syntax errors

in grading coding questions. You do not have to add necessary

#include statements. For coding questions, the number of blank

lines you see is a suggested guideline, but is not a strict minimum or

maximum. There will be no limit on the length of your answer/solution.

a)

Name

b)

Student ID

c)

Please read the following honor code: “I understand that this is a

closed book exam. I hereby promise that the answers that I give on the

following exam are exclusively my own. I understand that I am allowed to

use two 8.5x11, double-sided, handwritten cheat-sheet of my own making,

but otherwise promise not to consult other people, physical resources

(e.g. textbooks), or internet sources in constructing my answers.” Type

your full name below to acknowledge that you’ve read and agreed to this

statement.

Exam generated for <EMAILADDRESS> 3

1. (18.0 points) True/False

Please EXPLAIN your answer in TWO SENTENCES OR LESS

(Answers longer than this may not get credit!). Also, answers without

any explanation GET NO CREDIT!

a) (2.0 points)

1

Paging solves internal fragmentation because all pages are the same

size.

True

 False

2

Explain.

Pages all being the same size solves external fragmentation.

Exam generated for <EMAILADDRESS> 4

b) (2.0 points)

1

The translation of virtual to physical addresses is done by the kernel.

True

 False

2

Explain.

Address translation is done by the Memory Management Unit (MMU).

Exam generated for <EMAILADDRESS> 5

c) (2.0 points)

1

Single level page tables are more efficient at representing sparse

address spaces than multi-level page tables.

True

 False

2

Explain.

Multi-level page tables can represent ranges of unassigned (invalid)
virtual addresses by leaving whole second-level page tables empty (which
can thus be left unused by marking the upper-level PTE as invalid).
Consequently, they are much more memory-efficient at representing sparse
address spaces than single-level page tables which must provide a PTE
(marked invalid) for EVERY unused virtual page.

Exam generated for <EMAILADDRESS> 6

d) (2.0 points)

1

Multi-level page tables are better memory-wise for sparse addresses in

comparison to single level page tables.

 True

False

2

Explain.

Multi-level page tables can represent ranges of unassigned (invalid)
virtual addresses by leaving whole second-level page tables empty (which
can thus be left unused by marking the upper-level PTE as invalid).
Consequently, they are much more memory-efficient at representing sparse
address spaces than single-level page tables which must provide a PTE
(marked invalid) for EVERY unused virtual page..

Exam generated for <EMAILADDRESS> 7

e) (2.0 points)

1

The number of bits in a virtual address is always the same as the number

of bits in its corresponding physical address.

True

 False

2

Explain.

Even though the number of bits in the offset stays the same between the
virtual address and the physical address, the number of bits in the VPN
and the PPN do not necessarily have to be equal. The former is based on
the number of virtual pages whereas the later is based on the number of
physical pages.

Exam generated for <EMAILADDRESS> 8

f) (2.0 points)

1

On a page fault, the MMU will invalidate previous virtual to physical

address mappings if needed and create new mappings in the page table

based on the requested data brought from the kernel.

True

 False

2

Explain.

The MMU is in charge of the actual address translation. The kernel will
do the evicting, invalidating of mappings, going to disk for requested
data, and creation of new mappings.

Exam generated for <EMAILADDRESS> 9

g) (2.0 points)

1

For base & bound virtual memory, the two special registers BaseAddr and

LimitAddr are stored in the Thread Control Block.

True

 False

2

Explain.

All threads within the same process share the same base and bound, so
the two registers will be stored in the Process Control Block.

Exam generated for <EMAILADDRESS> 10

h) (2.0 points)

1

Adding a TLB will always make memory lookups and accesses faster.

True

 False

2

Explain.

In the case where all lookups to the TLB miss, there’s the added
overhead from the TLB misses that would not be taken into account if
there was no TLB at all.

Exam generated for <EMAILADDRESS> 11

i) (2.0 points)

1

The associativity of the TLB can be configured by modifying kernel

source code.

True

 False

2

Explain.

The TLB lookup is implemented in hardware, so modifying the
associativity requires replacing the TLB hardware, not a software
update.

Exam generated for <EMAILADDRESS> 12

j) (2.0 points)

1

Swapping is the term denoting the process of swapping PCBs and other

housekeeping such as switching page table pointers.

True

 False

2

Explain.

Swapping is an extreme form of context switching in which parts of or
all of the previous process is moved to disk in order to make room for
the incoming process.

Exam generated for <EMAILADDRESS> 13

k) (2.0 points)

1

Thrashing is characterized by slow performance and high CPU utilization.

True

 False

2

Explain.

Since thrashing involves constantly switching out pages in our cache due
to page faults, performance is slow and processes do not get to
progress, which leads to low CPU utilization.

Exam generated for <EMAILADDRESS> 14

l) (2.0 points)

1

Thrashing is characterized by slow performance and low CPU utilization.

 True

False

2

Explain.

Since thrashing involves constantly switching out pages in our cache due
to page faults, performance is slow and processes do not get to
progress, which leads to low CPU utilization.

Exam generated for <EMAILADDRESS> 15

m) (2.0 points)

1

Killing the process with the largest working set is a guaranteed

solution to thrashing.

True

 False

2

Explain.

It is quite possible that there are still too many processes with too
much total memory, so that the system will still be thrashing after
killing the initial process.

Exam generated for <EMAILADDRESS> 16

n) (2.0 points)

1

Write through caches do not need a dirty bit.

 True

False

2

Explain.

Because write through caches update both the cache and memory
simultaneously, the cache doesn’t need a dirty bit that signals if the
entry has changed since it was pulled from disk.

Exam generated for <EMAILADDRESS> 17

o) (2.0 points)

1

Write through caches need a dirty bit.

True

 False

2

Explain.

Because write through caches update both the cache and memory
simultaneously, the cache doesn’t need a dirty bit that signals if the
entry has changed since it was pulled from disk.

Exam generated for <EMAILADDRESS> 18

p) (2.0 points)

1

In general, larger caches or caches with higher associativity have a

higher hit rate than smaller, direct-mapped caches.

 True

False

2

Explain.

There’s fewer capacity and conflict misses in larger caches / caches
with higher associativity, so the hit rate is typically higher.

Exam generated for <EMAILADDRESS> 19

q) (2.0 points)

1

In general, larger caches or caches with higher associativity have a

lower hit rate than smaller, direct-mapped caches.

True

 False

2

Explain.

There’s fewer capacity and conflict misses in larger caches / caches
with higher associativity, so the hit rate is typically higher.

Exam generated for <EMAILADDRESS> 20

r) (2.0 points)

1

In deadlock, one process continually responds to another process’s

changes but is unable to complete any work.

True

 False

2

Explain.

In deadlock, a process can’t respond to another process’s changes/method
calls because it’s blocked. Note: This is the livelock definition.

Exam generated for <EMAILADDRESS> 21

s) (2.0 points)

1

In deadlock, one process can’t respond to another process’s operating

calls and is unable to complete any work.

 True

False

2

Explain.

In deadlock, a process can’t respond to another process’s changes/method
calls because it’s blocked. Note: This is the deadlock definition.

Exam generated for <EMAILADDRESS> 22

t) (2.0 points)

1

Pre-emptive schedulers fix the problem of deadlock in a system.

True

 False

2

Explain.

The condition of “no preemption” in deadlock merely means that
resources cannot be taken away from a process that owns them. This
condition isn’t removed by the presence of a pre-emptive schedulers.

Exam generated for <EMAILADDRESS> 23

u) (2.0 points)

1

A cyclic use of resources leads to deadlock.

True

 False

2

Explain.

A cycle is one of the four requirements for deadlock. It is only a
necessary condition, not a sufficient condition.

Exam generated for <EMAILADDRESS> 24

v) (2.0 points)

1

It’s not possible to use the Banker’s algorithm to guarantee the

completion of tasks in a real-life operating system.

 True

False

2

Explain.

Even if they are prevented from deadlocking on resources, tasks can
still go into infinite loops or otherwise refuse to complete for reasons
having nothing to do with resources.

Exam generated for <EMAILADDRESS> 25

w) (2.0 points)

1

The only way to prevent deadlock caused by cyclic use of resources is to

use a dynamic algorithm such as the Banker’s algorithm to mediate all

resource acquisition.

True

 False

2

Explain.

Resources can be ordered in some absolute fashion (i.e. alphabetical
ordering) and can be acquired by processes in that order – without use
of the Banker’s algorithm.

Exam generated for <EMAILADDRESS> 26

x) (2.0 points)

1

Banker’s Algorithm can find more than one potential order of processes

that result in a safe state.

 True

False

2

Explain.

Banker’s Algorithm determines a safe state by finding AN ORDERING of
processes. There are other orderings possible that can bring the system
to a safe state.

Exam generated for <EMAILADDRESS> 27

y) (2.0 points)

1

Banker’s Algorithm can only find one order of processes that results in

a safe state.

True

 False

2

Explain.

Banker’s Algorithm determines a safe state by finding AN ORDERING of
processes. There are other orderings possible that can bring the system
to a safe state.

Exam generated for <EMAILADDRESS> 28

z) (2.0 points)

1

Multiprocessing networks with wormhole routing must use a dynamic

scheduler built in hardware to implement the Banker’s Algorithm in order

to avoid deadlock.

True

 False

2

Explain.

As discussed in class, multiprocessor networks can use
“dimension-ordered routing” (routing X, then Y, then Z) to prevent
cycles and thus prevent deadlock.

Exam generated for <EMAILADDRESS> 29

aa) (2.0 points)

1

Assuming that proper feasibility checks have been performed on the

workload, a real-time scheduler is not prone to starvation.

 True

False

2

Explain.

The feasibility checking makes sure that the processor is not overloaded
so that the scheduler can meet all deadlines.

Exam generated for <EMAILADDRESS> 30

ab) (2.0 points)

1

Real-time schedulers are prone to starvation even if proper feasibility

checks have been performed on the workload.

True

 False

2

Explain.

The feasibility checking makes sure that the processor is not overloaded
so that the scheduler can meet all deadlines.

Exam generated for <EMAILADDRESS> 31

ac) (2.0 points)

1

There are scheduler workloads where a non-preemptive scheduler has a

better a verage wait time than a preemptive scheduler.

 True

False

2

Explain.

Consider a workload with N equal tasks run by either a round-robin
scheduler (preemptive) or a FCFS scheduler (non-premptive). The FCFS
scheduler has a much better average wait time.

Exam generated for <EMAILADDRESS> 32

ad) (2.0 points)

1

The SRTF Algorithm is an example of a scheduler algorithm that can’t be

implemented in a real-life system.

 True

False

2

Explain.

We don’t know how long a process will run for in a real-time system,
which is needed in SRTF.

Exam generated for <EMAILADDRESS> 33

ae) (2.0 points)

1

The SRTF Algorithm is an example of a scheduler algorithm that can be

implemented in a real-life system.

True

 False

2

Explain.

We don’t know how long a process will run for in a real-time system,
which is needed in SRTF.

Exam generated for <EMAILADDRESS> 34

af) (2.0 points)

1

Priority Donation can help to prevent priority inversion under some

circumstances.

 True

False

2

Explain.

Consider the following livelock situation in a priority scheduler:
assume there are three threads T1, T2, and T3 at priorities 1 (highest),
2, and 3 (lowest), and in which T3 has acquired a lock that T1 is
sleeping on, with T2 running and effectively preventing T1 from running.
This is a priority inversion. Priority donation from T1 to T3 would
allow T3 to release the lock and thereby prevent the priority inversion.

Exam generated for <EMAILADDRESS> 35

ag) (2.0 points)

1

It is possible to build a scheduler that approximates SRTF using a

moving average.

 True

False

2

Explain.

An SRTF scheduler requires a way to predict the future burst time for
each process on the ready queue. It can do this by keeping enough
information to compute a moving average of the last few burst times for
each process and using the result to predict the following burst time.

Exam generated for <EMAILADDRESS> 36

ah) (2.0 points)

1

It is possible to build a scheduler that approximates SRTF using a

moving average.

True

 False

2

Explain.

An SRTF scheduler requires a way to predict the future burst time for
each process on the ready queue. It can do this by keeping enough
information to compute a moving average of the last few burst times for
each process and using the result to predict the following burst time.

Exam generated for <EMAILADDRESS> 37

2. (16.0 points) Multiple Choice

a) (2.0 pt)

Select all that apply: It is possible for the addition of physical

memory to decrease performance when our page replacement policy is:

2 LRU

� FIFO

� Random

2 MRU

2 None of the above

2 It is never possible for more physical memory to be hurtful

Belady’s anomaly shows that performance may decrease with a FIFO

algorithm. Random could potentially evict like FIFO.

b) (2.0 pt)

Suppose we have a 512 B single-page page table where each page table

entry is 4 bytes. How big is the virtual address space?

256 KB

 64 KB

2 KB

512 B

128 B

Not enough information

None of the above

Each page is 512 B. The page table is one page long and has entries of 4

bytes, so it contains 512 / 4 = 128 PTE’s. Each PTE corresponds to one

physical page. Therefore, 128 PTE’s * 512 B per page = 64 KB total.

Exam generated for <EMAILADDRESS> 38

c) (2.0 pt)

Suppose we have a 512 B single-page page table where each page table

entry is 4 bytes. How big is the physical address space?

256 KB

64 KB

2 KB

512 B

128 B

 Not enough information

None of the above

We have no information on the physical address space size.

d) (2.0 pt)

Suppose that pages are 512 B and each page table entry is 4 bytes.

Assume that somehow the virtual and physical address spaces were both 4

GB and that the page table begins at address 0x10000000. If we wanted to

access the virtual address 0x00000345, what is the address of the PTE we

would look at?

0x10000000

0x10000001

 0x10000004

0x10000345

Not enough information

None of the above

Each page is 512 B, so we have 9 offset bits in our virtual address.

Therefore, our VPN for 0x00000345 is 1. We index into the first PTE in

the page table (since we use the VPN to index into the page table),

which will be at address 0x100000004: each PTE is 4 bytes.

Exam generated for <EMAILADDRESS> 39

e) (2.0 pt)

Select all that are true regarding inverted page tables.

2 It would be smart to use an inverted page table when our physical memory

space is very large.

� Inverted page tables make it difficult to implement shared memory.

� Lookup times are generally longer than standard page tables.

2 Inverted page tables save memory when compared to a standard page table.

2 None of the above

Inverted page table size scales off physical memory, so we would not

want to use an inverted page table when physical memory is large.

f) (2.0 pt)

Which of the following are true regarding virtual memory and address

translation?

� It is possible to have a larger virtual memory space than physical

memory space

� It is possible to have a larger physical memory space then virtual

memory space

2 Physical memory pages and virtual memory pages usually differ in size

� Modern processors generally include dedicated hardware to assist with

address translation

2 Address translation is managed entirely in hardware on x86

g) (2.0 pt)

Which of the following are true regarding virtual memory?

� Adjacent bytes within the same virtual page are always also adjacent in

physical memory

� Adjacent bytes within the same physical page are always also adjacent in

virtual memory

2 Adjacent virtual pages are always stored in adjacent physical pages

2 Adjacent physical pages always correspond to adjacent virtual pages

Exam generated for <EMAILADDRESS> 40

h) (2.0 pt)

Suppose a thread in Pintos is holding a lock called lock A. Which of the

following could change the thread’s effective priority? Select all that

apply.

2 The thread tries to acquire another lock, lock B, but has to wait.

� The thread releases lock A.

� Another thread tries to acquire lock A.

� Some other thread dies.

� The thread calls thread_set_priority and passes in a value less than

its current base priority.

2 None of the above

i) (2.0 pt)

Which of the following are true?

� Deadlock will always cause starvation of CPU resources

� Livelock will always cause starvation of CPU resources

� Shortest Run Time First scheduling may cause starvation of CPU resources

� Longest Run Time First scheduling may cause starvation of CPU resources

j) (2.0 pt)

Consider the following simple alternative to demand paging: processes

must declare ahead of time (i.e. by including this information in each

executable) how much memory they will use, and the OS must hold this

much physical memory in reserve for exclusive use by the process from

the time the process begins running until the time it exits. Select all

of the following that are true regarding this alternative as compared to

demand paging:

� It will result in lower memory access latency on average for processes

2 It will result in overall higher CPU utilization on average for the

system as a whole

� It will reduce the amount of disk I/O performed on average for the

system as a whole

2 It would require additional dedicated hardware support/features in order

to implementable

Exam generated for <EMAILADDRESS> 41

k) (2.0 pt)

Consider an OS running on a single-core processor which handles page

faults using the following approach: when a process encounters a page

fault, the OS waits for the page to be brought in from disk and then

resumes the process, without ever putting the process to sleep. Select

all of the following that are true regarding this approach, compared to

the standard approach of putting a process to sleep when a page fault is

encountered, then waking it when the page has been brought into physical

memory.

� It will result in higher data-cache hit rates on average for processes

2 It will result in overall higher concurrency in the system as a whole

2 It will result in higher throughput in terms of processes serviced in

the system as a whole

2 It will more highly stress the TLB

l) (2.0 pt)

When trying to cache data which follows a Zipfian distribution, which of

the following are true:

� Increasing the size of the cache yields diminishing returns

2 Caching is completely ineffective

2 Caching is worthwhile only when the cache is large relative to the size

of the domain (>= 50%)

2 None of the above

m) (2.0 pt)

Which of the following are true regarding page replacement policies?

2 Using MIN always results in fewer cache misses than using FIFO for the

same workload

� Using MIN always results in the fewest possible cache misses for any

workload

2 Using LRU never results in more cache misses than using FIFO for the

same workload

� Clock replacement generally has lower computational overhead than LRU

replacement

Exam generated for <EMAILADDRESS> 42

n) (2.0 pt)

Which of the following are true regarding Banker’s Algorithm?

� It only grants resource requests that will keep the system in a “safe”

state so that it will have the potential to complete without deadlock.

2 It can always find an allocation of resources that avoids deadlock

2 If it detects an “unsafe” state, then the system is guaranteed to

deadlock

2 It is capable of handling threads whose maximum possible resource

consumption for a particular resource changes over time

Exam generated for <EMAILADDRESS> 43

3. (19.0 points) Short Answer

a) (2.0 points) TLB During Context Switch

1

Describe two mechanisms that would ensure that the TLB functions

correctly after a system context switches between two processes.

Invalidate all entries in the TLB each time you context switch / flush
the TLB. Attach a process ID to each TLB entry to distinguish between
processes. Points were not given for changing pointers to TLBs/switching
out TLBs, because that doesn’t reflect the understanding that the TLB is
a monolithic structure, just like the L1 cache.

Exam generated for <EMAILADDRESS> 44

b) (2.0 points) Page Table Size

1

If we had a three level page table with each chunk of the table having

2ˆ10 entries, how many total page table entries would there be among

the second level page tables?

Each page table entry in the first level references another page table
of 2ˆ10 entries. So, in total, we have 2ˆ10 * 2ˆ10 = 2ˆ20
total page table entries in our second level.

Exam generated for <EMAILADDRESS> 45

c) (2.0 points) Virtually-Indexed Caches

1

What is the difference between a system that has a virtually indexed

cache and one which has a physically indexed cache. Assume that both

systems have virtual memory and make sure to indicate how use of the TLB

differs in each case.

With a virtually indexed cache, the virtual addresses go directly from
the processor to the cache before translation, whereas with a physically
indexed cache, the addresses must be translated to physical addresses
before they go to the cache. In first case, the TLB is consulted only
after a cache miss, whereas in the second case, the TLB is consulted on
every access – before the cache can be accessed.

Exam generated for <EMAILADDRESS> 46

d) (2.0 points) Page Replacement Policies

1

For the following page replacement policies - FIFO, LRU, MIN, Clock -

list out the relationships between these policies. Specifically, list

which policies are approximations of other policies using brackets and

arrows. For example, {A→B→C→D} {E} means that A is an approximation

of B, which is an approximation of C, which is an approximation of D. E

is not an approximation of anything.

{Clock –> LRU –> MIN}, {FIFO}

Exam generated for <EMAILADDRESS> 47

e) (2.0 points) Conflict Misses

1

Although any virtual page number can be mapped to any physical page

number by a typical address translation scheme (thereby providing a

fully-associative mapping), explain why the wrong choice of replacement

policy could still lead to a high rate of conflict misses.

If the replacement policy were to choose a page to replace based on the
virtual address, this replacement policy could effectively provide the
behavior of a direct-mapped cache.

Exam generated for <EMAILADDRESS> 48

f) (2.0 points) Local Allocation Policy

1

Explain why a Local Allocation policy for pages might make sense for a

real-time OS?

The Local Allocation policy would mean that each task would only replace
its own pages, never pages of other tasks. As a result, each task would
have a guaranteed amount of memory and thus a more predictable latency
pattern.

Exam generated for <EMAILADDRESS> 49

g) (2.0 points) Use-Bit Emulation

1

Explain how an operating system could make up for the lack of a use bit

in the hardware-supported page table entry (PTE).

The use bit can be emulated in software by keeping one bit per page
stored in kernel memory. Then, the OS would set the page table entry for
each mapped page to “invalid” (or “not present”) so that the first
access (or “use”) of each page would cause a page fault, allowing the
OS to both set the simulated “use” bit ->1 and changing the
PTE back to valid.

Exam generated for <EMAILADDRESS> 50

h) (2.0 points) MLFQS Scheduler

1

Assume our system uses the MLFQS scheduler depicted above. As the

diagram shows, the highest priority queues are Round Robin with quantas

of 8 and 16 ticks respectively. The lowest priority queue is FCFS.

Explain three ways to write a program such that the program thread

always remains in the highest priority queue.

Every 7 ticks: Do a simple I/O operation Manually yield the thread to
the CPU Put the thread to sleep

Exam generated for <EMAILADDRESS> 51

i) (2.0 points) Lottery Scheduling

1

Explain how lottery scheduling can prevent starvation among low-priority

tasks.

In lottery scheduling, each thread/process is given a certain number of
lottery tickets based on its priority. We psuedo-randomly select a
lottery ticket and schedule the thread that holds that lottery ticket.
Since every thread gets at least one lottery ticket, we know every
thread will be scheduled eventually.

Exam generated for <EMAILADDRESS> 52

j) (2.0 points) Round-Robin Scheduling

1

Explain how Round Robin scheduling can prevent starvation among

low-priority tasks.

In round robin scheduling, each thread/process runs for an equal quanta,
and every thread is allowed to run before returning to the first thread
that was scheduled. As a result, we know that each thread will run every
[quanta * (# threads - 1)] ticks

Exam generated for <EMAILADDRESS> 53

k) Priority Donation

Consider a system that supports priority donation for locks. We have

Thread A, with base priority 30, that holds Lock B and Lock C. There is

a Thread B with effective priority 20 waiting on Lock B, and a Thread C

with effective priority 40 waiting on Lock C.

1

Assuming these are the only three threads running on the system, what is

the effective priority of Thread A?

40

2

For some thread T, our implementation of priority donation stores a list

of donor threads that are waiting on a lock held by thread T. We

calculate Thread T’s effective priority using the list of donor threads

and thread T’s base priority. Monty Mole thinks that, because Thread B’s

effective priority is less than Thread A’s base priority, Thread B never

needs to be stored on Thread A’s donor list. Is Monty Mole right? Why or

why not?

Monty Mole is wrong because Thread A’s base priority may change and be
set to a value less than Thread B’s effective priority of 20, such as
10. If Thread A then acquires and releases Lock C, it would have an
effective priority of 20 (donated by Thread B). However, if we did not
include Thread B on the donor list, we would not properly donate
priority, and calculate Thread A’s effective priority as 10 (based on
its base priority).

Exam generated for <EMAILADDRESS> 54

l) (2.0 points) Timer

1

For the Project 2 timer, it is possible to insert threads on the

sleeping list in sorted order, and peek/pop from the front of the

sleeping list when waking up threads without any additional sorting.

However, if we use a single ready list for priority scheduling,

inserting threads onto the ready list in sorted order and popping from

the front of the ready list when scheduling the next thread will cause

threads to be scheduled in the wrong order. Why is this?

For the sleep list, the wake-up time of a thread cannot be modified
after it is placed on the sleep list. As a result, maintaining sorted
order on insertion is enough to guarantee that the list is sorted at any
time. For the priority ready list, priority donation can cause a
thread’s effective priority to change after it has been placed on the
ready list. As a result, its position in the sorted ready list could
change.

Exam generated for <EMAILADDRESS> 55

m) (4.0 points) Average Memory Access Time

Parameter Value

TLB Hit Rate 0.4
TLB Lookup 5ns
L1 Cache Hit Rate 0.2
L1 Cache Lookup Time 5ns
Memory Access Time 50ns

1

Assume that our system uses a 3-level page table for address

translation, in addition to a TLB and an L1 cache (assume this is the

only memory cache). Given the data above, what is the Average Memory

Access Time? Show your work (e.g. an equation).

Memory Access = {L1 Cache Lookup Time} + {1 - L1 Cache Hit
Rate}{Memory Access Time} TLB Miss Time = {Memory Access} 3
AMAT = {TLB Lookup Time} + {Memory Access} + {1 - TLB Hit
Rate}*{TLB Miss Time}
Memory Access = 5ns + 0.8 * 50ns = 45ns TLB Miss Time = 45ns * 3 = 135ns
AMAT = 5ns + 45ns + 0.6 * 135ns = 131ns

2

If you could either double the TLB Hit Rate or the Memory Cache Hit

Rate, which would you choose? In addition to a quantitative analysis,

please provide a qualitative reason for why this is the case.

Memory Access = 5ns + 0.6 * 50ns = 35ns TLB Miss Time = 35ns * 3 = 105ns
AMAT = 5ns + 35ns + 0.6 * 105ns = 93ns
Memory Access = 5ns + 0.8 * 50ns = 45ns TLB Miss Time = 45ns * 3 = 135ns
AMAT = 5ns + 45ns + 0.2 * 135ns = 77ns
Intuitively, the penalty for a TLB miss is much higher than that of a
cache miss, since a non-cached address translation requires 3 extra
memory accesses.

Exam generated for <EMAILADDRESS> 56

4. (28.0 points) Potpourri

a) (9.0 points) The Western Galactic Floopy Corporation

The original Central Galactic Floopy Corporation’s Galaxynet server from

Discussion 2 had an issue where transactions were not properly

synchronized. Here, implement a new system with proper synchronization

that is not prone to exploitation or deadlock.

In this new system, transactions can now involve multiple accounts and

can be performed with

transact(galaxy_net_t *galaxy_net, int *accounts, int num_accounts).

Accounts are represented with an account_id and are assigned

in increasing order, starting at 0. transact is not thread

safe, so users will call transact_safe instead.

given account in a galaxy_net_t can only be under one

transaction at a time, but the system should allow multiple transfers

that involve different acccounts to run concurrently.Any

given account in a galaxy_net_t can only be under one

transaction at a time, but the system should allow multiple transfers

that involve different acccounts to run concurrently.

For example, say we want to initalize a galaxy_net_t system

with 10 total accounts and wish to perform a transaction involving

accounts 3, 7, 1, and 2. We would do the following:

galaxy_net_t *net = init_galaxy_net(10);

int accounts[4] = {3, 7, 1, 2};

transact(galaxy_net, accounts, 4); // we can also call transact_safe here

In the following problems, assume that you have

lock_acquire(lock_t *lock), and

lock_release(lock_t *lock) to manipulate locks, and

lock_init(lock_t *lock) to init a lock. You may also find

calloc() or malloc() useful.

Exam generated for <EMAILADDRESS> 57

1

Fill in missing lines of code for data structure definitions (you do not

have to fill all the lines):

typedef struct galaxy_net {

// other members (not relevant)

int num_accounts;

} galaxy_net_t;

typedef struct galaxy_net {

// other members (not relevant)

int num_accounts;

lock_t *account_locks;

} galaxy_net_t;

Exam generated for <EMAILADDRESS> 58

2

Fill in missing lines of code for init_galaxy_net() (you do

not have to fill all the lines):

galaxy_net_t *init_galaxy_net(int num_accounts) {

galaxy_net_t *galaxy_net = malloc(sizeof(galaxy_net_t));

// init other members (not relevant)

galaxy_net->num_accounts = num_accounts;

return galaxy_net;

}

Exam Clarification: You can assume malloc and calloc succeeds

galaxy_net_t *init_galaxy_net(int num_accounts) {

galaxy_net_t *galaxy_net = malloc(sizeof(galaxy_net_t));

// init other members (not relevant)

galaxy_net->num_accounts = num_accounts;

galaxy_net->account_locks = calloc(num_accounts, sizeof(lock_t));

for (int i = 0; i < num_accounts; i++) {

lock_init(&galaxy_net->account_locks[i]);

}

return galaxy_net;

}

Exam generated for <EMAILADDRESS> 59

3

Implement transact_safe such that it is thread-safe and

properly synchronized, following the system description above. Make sure

your implementation is not prone to deadlock. Runtime is not an issue.

(You do not have to fill all the lines.):

void transact_safe(galaxy_net_t *galaxy_net, int *account_ids, int num_accounts) {

transact(galaxy_net, account_ids, num_accounts);

}

Exam Clarification: You can assume that transact_safe will be called

with valid parameters (e.g.~valid account IDs) and no duplicate account

IDs

Exam generated for <EMAILADDRESS> 60

void transact_safe(galaxy_net_t *galaxy_net, int *account_ids, int num_accounts) {

for (int account_id = 0; account_id < galaxy_net->num_accounts; account_id++) {

for (int i = 0; i < num_accounts; i++) {

if (account_id == account_ids[i]) {

lock_acquire(&galaxy_net->account_locks[account_ids[i]]);

}

}

}

transact(galaxy_net, account_ids, num_accounts);

for (int i = 0; i < num_accounts; i++) {

lock_release(&galaxy_net->account_locks[account_ids[i]]);

}

}

Exam generated for <EMAILADDRESS> 61

b) (6.0 points) Page Replacement

For the following problem, assume a hypothetical machine with 4 pages of

physical memory and 7 pages of virtual memory. Given the access pattern:

E]G D C A D F F G A B D F A F B A

E

Indicate which virtual pages remain resident in memory after completing

the access pattern, for each of the following policies. This is

equivalent to filling out the entire table, and providing the last

column of the table as your final answer. You may copy the tables below

onto scratch paper and fill them out, but you will only be graded on the

final answer you provide.

We have given the FIFO policy as an example. If there are any ties,

break them numerically, or alphabetically. When allocating a new virtual

page, if there are multiple places the page can go, choose the lowest

number physical page. When choosing a virtual page to evict, if any of

them are equally good to evict, evict the virtual page with the smallest

letter.

Format your final answer as a sequence of 4 capital letters, with no

spaces. The first letter is the virtual page stored at the first

physical page, the second letter is the virtual page stored at the

second physical page, and so on. We also expect you to calculate the

number of hits for each access pattern. Format your final answer as an

integer, with no spaces.

FIFO

G D C A D F F G A B D F A F B A E

1 G G G G G F F F F F F F A A A A A
2 D D D D D D G G G G G G F F F F
3 C C C C C C C B B B B B B B E
4 A A A A A A A D D D D D D D

Resident Pages (FIFO): AFED

Number of Hits (FIFO): 6

Exam generated for <EMAILADDRESS> 62

G D C A D F F G A B D F A F B A E

1

MIN

G D C A D F F G A B D F A F B A E

1
2
3
4

Resident Pages (MIN):

BDFE

G D C A D F F G A B D F A F B A E

1 G G G G G G G G G B B B B B B B B
2 D D D D D D D D D D D D D D D D
3 C C C F F F F F F F F F F F F
4 A A A A A A A A A A A A A E

2

Number of Hits (MIN):

10

3

LRU

G D C A D F F G A B D F A F B A E

1
2
3
4

Resident Pages (LRU):

EBFA

Exam generated for <EMAILADDRESS> 63

G D C A D F F G A B D F A F B A E

1 G G G G G F F F F F D D D D D D E
2 D D D D D D D D B B B B B B B B
3 C C C C C G G G G F F F F F F
4 A A A A A A A A A A A A A A

4

Number of Hits (LRU):

7

Exam generated for <EMAILADDRESS> 64

c) (4.0 points) Banker’s Algorithm

Suppose we have the following resources {A, B, C} and

threads {T1, T2, T3, T4}.

The total number of each resource available in the system is:

Total

A B C

11 13 12

The threads have maximum resource requirements and current allocation of

resources as follows:

Currently Allocated

Thread ID A B C

T1 1 2 1
T2 0 2 0
T3 4 3 0
T4 3 0 5

Maximum Required

Thread ID A B C

T1 5 9 7
T2 0 3 0
T3 7 5 2
T4 10 8 10

Exam generated for <EMAILADDRESS> 65

1

If the system is in a safe state give a non-blocking sequence of thread

executions. If no such sequence exists, write ‘N/A’ and provide a proof

that the system is unsafe.

Answer Format: if you believe a correct execution order is (Thread 1,

Thread 4, Thread 2, Thread 3), for example, input your answer in the

format [T1, T4, T2, T3]. Otherwise, write ‘N/A’,

followed by a proof of why there is no such sequence.

firstBreak ties by choosing the thread with a lower ID to execute

first.

[T2, T3, T1, T4]

Using the “Currently Allocated” and “Total” tables, we can generate

the “Available” table:

Available

A B C

3 6 6

Using the “Currently Allocated” and “Maximum Required”, we can

generate the “Needed” table:

Needed

Thread ID A B C

T1 4 7 6
T2 0 1 0
T3 3 2 2
T4 7 8 5

Exam generated for <EMAILADDRESS> 66

d) (9.0 points) Scheduling Potpourri

Here is a table of processes and their associated arrival and running

times.

Name Arrival Time CPU Running Time

A 0 2
B 1 6
C 4 1
D 7 4
E 8 3

Show the scheduling order for these processes under 3 policies: First

Come First Serve (FCFS), Shortest-Remaining-Time-First (SRTF),

Round-Robin (RR) with quantum = 2. Assume that context switch overhead

is 0.

Incoming jobs are appended to the back of the ready queue. However, if

an existing job is preempted on a time slice, it will be processed

before incoming jobs, which will be added after the originally running

job is preempted and added to the back of the ready queue.

Priorities correspond to the lexicographical value of a job’s name, so

“John” has lower priority than “Kubi”. When breaking ties, let the

job with lowest priority win.

Please put your final answers for each scheduling algorithm in the

corresponding answer slots below.

the following form:Your answer MUST take EXACTLY

the following form:

A, A, D, C, B, B, E,..., A

with a single comma then single space delimiting the job at each time

slice. We recommend you write down your answers on paper in their

entirety in something like the following tabular format. Copy them over

carefully.

Time FCFS SRTF RR

0
1
2
3
4
5
6
7
8
9

Exam generated for <EMAILADDRESS> 67

Time FCFS SRTF RR

10
11
12
13
14
15

Exam generated for <EMAILADDRESS> 68

1

First Come First Serve:

A, A, B, B, B, B, B, B, C, D, D, D, D, E, E, E

A

State of queue: deque([])

A

State of queue: deque([B])

B

State of queue: deque([])

B

State of queue: deque([])

B

State of queue: deque([C])

B

State of queue: deque([C])

B

State of queue: deque([C])

B

State of queue: deque([C, D])

C

State of queue: deque([D, E])

D

State of queue: deque([E])

D

State of queue: deque([E])

D

State of queue: deque([E])

D

State of queue: deque([E])

E

State of queue: deque([])

E

State of queue: deque([])

E

State of queue: deque([])

Exam generated for <EMAILADDRESS> 69

2

Shortest-Remaining-Time-First:

A, A, B, B, C, B, B, B, B, E, E, E, D, D, D, D

State of queue: []

A

State of queue: [[6, ‘B’]]

A

State of queue: []

B

State of queue: []

B

State of queue: [[4, ‘B’]]

C

State of queue: []

B

State of queue: []

B

State of queue: [[4, ‘D’]]

B

State of queue: [[3, ‘E’], [4, ‘D’]]

B

State of queue: [[4, ‘D’]]

E

State of queue: [[4, ‘D’]]

E

State of queue: [[4, ‘D’]]

E

State of queue: []

D

State of queue: []

D

State of queue: []

D

State of queue: []

D

Exam generated for <EMAILADDRESS> 70

3

Round Robin:

A, A, B, B, B, B, C, B, B, D, D, E, E, D, D, E

A

State of queue: deque([])

A

State of queue: deque([B])

B

State of queue: deque([])

B

State of queue: deque([])

B

State of queue: deque([C])

B

State of queue: deque([C])

C

State of queue: deque([B])

B

State of queue: deque([D])

B

State of queue: deque([D, E])

D

State of queue: deque([E])

D

State of queue: deque([E])

E

State of queue: deque([D])

E

State of queue: deque([D])

D

State of queue: deque([E])

D

State of queue: deque([E])

E

State of queue: deque([])

Exam generated for <EMAILADDRESS> 71

5. (19.0 points) Address Translation

Consider a multi-level memory management scheme with the following

format for virtual addresses:

Virtual Page #1 Virtual Page #2 Offset

10 bits 10 bits 12 bits

Virtual addresses are translated into physical addresses of the

following form:

Physical Page # Offset

20 bits 12 bits

Page table entries (PTE) are 32 bits in the following format,

stored in big-endian form in memory (i.e. the MSB is first byte

in memory):

Physical Page
#

OS
Defined 0 0 Dirty Accessed Nocache

Write
Through User Writable Valid

20 bits 3 bits 1
bit

1
bit

1 bit 1 bit 1 bit 1 bit 1 bit 1 bit 1 bit

Here, ‘Valid’ means that a translation is valid, ‘Writeable’ means that

the page is writeable, ‘User’ means that the page is accessible by the

User (rather than only by the Kernel).

a) Physical Memory

For the following two questions, please use the memory contents below.

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +a +b +c +d +e +f

0x0002f210 26 00 9d 25 00 65 ed b2 47 c5 f3 10 00 00 5e 06
. . .
0x00030070 ef 00 94 ca 01 3f 7e 00 00 a7 b3 ee 00 02 f0 67
. . .
0x00040000 00 08 30 5f 83 00 4f d1 64 d1 27 5c 00 44 00 00
0x00040010 00 04 40 7f 00 82 59 90 50 c2 6b 86 1c 8a 28 4a
. . .
0x00040060 d1 b9 18 db a7 00 00 c1 00 03 00 4d 35 00 e5 00
0x00040070 00 04 40 0f 4a 97 86 b8 e8 a8 00 00 13 00 28 4c
. . .
0x00044010 00 c7 c8 2d b2 05 2e 78 31 12 d1 9d 00 0a 10 4f
. . .
0x00044060 c1 00 02 83 0c 7c 00 bf 00 00 5f 41 00 0a 10 57
. . .
0x00083020 02 00 b2 7e 00 f7 00 00 e2 e1 61 f3 00 0d f0 3b
0x00083030 00 0d e0 17 00 0f 00 ab 73 00 77 6f 44 7d 00 42
. . .

Exam generated for <EMAILADDRESS> 72

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +a +b +c +d +e +f

0x000a1b50 00 73 00 00 b2 cb 00 8c a0 be 00 2b 29 4a f1 e9
0x000a1b60 be 00 3e 21 1d d2 32 64 e4 00 00 67 3d 00 e7 28
. . .
0x000def20 00 02 eb 78 d0 f4 41 4c 4a fa 4a 20 77 00 00 ff
. . .
0x000dff10 60 00 96 a5 45 d3 23 99 e3 23 00 04 85 a7 00 76

Exam generated for <EMAILADDRESS> 73

b) Translation Table

The base table pointer for the current user level process is

0x00040000. Translate the following virtual addresses to

physical addresses, using the memory contents given above. We have

filled in some of the boxes for you; you should fill in the boxes marked

blank.

with 0x. (Hint: remember that hexadecimal digits contain 4

bits!)All entries should be in hexadecimal, beginning

with 0x. (Hint: remember that hexadecimal digits contain 4

bits!)

Virtual
Address

VPN
#1

VPN
#2

First-Level
PTE

2nd-Level Page Table
Address

Second-Level
PTE

Physical
Address

0x0000cf2b 0x0 A B 0x00083000 0x000de017 0x000def2b
0x01007b63 0x4 0x7 C D E F
0x0681f213 G 0x1f H I 0x0002f067 J
0x0701bb5b 0x1c 0x1b K 0x00044000 L M

1

Blank A (Row 1, VPN #2)

0xc

2

Blank B (Row 1, First-Level PTE)

0x0008305f

3

Blank C (Row 2, First-Level PTE)

0x0004407f

4

Blank D (Row 2, 2nd-Level Page Table Address)

0x00044000

Exam generated for <EMAILADDRESS> 74

5

Blank E (Row 2, Second-Level PTE)

0x000a104f

6

Blank F (Row 2, Physical Address)

0x000a1b63

7

Blank G (Row 3, VPN #1)

0x1a

8

Blank H (Row 3, First-Level PTE)

0x0003004d

9

Blank I (Row 3, 2nd-Level Page Table Address)

0x00030000

10

Blank J (Row 3, Physical Address)

0x0002f213

11

Blank K (Row 4, First-Level PTE)

0x0004400f

12

Blank L (Row 4, Second-Level PTE)

0x000a1057

Exam generated for <EMAILADDRESS> 75

13

Blank M (Row 4, Physical Address)

0x000a1b5b

Exam generated for <EMAILADDRESS> 76

c) Instructions

Using the same assumptions and memory contents, predict results for the

following instructions. Addresses are virtual. The return value for a

load is an 8-bit data value (which should be written in

hexadecimal), or an error. The return value for a store is

ok, or an error. Possible errors are: invalid,

read-only, kernel-only.

Instruction Result

Load 0x0701bb5b 0x2b
Store 0x01007b63 ok
Store 0x0681f213 ERROR: read-only
Store 0x0000bf19 N
Load 0x01007b5c O
Test-And-Set 0x0681f210 P

1

Blank N (Store 0x0000bf19)

ERROR: kernel-only

2

Blank O (Load 0x01007b5c)

0x29

3

Blank P (Test-And-Set 0x0681f210)

0x26

Exam generated for <EMAILADDRESS> 77

6. Reference Sheet

/******************************* Threads *******************************/

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);

int pthread_join(pthread_t thread, void **retval);

int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int sem_init(sem_t *sem, int pshared, unsigned int value);

int sem_post(sem_t *sem);

int sem_wait(sem_t *sem);

/****************************** Processes *******************************/

pid_t fork(void);

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

int execv(const char *path, char *const argv[]);

/*************************** High-Level I/O *****************************/

FILE *fopen(const char *path, const char *mode);

FILE *fdopen(int fd, const char *mode);

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

int fclose(FILE *stream);

/******************************** Sockets *******************************/

int socket(int domain, int type, int protocol);

Exam generated for <EMAILADDRESS> 78

int bind(int sockfd, struct sockaddr *addr, socklen_t addrlen);

int listen(int sockfd, int backlog);

int accept(int sockfd, structure sockaddr *addr, socklen_t *addrlen);

int connect(int sockfd, struct sockaddr *addr, socklen_t addrlen);

ssize_t send(int sockfd, const void *buf, size_t len, int flags);

/**************************** Low-Level I/O *****************************/

int open(const char *pathname, int flags);

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, const void *buf, size_t count);

int dup(int oldfd);

int dup2(int oldfd, int newfd);

int pipe(int pipefd[2]);

int close(int fd);

/******************************* PintOS *********************************/

void list_init(struct list *list);

struct list_elem *list_head(struct list *list);

struct list_elem *list_tail(struct list *list);

struct list_elem *list_begin(struct list *list);

struct list_elem *list_next(struct list_elem *elem);

struct list_elem *list_end(struct list *list);

struct list_elem *list_remove(struct list_elem *elem);

bool list_empty(struct list *list);

#define list_entry(LIST_ELEM, STRUCT, MEMBER) ...

void list_insert(struct list_elem *before, struct list_elem *elem);

void list_push_front(struct list *list, struct list_elem *elem);

Exam generated for <EMAILADDRESS> 79

void list_push_back(struct list *list, struct list_elem *elem);

void sema_init(struct semaphore *sema, unsigned value);

void sema_down(struct semaphore *sema);

void sema_up(struct semaphore *sema);

void lock_init(struct lock *lock);

void lock_acquire(struct lock *lock);

void lock_release(struct lock *lock);

void *memcpy(void *dest, const void *src, size_t n);

void *memmove(void *dest, const void *src, size_t n);

Exam generated for <EMAILADDRESS> 80

No more questions.

