
Discussion 2: Threads, I/O

September 13, 2023

Contents

1 Threads 2
1.1 pthreads Party . 2

2 I/O 4
2.1 Concept Check . 6
2.2 File Descriptor Fun . 7
2.3 Echo Server . 8

1

CS 162 Fall 2023 Discussion 2 Threads, I/O

1 Threads

Threads are single unique execution contexts with their own set of registers and stack. Threads are sometimes
referred to as “lightweight processes”.

Thread Control Block

Components that are shared between threads in the same process (e.g. heap, global variables) do not need
to be persisted by each individual thread. However, each thread still needs to persist its registers and stack
in the thread control block (TCB).

Syscalls

POSIX defines a pthread library which consists of syscalls for threads similar to the process syscalls.

int pthread create(pthread t *thread, const pthread attr t *attr,

void *(*start routine) (void *), void *arg)

Starts a new thread in the calling process. The thread starts execution by invoking start routine

that takes in arg as its sole argument.

void pthread exit(void *retval)

Terminates the calling thread and stores a value in retval that is available to another thread in the
same process that joins. Similar to how a return from main will implicitly call exit for processes, a
return from start routine will implicitly call pthread exit.

int sched yield(void)

The calling thread relinquishes the CPU and is put at the end of the run queue.

int pthread join(pthread t thread, void **retval)

Calling thread waits for thread to terminate. For a non-NULL retval, the exit status of thread (i.e.
the one from pthread exit) is made available in retval.

1.1 pthreads Party

1. What are the possible outputs of the following program? How can you change the program to make it
print "HELPER" before "MAIN"?

1 void *helper(void *arg) {

2 printf("HELPER");

3 return NULL;

4 }

5 int main() {

6 pthread_t thread;

7 pthread_create(&thread, NULL, &helper, NULL);

8 sched_yield();

9 printf("MAIN");

10 return 0;

11 }

pthread order.c

The output of the program can be "MAINHELPER", "HELPERMAIN", or "MAIN". The sched yield

does not guarantee that helper will be run first. While the main thread will relinquish the
CPU, there is no guarantee that the thread running the helper function finishes executing the
function before the CPU is given back to the main thread. In fact, there isn’t even a guarantee
that the scheduler will choose to run the ”helper thread” after the main thread relinquishes
the CPU – it is possible that even though the main thread called sched yield, the scheduler

2

CS 162 Fall 2023 Discussion 2 Threads, I/O

still chooses to schedule the main thread over the helper thread as the next running thread.
It might even happen that the main thread runs to completion before the helper thread ever
runs the print statement. When the main thread returns, the process will return as well since
it exits from the main function. This will kill the process and thereby its associated threads.

A simple fix is to replace the sched yield with a pthread join. With this change, the main
thread will wait until the helper thread has returned, meaning "HELPER" will always be printed
before "MAIN".

2. What does the following program print?

1 void *helper(void *arg) {

2 int *num = (int*) arg;

3 *num = 2;

4 return NULL;

5 }

6 int main() {

7 int i = 0;

8 pthread_t thread;

9 pthread_create(&thread, NULL, &helper, &i);

10 pthread_join(thread, NULL);

11 printf("i is %d", i);

12 return 0;

13 }

pthread stack.c

Since both threads are in the same process, they share the same address space. Even though
each thread will have a separate stack, a shared address space means threads in the same process
can access each others’ stacks. As a result, helper thread will modify i in the main thread,
giving an output of "i is 2".

3. What does the following program print?

1 void *helper(void *arg) {

2 char *message = (char *) arg;

3 strcpy(message, "I am the helper");

4 return NULL;

5 }

6 int main() {

7 char *message = malloc(100);

8 strcpy(message, "I am the main");

9 pthread_t thread;

10 pthread_create(&thread, NULL, &helper, message);

11 printf("%s", message);

12 pthread_join(thread, NULL);

13 return 0;

14 }

pthread heap.c

The program can print either "I am the main" or "I am the helper". pthread join is called
after the printf, meaning the order of execution is not guaranteed by the printf statement.

3

CS 162 Fall 2023 Discussion 2 Threads, I/O

2 I/O

The operating system must be able to interface with a wide variety of input/output (I/O) devices including
but not limited to keyboard, mouse, disk, USB port, WiFi. While there are many different types of devices,
POSIX unifies all of them behind a single common interface.

Design Philosophy

POSIX has a set of design philosophies that define the standard for UNIX-based operating systems.

Uniformity
All I/O is regularized behind a single common interface under the idea that “everything is a file”. This
means all I/O (e.g. file operations, interprocess communications) use the same set of syscalls: open,
close, read, write.

Open Before Use
Before any I/O operation, the “device” must be opened before using. This allows the operating system
to perform various checks (e.g. access control permissions) and bookkeeping of metadata. For instance,
a device might only be allowed to be opened by one application.

Byte Oriented
All data from devices are addressed in bytes even for devices with different block sizes.

Kernel Buffered Read/Writes
Data from devices are stored in a kernel buffer and returned to the application on request. Similarly,
outgoing data is stored in a kernel buffer until the device is ready to be written to. Kernel buffering
allows for same interface between devices with different read block sizes and different write speeds.

Explicit Close
An application must explicitly call close when it’s done with the device. Similar to open, this allows
the operating system to perform bookkeeping and garbage collection.

Low-Level API

Low-level API operates directly with file descriptors which are indices into a file descriptor table
(FDT). Each process has its own FDT stored in kernel memory, where each entry points to a file descrip-
tion which represents an open file or device and keeps track of metadata (e.g. offset position). This means
that the same file descriptor can correspond to different file descriptions across different processes.

Specifically, file descriptors 0, 1, and 2 are initialized to standard input (stdin), standard output (stdout),
and standard error (stderr), respectively. However, they can be redefined (see dup and dup2).

Select methods from the low-level API are listed below. All low-level methods are syscalls, meaning they
occur entirely in kernel space.

int open(const char* pathname, int flags)

Opens a file specified by pathname with access control permissions flags. Returns a file descriptor or
-1 on an error.

int close(int fd)

Closes a file descriptor, so that it no longer refers to any file and may be reused. If fd is the last file
descriptor referring to the file description, the resources associated with the open file description are
freed. Returns 0 on success or -1 on an error.

ssize t read(int fd, void *buf, size t count)

Attempts to read up to count bytes from file descriptor fd into the buffer starting at buf. Returns the
number of bytes read on success or -1 on an error.

4

CS 162 Fall 2023 Discussion 2 Threads, I/O

ssize t write(int fd, const void *buf, size t count)

Attempts to write count bytes to file descriptor fd from the buffer starting at buf. Returns number
of bytes written on success or -1 on an error.

off t lseek(int fd, off t offset, int whence)

Repositions the file offset of the open file description associated with the file descriptor fd to the
argument offset according to the directive whence.

int dup(int oldfd)

Allocates the next available file descriptor to point to the same file description as oldfd.

int dup2(int oldfd, newfd)

Same as dup but with a specific file descriptor newfd.

A particular note about read and write is that these methods are not guaranteed to fully succeed, meaning
read and write might read and write less bytes than specified. However, this isn’t considered an error.

High-Level API

High-level API operates on streams of data, which are unformatted sequences of bytes with a position.
Streams can encompass any data type from raw binaries to text. An open stream is represented by a pointer
to FILE, which contain information pertaining to an open stream such as the file descriptor. For example,
FILE *stdin, FILE *stdout, and FILE* stderr respectively correspond to file descriptors 0, 1, and 2.

High-level API buffers data in user memory in larger chunks (e.g. 1024 bytes). This is different from the
kernel buffered philosophy since not every invocation of the high-level API requires a syscall. For instance,
a fread with size = 100 will still fetch the data in a larger chunk (e.g. 1024 bytes), meaning there will not
be a syscall when fread is called a second time with size = 100.

Select methods from the high-level API are listed below.

FILE *fopen(const char *pathname, const char *mode)

Opens the file associated with pathname and associates a stream with it. Returns a FILE * or NULL
on an error.

int fclose(FILE *stream)

Flushes the stream pointed to by stream and closes the underlying file descriptor. Returns 0 on success
or EOF on an error.

int fread(void *ptr, size t size, size t nmemb, FILE *stream)

Reads nmemb items of data, each size bytes long, from the stream pointed to by stream, storing them
at the location given by ptr. Return the number of items read.

int fwrite(void *ptr, size t size, size t nmemb, FILE *stream)

Writes nmemb items of data, each size bytes long, to the stream pointed to by stream, obtaining them
from the location given by ptr. Returns the number of items written.

int fflush(FILE *stream)

Forces a write of all data in the user space buffer to stream.

int fprintf(FILE *stream, const char *format, ...)

Prints to stream according to format.

int fscanf(FILE *stream, const char *format, ...)

Scans from stream according to format.

Contrary to read and write, fread and fwrite guarantee that they will read and write the specified amount.
If fread and fwrite return an amount less than the specified amount, it is considered an error.

In general, high-level APIs provide a more expressive way of interacting with devices. For instance, fprintf
allows printing with a specific format whereas write can only write raw sequences of bytes. There are also

5

CS 162 Fall 2023 Discussion 2 Threads, I/O

different API methods defined for character-oriented devices (e.g. fputc) and block-oriented devices (e.g.
fread).

Interprocess Communication

In theory, processes can communicate using files, where one process writes to a file and another reads
from a file. However, this is a painfully slow process due to the overhead of disk speeds. Interprocess
communciation (IPC) provide mechanisms to communicate between processes to manage shared data.
Oftentimes, this communication will be facilitated using memory instead of disk.

Pipes are one-way communication channels between processes on the same physical machine. A pipe can
be thought of as a single queue where you can read from one end and write to another. When opened, each
end of the queue corresponds to its own file descriptor. You can use the int pipe(int pipedfd[2]) syscall
to create a pipe.

Sockets are two-way communication channels between processes. These processes can be on the same or
different machines. Sockets can be thought of as using two queues, one in each direction.

For a connection to to be established, the server needs to be able to accept a request connection from the
client. The steps to do this are

1. Create server socket using socket syscall.

2. Bind the server socket to a specific address using bind syscall.

3. Start listening for connections using listen syscall.

Once these steps succeed, the server can accept new connections using the accept syscall. When the client
wants to make a connection request, it sends a 5-Tuple that uniquely identifies a connection. In the 5-Tuple
are

1. Source IP Address

2. Destination IP Address

3. Source Port Number

4. Destination Port Number

5. Protocol (e.g. TCP)

2.1 Concept Check

1. What’s the difference between fopen and open?

fopen is a high-level API, while open is a low-level API. fopen will return a FILE* type, while
open will return an integer.

2. What will the test.txt file look like after this program is run? You may assume read and write fully
succeed (i.e. read/write the specified number of bytes).

For reference, SEEK SET will set the offset to offset bytes, while SEEK CUR will set the offset to its
current location plus offset bytes. Seeking past the end of a file will set the bytes to 0.

1 int main() {

2 char buffer[200];

3 memset(buffer, 'a', 200);

4 int fd = open("test.txt", O_CREAT|O_RDWR);

5 write(fd, buffer, 200);

6 lseek(fd, 0, SEEK_SET);

7 read(fd, buffer, 100);

6

CS 162 Fall 2023 Discussion 2 Threads, I/O

8 lseek(fd, 500, SEEK_CUR);

9 write(fd, buffer, 100);

10 }

lseek test.c

The first write gives us 200 bytes of ’a’. Then we seek to the offset 0 (i.e. beginning of the
file) and then read 100 bytes. This will set the current offset to 100.

We seek again to offset 600 (500 bytes on top of existing 100) then write 100 more bytes of a.
Since we seek past the end of the file, the 200 to 599th bytes will be set to 0. An important
distinction is that this is not the character ’0’ but rather the literal byte 0.

2.2 File Descriptor Fun

1. Consider a method that copies n bytes from src file to dest file. You may assume both files are already
created, and src is at most 100 bytes long. This method has been written in two different ways, one
using the high-level API and low-level API.

1 void copy_high(const char* src, const char* dest) {

2 char buffer[100];

3 FILE* rf = fopen(src, "r");

4 int buf_size = fread(buffer, 1, sizeof(buffer), rf);

5 fclose(rf);

6 FILE* wf = fopen(dest, "w");

7 fwrite(buffer, 1, buf_size, wf);

8 fclose(wf);

9 }

10

11 void copy_low(const char* src, const char* dest) {

12 char buffer[100];

13 int rfd = open(src, O_RDONLY);

14 int buf_size = 0;

15 while ((bytes_read = read(rfd, &buffer[buf_size], sizeof(buffer) - buf_size)) > 0)

16 buf_size += bytes_read;

17

18 close(rfd);

19 int bytes_written = 0;

20 int wfd = open(dest, O_WRONLY);

21 while (bytes_written < buf_size)

22 bytes_written += write(wfd, &buffer[bytes_written], buf_size - bytes_written);

23

24 close(wfd);

25 }

copy.c

What is the purpose of the while loops in copy low?

Contrary to fread and fwrite, read and write are not guaranteed to read and write the
specified size. As a result, we need the while loop to make sure the desired number of bytes are
read and written.

2. What does the following program print to standard output?

1 int main(int argc, char **argv) {

2 int fd;

3 if ((fd = open("out.txt", O_CREAT|O_TRUNC|O_WRONLY, 0644)) < 0)

7

CS 162 Fall 2023 Discussion 2 Threads, I/O

4 exit(1);

5

6 printf("The last digit of pi is ...");

7 fflush(stdout);

8

9 dup2(fd, 1);

10 printf("five");

11 exit(0);

12 }

dup pi.c

Standard out will only print

The last digit of pi is ...

since we replaced the file descriptor 1 was remapped to correspond to the file description cor-
responding to the open out.txt. "five" will end up in out.txt.

2.3 Echo Server

Consider a server implementation that echoes back the bytes that the client sent. Each connection needs to
be handled in its own thread. Threads should be allowed to handle connections concurrently. For simplicity,
assume read and write do not return short.

1 #define BUF_SIZE 1024

2

3 struct addrinfo* setup_address(char* port) {

4 struct addrinfo* server;

5 struct addrinfo hints;

6 memset(&hints, 0, sizeof(hints));

7 hints.ai_family = AF_UNSPEC;

8 hints.ai_socktype = SOCK_STREAM;

9 hints.ai_flags = AI_PASSIVE;

10

11 int rv = getaddrinfo(NULL, port, &hints, &server);

12 if (rv != 0) {

13 printf("getaddrinfo failed: %s\n", gai_strerror(rv));

14 return NULL;

15 }

16 return server;

17 }

18

19 void* serve_client(void* client_socket_arg) {

20 int client_socket = (int) client_socket_arg;

21 char buf[BUF_SIZE];

22 ssize_t n;

23

24 while ((n = read(client_socket, buf, BUF_SIZE)) > 0) {

25 buf[n] = '\0';
26 printf("Client Sent: %s\n", buf);

27

28 if (write(client_socket, buf, n) == -1) {

29 ____________________;

30 ____________________;

31 }

32 }

33 ____________________;

8

CS 162 Fall 2023 Discussion 2 Threads, I/O

34 ____________________;

35 }

36

37 int main(int argc, char** argv) {

38 if (argc < 2) {

39 printf("Usage: %s <port>\n", argv[0]);

40 return 1;

41 }

42

43 struct addrinfo* server = setup_address(argv[1]);

44 if (server == NULL)

45 return 1;

46 int server_socket = ______(server->ai_family, server->ai_socktype, server->ai_protocol);

47 if (server_socket == -1)

48 return 1;

49 if (_____(server_socket, server->ai_addr, server->ai_addrlen) == -1)

50 return 1;

51 if (_____(server_socket, 1) == -1)

52 return 1;

53

54 while (1) {

55 int connection_socket = accept(server_socket, NULL, NULL);

56 if (connection_socket == -1)

57 pthread_exit(NULL);

58

59 pthread_t handler_thread;

60 int err = pthread_create(____________________);

61 if (err != 0)

62 ____________________;

63 pthread_detach(handler_thread);

64 }

65 }

echo server.c

1. What are the first three steps that a server needs to perform to be able to accept new connections?
Specify the specific syscalls that need to be used.

The server needs to create a socket using socket syscall, bind it to an address using bind

syscall, and start listening for new connections using listen syscall.

2. What function should each thread start at (i.e. start routine argument in pthread create)?

serve client. It has the basic outline of reading what the client sent and writing it back.

3. What should the server do when it’s finished with a client according to POSIX design philosophies?

An explicit close of the client socket is required.

4. What are the dangers of this approach compared to making a new process for each connection?

Each connection is handled in the same process, meaning a malicious connection could attack
the server and make the server and other clients vulnerable. If every connection was handled
in a new process, the server and other clients would still be safe.

9

CS 162 Fall 2023 Discussion 2 Threads, I/O

5. Fill in the blanks to complete the implementation.

1 void* serve_client(void* client_socket_arg) {

2 int client_socket = (int) client_socket_arg;

3 char buf[BUF_SIZE];

4 ssize_t n;

5

6 while ((n = read(client_socket, buf, BUF_SIZE)) > 0) {

7 buf[n] = '\0';
8 printf("Client Sent: %s\n", buf);

9

10 if (write(client_socket, buf, n) == -1) {

11 close(client_socket);

12 pthread_exit(NULL);

13 }

14 }

15 close(client_socket);

16 pthread_exit(NULL);

17 }

18

19 int main(int argc, char** argv) {

20 if (argc < 2) {

21 printf("Usage: %s <port>\n", argv[0]);

22 return 1;

23 }

24

25 struct addrinfo* server = setup_address(argv[1]);

26 if (server == NULL)

27 return 1;

28 int server_socket = socket(server->ai_family, server->ai_socktype, server->

ai_protocol);

29 if (server_socket == -1)

30 return 1;

31 if (bind(server_socket, server->ai_addr, server->ai_addrlen) == -1)

32 return 1;

33 if (listen(server_socket, 1) == -1)

34 return 1;

35

36 while (1) {

37 int connection_socket = accept(server_socket, NULL, NULL);

38 if (connection_socket == -1)

39 pthread_exit(NULL);

40

41 pthread_t handler_thread;

42 int err = pthread_create(&handler_thread, NULL, serve_client, connection_socket);

43 if (err != 0)

44 pthread_exit(NULL);

45 pthread_detach(handler_thread);

46 }

47 }

echo server.c

10

	Threads
	pthreads Party

	I/O
	Concept Check
	File Descriptor Fun
	Echo Server

