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1 Scheduling

Scheduling is the process of deciding which threads are given access to resources from moment to moment.
Usually, scheduling pertains to CPU access times, but it can encompass any type of resource like network
bandwidth or disk access.

When discussing scheduling, we typically make some assumptions for simplification. Each user is assumed
to have one single-threaded program where each program is independent of each other.

Goals and Criteria

The goal of scheduling is to dole out CPU time to optimize some desired parameters of the system. Generally
speaking, scheduling policies focus on the following goals and criteria.

Minimize Completion Time

Completion time is the combination of the waiting time plus the run time of a process (e.g. time to compile
a program, time to echo a keystroke in an editor). Minimizing completion time is crucial for time-sensitive
tasks (e.g. I/O).

Maximize Throughput

Throughput is the rate at which tasks are completed. While throughput is related to completion time,
they are not the same. Maximizing throughput involves minimizing overhead (e.g. context switching) and
efficient use of resources.

Maintain Fairness

Fairness refers to sharing resources in some equitable manner. Evidently, fairness is not very well defined
unless specific parameters are specified. Maintaining fairness will usually contradict minimizing completion
time.

First Come First Serve (FCFS)

First come first serve (FCFS) schedules tasks in the order in which they arrive. It’s simple to implement
and is good for throughput since it minimizes the overhead of context switching. However, average completion
time under FCFS can very significantly according to arrival order. Additionally, FCFS suffers from the
Convoy effect where short tasks get stuck behind long tasks.

Shortest Job First (SJF) / Shortest Remaining Time First (SRTF)

Shortest job first (SJF) schedules the shortest task first. Shortest remaining time first (SRTF)
is a preemptive version of SJF. If a task arrives and has a shorter time to completion than the current
running task, the resource will be preempted. SJF and SRTF are provably optimal for minimizing average
completion time among non-preemptive and preemptive schedulers, respectively. However, both of them
involve the impossible idea of knowing how long a task is going to take.

Moreover, they do not maintain fairness with regards to the amount of time spent using a resource. In fact,
SJF and SRTF can lead to starvation which is the continued lack of progress for one task due to other
tasks being scheduled over it. If small tasks keep arriving, larger tasks will never get to run.

Round Robin (RR)

Round robin (RR) schedules tasks such that each of them takes turns using a resource for a small unit
of time known as the time quantum (q). After q expires, the task is preempted and added to the end of
the ready queue. When q is large, RR resembles FCFS, becoming identical if q is larger than the length of
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any task. When q is small, RR resembles SJF Generally, q must be large with respect to the cost of context
switching to avoid the overhead being too high.

If there are n tasks, each task gets 1/n amount of resources, ensuring fairness in terms of sharing resources.
No task will wait for more than (n− 1)q time units.

In general, with RR, small scheduling quantum decreases response time but increases completion time, due
to the extra context switching overhead and the fact that longer jobs get ”stretched out”.

Lottery

Lottery gives each task a certain number of lottery tickets. On each time slice, a ticket is randomly picked.
On expectation, each task will be given time proportional to the number tickets it was originally given. When
distributing tickets, it’s important to make sure that every task gets at least one ticket to avoid starvation.
If SRTF was to be approximated, shorter tasks would simply get more tickets than longer tasks.

Multi-Level Feedback Queue (MLFQ)

Multi-level feedback queue (MLFQ) uses multiple queues which each have different priority. Each
queue has its own scheduling algorithm. Higher-priority queues (foreground) will typically use RR while
lower-priority queues (background) might use FCFS.

A task will start at the highest-priority queue. If the task uses up all the resources (e.g. q for RR), it will
get pushed one level down as a penalty. If the task does not use up all the resources (e.g. less than q for
RR), it will get pushed one level up as a reward. This ensures that long running tasks (e.g. CPU bound)
don’t hog all resources and get demoted into low priority queues while short running tasks (e.g. I/O bound)
will remain at the higher-priority queues.

1.1 Round Robin T/F

1. The average wait time is less than that of FCFS for the same workload.

False. This is generally not true when the time quantum is small. Consider tasks A, B, and C
(arriving in this order) which each take 3 time units. With FCFS, the average wait time is 3.
With RR (q = 1), average wait time is 5.

2. It requires preemption to maintain uniform quanta.

True. Without preemption, a task would just run forever without adhering to the quantum.

3. If a quantum is constantly updated to become the number of cpu ticks since boot, Round Robin
becomes FCFS.

True. Quantum never gets used for any task since it always increases as the task progresses.

4. Cache performance is likely to improve relative to FCFS.

False. RR usually results in more context switches when compared to FCFS, meaning the cache
will have more misses.

5. If no new threads are entering the system, all threads will get a chance to run in the cpu every
QUANTA*SECONDS_PER_TICK*NUMTHREADS seconds, assuming QUANTA is in ticks.
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False. There exists context switching overhead.

1.2 Life Ain’t Fair

Suppose the following threads (priorities given in parantheses) arrive in the ready queue at the clock
ticks shown. Assume all threads arrive unblocked and that each takes 5 clock ticks to finish executing.
Assume threads arrive in the queue at the beginning of the time slices shown and are ready to be scheduled
in that same clock tick. This means you update the ready queue with the arrival before you schedule/execute
that clock tick. Assume you only have one physical CPU.

0 Taj (prio = 7)

1

2 Kevin (prio = 1)

3 Neil (prio = 3)

4

5 Akshat (prio = 5)

6

7 William (prio = 11)

8

9 Alina (prio = 14)

Determine the order and time allocations of execution for each given scheduler scenario. Write answers in
the form of vertical columns with one name per row, each denoting one clock tick of execution. For example,
allowing Taj 3 units at first looks like:

0 Taj

1 Taj

2 Taj

It will probably help you to draw a diagram of the ready queue at each tick for this problem.

1. Round robin with time quantum 3

From t=0 to t=3, Taj gets to run since there is initially no one else on the run queue. At t=3,
Taj gets preempted since the time slice is 3. Kevin is selected as the next person to run, and
Neil gets added to the run queue just before Taj. Kevin is the next person to run from t=3
to t=6. At t=5, Akshat gets added to the run queue, which consists of at this point: Neil,
Taj, Akshat At t=6, Kevin gets preempted and Neil gets to run since he is next. Kevin gets
added to the back of the queue, which consists of: Taj, Akshat, Kevin. From t=6 to t=9, Neil
gets to run and then is preempted. Taj gets to run again from t=9 to t=10, and then finishes
executing. Akshat gets to run next and this pattern continues until everyone has completed
running
0 Taj

1 Taj

2 Taj

3 Kevin

4 Kevin

5 Kevin

6 Neil

7 Neil

8 Neil

9 Taj

10 Taj

11 Akshat

12 Akshat

13 Akshat

14 Kevin

15 Kevin

16 William

17 William

18 William

19 Alina

20 Alina

21 Alina

22 Neil

23 Neil

24 Akshat

25 Akshat

26 William

27 William

28 Alina

29 Alina

2. SRTF with preemptions
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Since each thread takes 5 ticks, a thread will never be preempted once begun. As a result, each
thread will just execute in order of arrival (i.e. FIFO).
0 Taj

1 Taj

2 Taj

3 Taj

4 Taj

5 Kevin

6 Kevin

7 Kevin

8 Kevin

9 Kevin

10 Neil

11 Neil

12 Neil

13 Neil

14 Neil

15 Akshat

16 Akshat

17 Akshat

18 Akshat

19 Akshat

20 William

21 William

22 William

23 William

24 William

25 Alina

26 Alina

27 Alina

28 Alina

29 Alina

3. Preemptive priority

Even though Kevin and Neil arrive while Taj is running, Taj has higher priority, so it runs to
completion. Just as Taj finishes, Akshat arrives with a higher priority than Kevin and Neil who
are waiting, so Akshat runs for two clock ticks until William arrives with a greater priority.
Similarly, William runs for two clock ticks until Alina arrives with a greater priority. Alina runs
to completion, then the remaining threads each run to completion based on priority.
0 Taj

1 Taj

2 Taj

3 Taj

4 Taj

5 Akshat

6 Akshat

7 William

8 William

9 Alina

10 Alina

11 Alina

12 Alina

13 Alina

14 William

15 William

16 William

17 Akshat

18 Akshat

19 Akshat

20 Neil

21 Neil

22 Neil

23 Neil

24 Neil

25 Kevin

26 Kevin

27 Kevin

28 Kevin

29 Kevin

1.3 Bitcoin Mining

You are a Bitcoin miner, and you’ve developed an algorithm that can run on an unsuspecting machine and
mine Bitcoin. You now need to write a program that will run your mining algorithm forever. While you
want your mining job to be scheduled often, you also don’t want to attract too much suspicion from system
users or administrators. Fortunately, you know that the machines you’re targeting use a MLFQS algorithm
to schedule jobs, outlined below.

5



CS 162 Fall 2023 Discussion 4 Scheduling

1. You decide that the best strategy is to guarantee that your mining job will always be placed on Queues
B and C.

Assume that the CPU-intensive mining algorithm you’ve developed can be run in 10-tick intervals.
Implement your mining program, and explain your design. The only functions you should use are mine
(which runs for 10 ticks) and printf. Assume that your job is initially placed on Queue B.

1 void mine_forever() {

2 while(1) {

3 _______________

4 _______________

5 _______________

6 }

7 }

bitcoin mine.c

1 void mine_forever() {

2 while(1) {

3 for (int i = 0; i < 4; i++)

4 mine();

5 printf("Not a Bitcoin miner!!!");

6 }

7 }

bitcoin mine sol.c

The program needs to exceed the Queue B quanta so that the quanta expires and the job is
placed on Queue C. Once placed on Queue C, the job needs to voluntarily yield so that it
can be placed on Queue B once again. By running the mining algorithm 4 times, the first 2
iterations will cause the Queue B quanta to expire. After the remaining 2 iterations, the job
should voluntarily yield (e.g. print to stdout). Note: Once the job is placed on Queue C, it will
still run the 2nd iteration of the mining algorithm for 4 ticks.
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2. Explain why, regardless of how you implement your mining program, your job will never be placed on
Queue A twice in a row.

Since the mining algorithm can only be run in 10 tick intervals, any implementation will always
exceed the Queue A quanta before the CPU can be voluntarily yielded. This will cause the job
to be placed on Queue B, since the Queue A quanta expired.
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